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Approximation of variational problems with a

convexity constraint by PDEs of Abreu type
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Abstract

Motivated by some variational problems subject to a convexity

constraint, we consider an approximation using the logarithm of the

Hessian determinant as a barrier for the constraint. We show that the

minimizer of this penalization can be approached by solving a second

boundary value problem for Abreu’s equation which is a well-posed

nonlinear fourth-order elliptic problem. More interestingly, a simi-

lar approximation result holds for the initial constrained variational

problem.

Keywords: Abreu equation, Monge-Ampère operator, calculus of varia-
tions with a convexity constraint.

MS Classification: 35G30, 49K30.

1 Introduction

Given Ω, a bounded, open, convex subset of Rd with d ≥ 2, F : Ω× R → R

strictly convex in its second argument, and ϕ a uniformly convex and smooth
function defined in a neighbourhood of Ω, we are interested in the variational
problem with a convexity constraint:

inf
u∈S[ϕ,Ω]

J0(u) :=

∫

Ω

F (x, u(x))dx (1.1)
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tre de Tassigny, 75775 Paris Cedex 16, FRANCE and INRIA-Paris, MOKAPLAN,

carlier@ceremade.dauphine.fr
†Department of Mathematics R. Caccioppoli, University of Naples Federico II, Via

Cintia–80126, Napoli, ITALY, teresa.radice@unina.it

1



where S[ϕ,Ω] consists of all convex functions on Ω which admit a convex
extension by ϕ in a neighbourhood of Ω. This is a way to express in some
weak sense the boundary conditions

u = ϕ and ∂νu ≤ ∂νϕ on ∂Ω, (1.2)

where ν denotes the outward normal to ∂Ω and ∂ν denotes the normal deriva-
tive.

Due to the convexity constraint, it is really difficult to write a tractable
Euler-Lagrange equation for (1.1) (see [7], [2]). One may therefore wish to
construct suitable penalizations for the convexity constraint which force the
minimizers to somehow remain in the interior of the constraint and thus to
be a critical point of the penalized functional. Since the seminal work of
Trudinger and Wang [9, 10] on the prescribed affine mean curvature equa-
tion, the regularity of convex solutions of fourth-order nonlinear PDEs which
are Euler-Lagrange equations of convex functionals involving the Hessian de-
terminant have received a lot of attention. In particular, the Abreu equation
which corresponds to the logarithm of the Hessian determinant has been stud-
ied by Zhou [11] in dimension 2 and more recently by Chau and Weinkove [3]
and Le [5, 6] in higher dimensions. What the well-posedness and regularity
results of these references in particular suggest is that a penalization involv-
ing the logarithm of the Hessian determinant should act as a good barrier for
the convexity constraint in problems like (1.1). This was indeed confirmed
numerically at a discretized level, see [1].

Our goal is precisely to show that one can indeed approximate (1.1) by a
suitable boundary value problem for the Abreu equation. To do so, we first
introduce a penalized version of (1.1) with a small parameter ε > 0:

inf
v∈S[ϕ,Ω]

Jε(v) := J0(v)− εFΩ(v) (1.3)

where, when v ∈ S[ϕ,Ω] is smooth and strongly convex, (see section 2 for
the definition for an arbitrary v ∈ S[ϕ,Ω]), FΩ(v) is defined by

FΩ(v) :=

∫

Ω

log(detD2v).

Using the convexity of Jε setting f(x, u) := ∂uF (x, u), one can easily see that
if u is smooth and uniformly convex up to ∂Ω, and solves the first-boundary
problem for Abreu equation

εU ijwij = f(x, u) in Ω, u = ϕ and ∂νu = ∂νϕ on ∂Ω (1.4)
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where w := det(D2u)−1 and U denotes the cofactor matrix of D2u then it is
indeed the solution of (1.3). It turns out however that the second-boundary
value problem (where instead of prescribing both values of u and ∇u one
rather prescribes u and det(D2u) on ∂Ω) is much more well-behaved, see
[3, 5, 6] and it was indeed used as an approximation for the affine Plateau
problem in [9]. We shall also consider an extra approximation parameter
and a second-boundary value problem on a larger domain and show that it
approximates correctly not only (1.3) but also the intial problem (1.1) as the
parameter converges to zero.

The paper is organized as follows. Section 2 gives some preliminaries. In
section 3, we show a Γ-convergence result for Jε. In section 4, we consider an
approximation by a second boundary value problem on a ball B containing Ω,
with a further penalization 1

δ
(u−ϕ) on B\Ω, for which we prove existence and

uniqueness of a smooth solution. In section 5, we show that when δ → 0,
we recover the minimizer of the problem from section 3. Finally, we also
show full convergence of the second boundary value problem to the initial
constrained variational problem (1.1) when δ = δε → 0 as ε → 0, provided
F satisfies a suitable uniform convexity assumption.

2 Preliminaries

In the sequel, Ω will be an open, bounded and convex subset of Rd, d ≥ 2.
We are also given an open ball B containing Ω and assume that the boundary
datum ϕ satisfies for some λ > 0:

ϕ ∈ C3,1(B), ϕ = 0 on ∂B, D2ϕ ≥ λ id on B. (2.1)

We then define S[ϕ,Ω] as the set of convex functions on Ω, which, once
extended by ϕ on B \ Ω, are convex on B. Note that elements of S[ϕ,Ω]
coincide with ϕ on ∂Ω and are Lipschitz continuous with Lipschitz constant
at most ‖∇ϕ‖L∞(B) so that S[ϕ,Ω] is compact for the topology of uniform
convergence.

Finally, we assume that the integrand F : (x, u) ∈ Ω × R 7→ F (x, u) in
the definition of J0 in (1.1) is measurable with respect to x, strictly con-
vex and differentiable with respect to u and such that that F (., 0) ∈ L1(Ω)
and f(x, u) := ∂uF (x, u) satisfies f(., u) ∈ L∞(Ω) for every u ∈ R. These
assumptions in particular guarantee that the convex functional J0 is every-
where continuous and Gâteaux differentiable on S[ϕ,Ω].

Following [9, 10, 11], let us recall how to define FΩ(v) for an arbitrary
convex function v on Ω, first recall that the subdifferential of v at x ∈ Ω is
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given by

∂v(x) := {p ∈ R
d : v(y)− v(x) ≥ p · (y − x), ∀y ∈ Ω}.

The Monge-Ampère measure of v, denoted µ[v] is then defined by

µ[v](A) := |∂v(A)|

for every Borel subset A of Ω. From the seminal results of Alexandrov (see
[4]), µ[v] is indeed a Radon measure and v 7→ µ[v] is weakly continuous in the
sense that whenever vn are convex functions which locally uniformly converge
to v then

lim sup
n

µ[vn](F ) ≤ µ[v](F ), ∀ F ⊂ Ω, closed .

Decomposing the Monge-Ampère measure into its absolutely continuous part
and its singular part (with respect to the Lebesgue measure Ld) as

µ[v] = µr[v] + µs[v], µr[v] ≪ Ld, µs[v] ⊥ Ld.

Thanks to Alexandrov’s theorem, v is differentiable twice a.e., at such points
of twice differentiability, we denote by ∂2v its Hessian matrix, Trudinger and
Wang proved in [9] that det(∂2v) is the density of µr[v] with respect to Ld,
and following their approach, one can define the functional FΩ by

FΩ(v) :=

∫

Ω

log(det ∂2v(x))dx, ∀v ∈ S[ϕ,Ω]. (2.2)

It is well-known that FΩ is a concave functional and we refer to [8, 9, 11] for
a proof of the useful properties of FΩ recalled below in Lemmas 2.1 and 2.2

Lemma 2.1. The functional v ∈ S[ϕ,Ω] 7→ FΩ(v) defined in (2.2) is con-
cave, upper semi-continuous for the topology of local uniform convergence
and bounded from above on S[ϕ,Ω] with the explicit bound (where cd denotes
the measure of the unit ball of Rd)

FΩ(v) ≤ CΩ,ϕ := |Ω| log
(cd‖∇ϕ‖dL∞

|Ω|

)
, ∀v ∈ S[ϕ,Ω]. (2.3)

As we shall also work on the larger domain B, it will be also convenient
to consider for every open subset ω of B and every convex function u on B
the concave functional

Fω(v) :=

∫

ω

log(det ∂2v(x))dx. (2.4)

Following the same lines as Lemma 6.4 in Trudinger-Wang [8], we also
have:
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Lemma 2.2. If ω is an open subset of B with ω ⊂⊂ B, then for every
sequence of convex functions un converging locally uniformly on B to u, one
has

lim sup
n

Fω(un) ≤ Fω(u).

3 Logarithmic penalization

Given ε > 0, we consider

inf
v∈S[ϕ,Ω]

Jε(v) := J0(v)− εFΩ(v). (3.1)

Since Jε is strictly convex and lsc on the convex compact set S[ϕ,Ω], we
immediately have:

Proposition 3.1. Problem (3.1) admits a unique solution vε.

Arguing exactly as in [9, 11] by using Alexandrov’s maximum principle,
one can show:

Lemma 3.2. Let ε > 0 and vε be the solution of (3.1) then µs[vε] = 0 i.e.
µ[vε] has no singular part.

Remark 3.3. Let us remark that Lemma 3.2 enables one to express −FΩ(vε)
in an alternative way as the entropy of the push-forward of the Lebesgue
measure on Ω by ∇vε. Also, thanks to Lemma 3.2, one can prove uniqueness
of the solution of (3.1) when J0 is convex but not necessarily strictly convex.

In dimension 2, we actually even have a uniform local bound on det(∂2vε):

Proposition 3.4. Let d = 2, ε > 0 and vε be the solution of (3.1), then
µ[vε] = det(∂2vε) ∈ L∞

loc(Ω).

Proof. It follows from Theorem 5.1 and Proposition 4.3 that vε is the uniform
limit as δ → 0 of a sequence of smooth functions (vδε) in S[ϕ,Ω] such that,
for every open subset ω with ω ⊂⊂ Ω, ‖ det(D2vδε)‖L∞(ω) ≤ C where C is a
constant that depends on ε and ω but not on δ . By weak convergence of
Monge-Ampère measures we deduce that det(∂2vε) ∈ L∞

loc(Ω).

Let us now state a Γ-convergence result for Jε:
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Proposition 3.5. The family of functionals Jε defined on S[ϕ,Ω] equipped
with the topology of uniform convergence Γ-converges to J0 in particular vε
converges uniformly to the solution of (1.1).

Proof. Assume uε is a family in S[ϕ,Ω] that converges uniformly as ε → 0
to u, thanks to (2.3) and Fatou’s Lemma, we have

lim inf
ε

Jε(uε) ≥ lim inf
ε

(J0(uε)− εCΩ,ϕ) ≥ J0(u).

Given u ∈ S[ϕ,Ω], we now look for a recovery sequence uε ∈ S[ϕ,Ω] con-
verging to u and such that lim supε Jε(uε) ≤ J0(u), we simply take

uε := (1− ε)u+ εϕ

since ∂2uε ≥ εD2ϕ we have

FΩ(uε) ≥ d|Ω| log(ε) +

∫

Ω

log(det(D2ϕ))

with the convexity of J0, we then have

lim sup
ε

Jε(uε) ≤ lim sup
ε

((1− ε)J0(u) + εJ0(ϕ)) +O(ε log(ε))) ≤ J0(u).

4 Second boundary value approximation

Having Proposition 3.5 in mind, we now fix the value of ε. Throughout this
section, to simplify notations, we therefore take ε = 1 and we are interested
in approximating the solution of

inf
v∈S[ϕ,Ω]

J1(v) :=

∫

Ω

F (x, v(x))dx− FΩ(v), (4.1)

by a second-boundary value problem for Abreu equation. More precisely
given δ > 0, we consider

U ijwij = fδ(x, u), in B, u = ϕ, w = ψ on ∂B (4.2)

where ψ := det((D2ϕ)−1) and

fδ(x, u) :=

{
f(x, u) if x ∈ Ω
1
δ
(u− ϕ(x)) if x ∈ B \ Ω
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and as before w = det(D2u)−1 and U is the cofactor matrix of D2u. In view
of (4.2) and the definition of fδ, it is natural to introduce the functional
defined over convex functions on B by

J δ
1 (v) :=

∫

Ω

F (x, v(x))dx+
1

2δ

∫

B\Ω

(v − ϕ)2 − FB(v)

where

FB(v) :=

∫

B

log(det(∂2v))

so that

J δ
1 (v) = J1(v) +

1

2δ

∫

B\Ω

(v − ϕ)2 −

∫

B\Ω

log(det(∂2v)). (4.3)

4.1 A priori estimates for the second boundary value

problem

Following a similar convexity argument as in Lemma 2.2 in Chau andWeinkove
[3], we first have

Proposition 4.1. Let u be a smooth and uniformly convex solution of (4.2),
then

max
B

|u|+

∫

∂B

|∂νu|
d +

1

δ

∫

B\Ω

|u− ϕ|2 ≤ C (4.4)

for some constant C only depending on B, ‖ϕ‖C3,1(B) and the constant λ in
(2.1).

Proof. First observe that by convexity and (2.1), u < 0 in B and ∂νu > 0 on

∂B. Define ũ := ϕ, Ũ as the cofactor matrix of D2ϕ, w̃ := det(D2ϕ)−1 and

f̃ := Ũ ijw̃ij (whose L∞ norm only depends on ‖ϕ‖C3,1(B) and the constant
λ in (2.1)) we have by the concavity of FB, (4.2) and the monotonicity of
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f(x, .):

0 ≥ (F
′

B(u)− F
′

B(ũ))(u− ũ)

=

∫

B

(U ijwij − Ũ ijw̃ij)(u− ϕ) +

∫

∂B

ψ(U ij − Ũ ij)∂i(u− ϕ)νj

=

∫

Ω

f(x, u)(u− ϕ)−

∫

B

f̃(u− ϕ) +
1

δ

∫

B\Ω

(u− ϕ)2

+

∫

∂B

ψ(Uνν − Ũνν)∂ν(u− ϕ)

≥

∫

Ω

f(x, ϕ)(u− ϕ)−

∫

B

f̃(u− ϕ) +
1

δ

∫

B\Ω

(u− ϕ)2

+

∫

∂B

ψ(Uνν − Ũνν)∂ν(u− ϕ)

where, in the last line, we have used the fact that ∇u−∇ϕ = ∂ν(u−ϕ)ν on

∂B and set Uνν = Uν · ν, Ũνν = Ũν · ν. Using the fact that f(x, ϕ), f̃ , ϕ,

∇ϕ and Ũ are bounded, we thus get

1

δ

∫

B\Ω

(u−ϕ)2 +

∫

∂B

ψUνν∂νu ≤ C
(
1+

∫

B

|u|+

∫

∂B

∂νu+

∫

∂B

Uνν
)
. (4.5)

Denoting by R the radius of B and by the same argument as in Lemma 2.2
in [3], one has

Uνν =
1

Rd−1
∂νu

d−1 + E with |E| ≤ C(1 + ∂νu
d−2) on ∂B. (4.6)

Moreover since u is convex and u = ϕ = 0 on ∂B, one has

max
B

|u| = −min
B
u ≤ 2R∂νu(x) for all x ∈ ∂B. (4.7)

Putting together (4.5), (4.6), (4.7) and the fact that inf∂B ψ > 0, we obtain

∫

∂B

(∂νu)
d ≤ C(1 +

∫

∂B

(∂νu)
d−1)

which gives a bound on ‖∂νu‖Ld(∂B) hence also on maxB |u| by (4.7) so that
finally the bound on δ−1

∫
B\Ω

(u − ϕ)2 follows from the latter bounds and

(4.5).
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4.2 Existence and uniqueness of a smooth uniformly

convex solution

Thanks to Theorem 1.1 in [3], a Leray-Schauder degree argument and the a
priori estimate (4.4), one easily deduces the following:

Theorem 4.2. For every δ > 0, the second boundary value problem (4.2)
admits a unique uniformly convex solution which is W 4,p(B) for every p ∈
[1,+∞).

Proof. Let D := {u ∈ C(B), ‖u‖C(B) ≤ C+1} where C is the constant from
(4.4). For t ∈ [0, 1] and u ∈ D, it follows from Theorem 1.1 in [3] that there
exists a unique W 4,p for every p ∈ [1,∞) and uniformly convex solution of

V ijwij = tfδ(x, u), w = det(D2v)−1 in B, v = ϕ,w = ψ on ∂B (4.8)

where V denotes the cofactor matrix of D2v. We denote by v = Tt(u) the
solution of (4.8). Moreover, by Theorem 2.1 of [3], for every α ∈ (0, 1) there
are a priori bounds on ‖v‖C3,α and on supB(det(D

2v) + det(D2v)−1) that
only depend on C, α, δ, ‖ϕ‖C3,1 and the constant λ in (2.1). Therefore
(t, u) ∈ [0, 1] × D 7→ Tt(u) is continuous on [0, 1] × D and Tt is compact in
C(B) for every t ∈ [0, 1]. Since T0 is constant and by (4.4) it has a unique
fixed point in D, again by (4.4), Tt has no fixed point on ∂D, it thus follows
from the Leray-Schauder Theorem that T1 has a fixed point in D, this proves
the existence claim for (4.2).

Finally, uniqueness follows from the same argument as in Lemma 7.1
from [10] where it is proven that two smooth solutions actually have the
same gradient on ∂B and then are the minimizers of the same strictly convex
minimization problem hence coincide.

In dimension d = 2, following the argument of Remark 4.2 of Trudinger
and Wang [9] and taking advantage of the fact that the right-hand side of
the Abreu equation (4.2) does not depend on δ on Ω, we have the following
local bound (which we have used in the proof of Proposition 3.4):

Proposition 4.3. Let d = 2 and u be the solution of (4.2) then for every
open set ω ⊂⊂ Ω, ‖ det(D2u)‖L∞

loc
(ω) is bounded independently of δ.

Proof. Let Br := Br(0) ⊂⊂ Ω, and observe that thanks to (4.4) both
‖fδ(., u(.))‖L∞(Ω) = ‖f(., u(.))‖L∞(Ω) and ‖∇u‖L∞(Ω) are bounded indepen-
dently of δ. Define then η(x) := 1

2
(r2 − |x|2) and consider z := log(w) −

9



2 log(η) − 1
2
|∇u|2, by construction z achieves its minimum at an interior

point x0 of Br at such a point, we have

∇w

w
= 2

∇η

η
+D2u∇u. (4.9)

We also have

zij =
wij

w
−
wiwj

w2
+ 2

δij

η
+ 2

ηiηj

η2
− uijkuk − uikujk, (4.10)

multiplying by wU = [D2u]−1, using wU ijzij ≥ 0 at x0, U
ijwij = f(x, u) ≤ C

and the identities

wU ijuikujk = uii = ∆u, wU ijuijkuk = −
wk

w
uk = −

∇w

w
· ∇u, (4.11)

(the second identity is classically obtained by first differentiating the relation
− log(w) = log(detD2u) and then taking the scalar product with ∇u) as well
as the fact that Tr(U) = ∆u in dimension d = 2, we get

0 ≤ C − wU
∇w

w
·
∇w

w
+ 2

w

η
∆u+ 2wU

∇η

η
·
∇η

η
+

∇w

w
· ∇u−∆u. (4.12)

Using (4.9) and using again wU = [D2u]−1, we then obtain

wU
∇w

w
·
∇w

w
= 4wU

∇η

η
·
∇η

η
+D2u∇u · ∇u+ 4

∇η

η
· ∇u (4.13)

and
∇w

w
· ∇u = 2

∇η

η
· ∇u+D2u∇u · ∇u. (4.14)

Replacing (4.13), (4.14) in (4.12), multiplying by η and rearraging gives

∆u(η−2w) ≤ Cη−2
w

η
U∇η ·∇η−2∇η ·∇u ≤ Cη+‖∇η‖L∞‖∇u‖L∞(Ω) ≤ C ′

(4.15)
If η(x0) ≥ 4w(x0), (4.15) gives η(x0)∆u(x0) ≤ 2C ′ and since ∆u(x0)w(x0)

1/2 ≥
2 we get the desired lower bound on the minimum of η−2w. In the remaining

case w(x0) ≥
1
4
η(x0) ≥

η2(x0)
2r2

and we reach the same conclusion. This gives
a local lower bound on w i.e. the desired local upper bound on det(D2u).
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5 Convergence

5.1 Letting δ → 0 for fixed ε

In this paragraph, we fix ε (and thus normalize it to ε = 1 as we did in the
whole of section 4).

Theorem 5.1. Let uδ be the unique smooth strictly convex solution of (4.2),
then uδ converges uniformly on Ω to the unique minimizer of (4.1) as δ → 0+.

Proof. We already know from (4.4) that (possibly up to an extraction) uδ
converges locally uniformly on B to some convex u and it also follows from
(4.4) that u ∈ S[ϕ,Ω]. Let v ∈ S[ϕ,Ω] (extended by ϕ on B \ Ω), thanks to
(4.2) and the convexity of J δ

1 we first have

J δ
1 (v)− J δ

1 (uδ) ≥

∫

∂B

Uνν
δ ψ∂ν(uδ − ϕ)

i.e.

J1(v)− J1(uδ) ≥
1

2δ

∫

B\Ω

(uδ − ϕ)2 +

∫

B\Ω

(log(det(D2ϕ))− log(det(D2uδ)))

+

∫

∂B

Uνν
δ ψ∂ν(uδ − ϕ)

≥

∫

B\Ω

(log(det(D2ϕ))− log(det(D2uδ))) +

∫

∂B

Uνν
δ ψ∂ν(uδ − ϕ).

It follows from Lemma 5.2 below that

lim inf
δ→0

∫

B\Ω

(log(det(D2ϕ))− log(det(D2uδ))) ≥ 0.

We now have to pay attention to the boundary term, we know from (4.6)
that θδ := ψUνν

δ satisfies 0 ≤ θδ ≤ C(1 + (∂νuδ)
d−1) so that thanks to (4.4),

θδ is bounded in L
d

d−1 (∂B), up to an extraction we may therefore assume

that it weakly converges in L
d

d−1 (∂B) to some nonnegative function θ. By
convexity we also have that for τ > 0

∂νuδ(x) ≥ Dτ,νuδ(x) :=
1

τ

(
uδ(x− τν(x))− uδ(x− 2τν(x))

)
, ∀x ∈ ∂B

For small fixed τ > 0 note that Dτ,νuδ is bounded independently of δ thanks
to (4.4) and that it converges as δ → 0 pointwise to Dτ,νϕ, we thus have

lim inf
δ→0

∫

∂B

θδ∂ν(uδ − ϕ) ≥ lim inf
δ→0

∫

∂B

θδ(Dτ,νuδ − ∂νϕ)

=

∫

∂B

θ(Dτ,νϕ− ∂νϕ)
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where in the last line we have passed to the limit using the fact that we have
the product of a weakly convergent sequence with a strongly convergent
sequence. Now letting τ → 0 and using the smoothness of ϕ, we deduce that

lim inf
δ→0

∫

∂B

Uνν
δ ψ∂ν(uδ − ϕ) ≥ 0.

Since J1 is lower semi-continuous thanks to Lemma 2.2, we can conclude
that

J1(v) ≥ lim inf
δ→0

J1(uδ) ≥ J1(u)

so that u solves (4.1) and by uniqueness of the minimizer there is in fact
convergence of the whole sequence.

In the previous proof we have used:

Lemma 5.2. Let uδ be the unique smooth strictly convex solution of (4.2)
as before, then

lim sup
δ→0

∫

B\Ω

log(det(D2uδ)) ≤

∫

B\Ω

log(det(D2ϕ)).

Proof. The key point here is the estimate
∫
B
∆uδ =

∫
∂B
∂νuδ ≤ C which

follows from (4.4). Let ω be an arbitrary Borel subset of B, we have (for
some constant C varying from a line to another):

∫

ω

log(det(D2uδ)) ≤ C(|ω|+

∫

ω

det(D2uδ)
1/2d)

≤ C
(
|ω|+

∫

ω

√
∆uδ

)
≤ C

(
|ω|+ |ω|1/2

(∫

B

∆uδ

)1/2)

= C
(
|ω|+ |ω|1/2

(∫

∂B

∂νuδ

)1/2)

so that ∫

ω

log(det(D2uδ)) ≤ C(|ω|+ |ω|1/2). (5.1)

Take 0 < R′ < R with Ω contained in BR′ (recall R is the radius of B),
we then have, thanks to Lemma 2.2, the fact that log(det(D2ϕ)) is bounded
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and (5.1):

lim sup
δ→0

FB\Ω(uδ) = lim sup
δ→0

FB\Ω(uδ)

≤ lim sup
δ→0

FBR′\Ω(uδ) + lim sup
δ→0

FB\BR′
(uδ)

≤ FBR′\Ω(ϕ) + C(|B \BR′ |+ |B \BR′ |1/2)

≤ FB\Ω(ϕ) + C ′(|B \BR′ |+ |B \BR′ |1/2).

The desired result follows by letting R′ tend to R.

5.2 Full convergence

We now take δ = δε > 0 with

lim
ε→0+

δε = 0, (5.2)

i.e. we only have a single small parameter ε and we consider the second-
boundary value problem

εU ij
ε w

ε
ij = gε(x, uε), in B, uε = ϕ, wε = ψ on ∂B (5.3)

where ψ := det((D2ϕ)−1),

gε(x, u) :=

{
f(x, u) if x ∈ Ω
1
δε
(u− ϕ(x)) if x ∈ B \ Ω

,

wε = det(D2uε)
−1 and Uε is the cofactor matrix of D2uε. We further assume

that there is an α > 0 such that

(f(x, u)− f(x, v))(u− v) ≥ α(u− v)2, ∀(u, v) ∈ R
d, and a.e. x ∈ Ω (5.4)

which amounts to say that the integrand F is uniformly convex in its second
argument. Under these assumptions, we have a full convergence result:

Theorem 5.3. Let uε be the unique smooth strictly convex solution of (5.3),
then uε converges uniformly on Ω to the unique minimizer of (1.1) as ε→ 0+.

Proof. Step 1: a priori estimates. The first step of the proof is similar to
the proof of Proposition 4.1. Again define ũ := ϕ, Ũ as the cofactor matrix
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of D2ϕ, w̃ := det(D2ϕ)−1 and f̃ε := εŨ ijw̃ij. We then have together with
(5.4):

0 ≥ ε(F′
B(uε)− F′

B(ũ))(uε − ũ)

≥

∫

Ω

(f(x, ϕ)− f̃ε)(uε − ϕ) + α

∫

Ω

(uε − ϕ)2 +
1

δε

∫

B\Ω

(uε − ϕ)2

+ ε

∫

∂B

ψ(Uνν
ε − Ũνν)∂ν(uε − ϕ)

thanks to the fact that f(x, ϕ)− f̃ε is bounded uniformly with respect to ε,
using Young’s inequality and invoking (4.6), we get

∫

Ω

(uε − ϕ)2 +
1

δε

∫

B\Ω

(uε − ϕ)2 + ε

∫

∂B

(∂νuε)
d ≤ C. (5.5)

Step 2: convergence. Thanks to (5.5), up to taking a subsequence of
vanishing εn, we may assume that uε converges locally uniformly in B to
some u such that u = ϕ in B \Ω so that the restriction of u to Ω belongs to
S[ϕ,Ω]. For every v convex on B such that v = ϕ on ∂B, define

J̃ε(v) :=

∫

Ω

F (x, v(x))dx+
1

2δε

∫

B\Ω

(v − ϕ)2 − ε

∫

B

log(det(∂2v)).

Let then v ∈ S[ϕ,Ω] (extended by ϕ on B \ Ω), we then have

J̃ε(v)− J̃ε(uε) ≥ ε

∫

∂B

ψUνν
ε ∂ν(uε − ϕ)

hence

J0(v) ≥ lim inf
ε

J0(uε) + lim inf
ε

ε(FB(v)− FB(uε))− lim sup
ε

ε

∫

∂B

ψUνν
ε ∂νϕ.

Arguing as in the proof of Proposition 3.5, we may actually assume that
FΩ(v) > −∞ so that lim infε εFB(v) ≥ 0. As for an upper bound for εFB(uε)
we use the fact that thanks to (5.5), we have

∫
∂B
∂νuε ≤ Cε−1/d and argue

in a similar way as in the proof of Lemma 5.2, to obtain

εFB(uε) ≤ Cε(1 +

∫

B

det(D2uε)
1/d) ≤ Cε(1 +

∫

∂B

∂νuε) ≤ C(ε+ ε1−1/d),

which yields
lim inf

ε
ε(FB(v)− FB(uε)) ≥ 0.
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Thanks to (4.6), we have
∫

∂B

ψUνν
ε ∂νϕ ≤ C

∫

∂B

(1 + (∂νuε)
d−1)

but, thanks to (5.5) and Hölder’s inequality, we deduce

ε

∫

∂B

(∂νuε)
d−1 ≤ Cε

1

d

so that
J0(v) ≥ lim inf

ε
J0(uε) = J0(u)

hence u solves (1.1) (and the whole family uε converges uniformly on Ω to u
by uniqueness of the minimizer of J0 on S[ϕ,Ω]).
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