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Motivated by some variational problems subject to a convexity constraint, we consider an approximation using the logarithm of the Hessian determinant as a barrier for the constraint. We show that the minimizer of this penalization can be approached by solving a second boundary value problem for Abreu's equation which is a well-posed nonlinear fourth-order elliptic problem. More interestingly, a similar approximation result holds for the initial constrained variational problem.

Introduction

Given Ω, a bounded, open, convex subset of R d with d ≥ 2, F : Ω × R → R strictly convex in its second argument, and ϕ a uniformly convex and smooth function defined in a neighbourhood of Ω, we are interested in the variational problem with a convexity constraint:

inf u∈S[ϕ,Ω] J 0 (u) := Ω F (x, u(x))dx (1.1)
where S[ϕ, Ω] consists of all convex functions on Ω which admit a convex extension by ϕ in a neighbourhood of Ω. This is a way to express in some weak sense the boundary conditions

u = ϕ and ∂ ν u ≤ ∂ ν ϕ on ∂Ω, (1.2) 
where ν denotes the outward normal to ∂Ω and ∂ ν denotes the normal derivative.

Due to the convexity constraint, it is really difficult to write a tractable Euler-Lagrange equation for (1.1) (see [START_REF] Lions | Identification du cône dual des fonctions convexes et applications[END_REF], [START_REF] Carlier | Representation of the polar cone of convex functions and applications[END_REF]). One may therefore wish to construct suitable penalizations for the convexity constraint which force the minimizers to somehow remain in the interior of the constraint and thus to be a critical point of the penalized functional. Since the seminal work of Trudinger and Wang [START_REF] Trudinger | The affine Plateau problem[END_REF][START_REF] Trudinger | Boundary regularity for the Monge-Ampère and affine maximal surface equations[END_REF] on the prescribed affine mean curvature equation, the regularity of convex solutions of fourth-order nonlinear PDEs which are Euler-Lagrange equations of convex functionals involving the Hessian determinant have received a lot of attention. In particular, the Abreu equation which corresponds to the logarithm of the Hessian determinant has been studied by Zhou [START_REF] Zhou | The first boundary value problem for Abreu's equation[END_REF] in dimension 2 and more recently by Chau and Weinkove [START_REF] Chau | Monge-Ampère functionals and the second boundary value problem[END_REF] and Le [START_REF] Le | Global second derivative estimates for the second boundary value problem of the prescribed affine mean curvature and Abreu's equations[END_REF][START_REF] Le | W 4,p solution to the second boundary value problem of the prescribed affine mean curvature and Abreu's equations[END_REF] in higher dimensions. What the well-posedness and regularity results of these references in particular suggest is that a penalization involving the logarithm of the Hessian determinant should act as a good barrier for the convexity constraint in problems like (1.1). This was indeed confirmed numerically at a discretized level, see [START_REF] Benamou | Discretization of functionals involving the Monge-Ampère operator[END_REF].

Our goal is precisely to show that one can indeed approximate (1.1) by a suitable boundary value problem for the Abreu equation. To do so, we first introduce a penalized version of (1.1) with a small parameter ε > 0:

inf v∈S[ϕ,Ω] J ε (v) := J 0 (v) -εF Ω (v) (1.3)
where, when v ∈ S[ϕ, Ω] is smooth and strongly convex, (see section 2 for the definition for an arbitrary v ∈ S[ϕ, Ω]), F Ω (v) is defined by

F Ω (v) := Ω log(det D 2 v).
Using the convexity of J ε setting f (x, u) := ∂ u F (x, u), one can easily see that if u is smooth and uniformly convex up to ∂Ω, and solves the first-boundary problem for Abreu equation

εU ij w ij = f (x, u) in Ω, u = ϕ and ∂ ν u = ∂ ν ϕ on ∂Ω (1.4)
where w := det(D 2 u) -1 and U denotes the cofactor matrix of D 2 u then it is indeed the solution of (1.3). It turns out however that the second-boundary value problem (where instead of prescribing both values of u and ∇u one rather prescribes u and det(D 2 u) on ∂Ω) is much more well-behaved, see [START_REF] Chau | Monge-Ampère functionals and the second boundary value problem[END_REF][START_REF] Le | Global second derivative estimates for the second boundary value problem of the prescribed affine mean curvature and Abreu's equations[END_REF][START_REF] Le | W 4,p solution to the second boundary value problem of the prescribed affine mean curvature and Abreu's equations[END_REF] and it was indeed used as an approximation for the affine Plateau problem in [START_REF] Trudinger | The affine Plateau problem[END_REF]. We shall also consider an extra approximation parameter and a second-boundary value problem on a larger domain and show that it approximates correctly not only (1.3) but also the intial problem (1.1) as the parameter converges to zero. The paper is organized as follows. Section 2 gives some preliminaries. In section 3, we show a Γ-convergence result for J ε . In section 4, we consider an approximation by a second boundary value problem on a ball B containing Ω, with a further penalization 1 δ (u-ϕ) on B\Ω, for which we prove existence and uniqueness of a smooth solution. In section 5, we show that when δ → 0, we recover the minimizer of the problem from section 3. Finally, we also show full convergence of the second boundary value problem to the initial constrained variational problem (1.1) when δ = δ ε → 0 as ε → 0, provided F satisfies a suitable uniform convexity assumption.

Preliminaries

In the sequel, Ω will be an open, bounded and convex subset of R d , d ≥ 2. We are also given an open ball B containing Ω and assume that the boundary datum ϕ satisfies for some λ > 0:

ϕ ∈ C 3,1 (B), ϕ = 0 on ∂B, D 2 ϕ ≥ λ id on B.
(2.1)

We then define S[ϕ, Ω] as the set of convex functions on Ω, which, once extended by ϕ on B \ Ω, are convex on B. Note that elements of S[ϕ, Ω] coincide with ϕ on ∂Ω and are Lipschitz continuous with Lipschitz constant at most ∇ϕ L ∞ (B) so that S[ϕ, Ω] is compact for the topology of uniform convergence.

Finally, we assume that the integrand F : (x, u) ∈ Ω × R → F (x, u) in the definition of J 0 in (1.1) is measurable with respect to x, strictly convex and differentiable with respect to u and such that that F (., 0) ∈ L 1 (Ω) and f (x, u) := ∂ u F (x, u) satisfies f (., u) ∈ L ∞ (Ω) for every u ∈ R. These assumptions in particular guarantee that the convex functional J 0 is everywhere continuous and Gâteaux differentiable on S[ϕ, Ω].

Following [START_REF] Trudinger | The affine Plateau problem[END_REF][START_REF] Trudinger | Boundary regularity for the Monge-Ampère and affine maximal surface equations[END_REF][START_REF] Zhou | The first boundary value problem for Abreu's equation[END_REF], let us recall how to define F Ω (v) for an arbitrary convex function v on Ω, first recall that the subdifferential of v at x ∈ Ω is given by

∂v(x) := {p ∈ R d : v(y) -v(x) ≥ p • (y -x), ∀y ∈ Ω}.
The Monge-Ampère measure of v, denoted µ[v] is then defined by

µ[v](A) := |∂v(A)|
for every Borel subset A of Ω. From the seminal results of Alexandrov (see [START_REF] Cristian | The Monge-Ampère equation[END_REF]), µ[v] is indeed a Radon measure and v → µ[v] is weakly continuous in the sense that whenever v n are convex functions which locally uniformly converge to v then lim sup

n µ[v n ](F ) ≤ µ[v](F ), ∀ F ⊂ Ω, closed .
Decomposing the Monge-Ampère measure into its absolutely continuous part and its singular part (with respect to the Lebesgue measure L d ) as

µ[v] = µ r [v] + µ s [v], µ r [v] ≪ L d , µ s [v] ⊥ L d .
Thanks to Alexandrov's theorem, v is differentiable twice a.e., at such points of twice differentiability, we denote by ∂ 2 v its Hessian matrix, Trudinger and Wang proved in [START_REF] Trudinger | The affine Plateau problem[END_REF] that det(∂ 2 v) is the density of µ r [v] with respect to L d , and following their approach, one can define the functional F Ω by

F Ω (v) := Ω log(det ∂ 2 v(x))dx, ∀v ∈ S[ϕ, Ω]. (2.2)
It is well-known that F Ω is a concave functional and we refer to [START_REF] Trudinger | The Bernstein problem for affine maximal hypersurfaces[END_REF][START_REF] Trudinger | The affine Plateau problem[END_REF][START_REF] Zhou | The first boundary value problem for Abreu's equation[END_REF] for a proof of the useful properties of F Ω recalled below in Lemmas 2.1 and 2.2

Lemma 2.1. The functional v ∈ S[ϕ, Ω] → F Ω (v) defined in (2.
2) is concave, upper semi-continuous for the topology of local uniform convergence and bounded from above on S[ϕ, Ω] with the explicit bound (where c d denotes the measure of the unit ball of R d )

F Ω (v) ≤ C Ω,ϕ := |Ω| log c d ∇ϕ d L ∞ |Ω| , ∀v ∈ S[ϕ, Ω]. (2.3)
As we shall also work on the larger domain B, it will be also convenient to consider for every open subset ω of B and every convex function u on B the concave functional

F ω (v) := ω log(det ∂ 2 v(x))dx.
(2.4)

Following the same lines as Lemma 6.4 in Trudinger-Wang [START_REF] Trudinger | The Bernstein problem for affine maximal hypersurfaces[END_REF], we also have: 

F ω (u n ) ≤ F ω (u).
3 Logarithmic penalization

Given ε > 0, we consider inf v∈S[ϕ,Ω] J ε (v) := J 0 (v) -εF Ω (v). (3.1)
Since J ε is strictly convex and lsc on the convex compact set S[ϕ, Ω], we immediately have:

Proposition 3.1. Problem (3.1) admits a unique solution v ε .
Arguing exactly as in [START_REF] Trudinger | The affine Plateau problem[END_REF][START_REF] Zhou | The first boundary value problem for Abreu's equation[END_REF] by using Alexandrov's maximum principle, one can show: Lemma 3.2. Let ε > 0 and v ε be the solution of (3.1) then µ s [v ε ] = 0 i.e. µ[v ε ] has no singular part. Remark 3.3. Let us remark that Lemma 3.2 enables one to express -F Ω (v ε ) in an alternative way as the entropy of the push-forward of the Lebesgue measure on Ω by ∇v ε . Also, thanks to Lemma 3.2, one can prove uniqueness of the solution of (3.1) when J 0 is convex but not necessarily strictly convex.

In dimension 2, we actually even have a uniform local bound on det(∂ 2 v ε ):

Proposition 3.4. Let d = 2, ε > 0 and v ε be the solution of (3.1), then µ[v ε ] = det(∂ 2 v ε ) ∈ L ∞ loc (Ω).
Proof. It follows from Theorem 5.1 and Proposition 4.3 that v ε is the uniform limit as δ → 0 of a sequence of smooth functions

(v δ ε ) in S[ϕ, Ω] such that, for every open subset ω with ω ⊂⊂ Ω, det(D 2 v δ ε ) L ∞ (ω) ≤ C
where C is a constant that depends on ε and ω but not on δ . By weak convergence of Monge-Ampère measures we deduce that det(∂

2 v ε ) ∈ L ∞ loc (Ω).
Let us now state a Γ-convergence result for J ε :

Proposition 3.5. The family of functionals J ε defined on S[ϕ, Ω] equipped with the topology of uniform convergence Γ-converges to J 0 in particular v ε converges uniformly to the solution of (1.1).

Proof. Assume u ε is a family in S[ϕ, Ω] that converges uniformly as ε → 0 to u, thanks to (2.3) and Fatou's Lemma, we have

lim inf ε J ε (u ε ) ≥ lim inf ε (J 0 (u ε ) -εC Ω,ϕ ) ≥ J 0 (u).
Given u ∈ S[ϕ, Ω], we now look for a recovery sequence u ε ∈ S[ϕ, Ω] converging to u and such that lim sup ε J ε (u ε ) ≤ J 0 (u), we simply take

u ε := (1 -ε)u + εϕ since ∂ 2 u ε ≥ εD 2 ϕ we have F Ω (u ε ) ≥ d|Ω| log(ε) + Ω log(det(D 2 ϕ))
with the convexity of J 0 , we then have lim sup

ε J ε (u ε ) ≤ lim sup ε ((1 -ε)J 0 (u) + εJ 0 (ϕ)) + O(ε log(ε))) ≤ J 0 (u).

Second boundary value approximation

Having Proposition 3.5 in mind, we now fix the value of ε. Throughout this section, to simplify notations, we therefore take ε = 1 and we are interested in approximating the solution of inf

v∈S[ϕ,Ω] J 1 (v) := Ω F (x, v(x))dx -F Ω (v), (4.1) 
by a second-boundary value problem for Abreu equation. More precisely given δ > 0, we consider

U ij w ij = f δ (x, u), in B, u = ϕ, w = ψ on ∂B (4.2)
where ψ := det((D 2 ϕ) -1 ) and

f δ (x, u) := f (x, u) if x ∈ Ω 1 δ (u -ϕ(x)) if x ∈ B \ Ω
and as before w = det(D 2 u) -1 and U is the cofactor matrix of D 2 u. In view of (4.2) and the definition of f δ , it is natural to introduce the functional defined over convex functions on B by

J δ 1 (v) := Ω F (x, v(x))dx + 1 2δ B\Ω (v -ϕ) 2 -F B (v)
where

F B (v) := B log(det(∂ 2 v))
so that 

J δ 1 (v) = J 1 (v) + 1 2δ B\Ω (v -ϕ) 2 - B\Ω log(det(∂ 2 v)). (4.3)

A priori estimates for the second boundary value problem

0 ≥ (F ′ B (u) -F ′ B ( u))(u -u) = B (U ij w ij -U ij w ij )(u -ϕ) + ∂B ψ(U ij -U ij )∂ i (u -ϕ)ν j = Ω f (x, u)(u -ϕ) - B f (u -ϕ) + 1 δ B\Ω (u -ϕ) 2 + ∂B ψ(U νν -U νν )∂ ν (u -ϕ) ≥ Ω f (x, ϕ)(u -ϕ) - B f (u -ϕ) + 1 δ B\Ω (u -ϕ) 2 + ∂B ψ(U νν -U νν )∂ ν (u -ϕ)
where, in the last line, we have used the fact that ∇u -∇ϕ = ∂ ν (uϕ)ν on ∂B and set

U νν = Uν • ν, U νν = U ν • ν.
Using the fact that f (x, ϕ), f , ϕ, ∇ϕ and U are bounded, we thus get

1 δ B\Ω (u -ϕ) 2 + ∂B ψU νν ∂ ν u ≤ C 1 + B |u| + ∂B ∂ ν u + ∂B U νν . (4.5)
Denoting by R the radius of B and by the same argument as in Lemma 2.2 in [START_REF] Chau | Monge-Ampère functionals and the second boundary value problem[END_REF], one has

U νν = 1 R d-1 ∂ ν u d-1 + E with |E| ≤ C(1 + ∂ ν u d-2 ) on ∂B. (4.6)
Moreover since u is convex and u = ϕ = 0 on ∂B, one has max

B |u| = -min B u ≤ 2R∂ ν u(x) for all x ∈ ∂B. (4.7) 
Putting together (4.5), (4.6), (4.7) and the fact that inf ∂B ψ > 0, we obtain

∂B (∂ ν u) d ≤ C(1 + ∂B (∂ ν u) d-1 )
which gives a bound on ∂ ν u L d (∂B) hence also on max B |u| by (4.7) so that finally the bound on δ -1 B\Ω (uϕ) 2 follows from the latter bounds and (4.5).

Existence and uniqueness of a smooth uniformly convex solution

Thanks to Theorem 1.1 in [START_REF] Chau | Monge-Ampère functionals and the second boundary value problem[END_REF], a Leray-Schauder degree argument and the a priori estimate (4.4), one easily deduces the following:

Theorem 4.2. For every δ > 0, the second boundary value problem (4.2) admits a unique uniformly convex solution which is W 4,p (B) for every p ∈ [1, +∞).

Proof.

Let D := {u ∈ C(B), u C(B) ≤ C + 1}
where C is the constant from (4.4). For t ∈ [0, 1] and u ∈ D, it follows from Theorem 1.1 in [START_REF] Chau | Monge-Ampère functionals and the second boundary value problem[END_REF] that there exists a unique W 4,p for every p ∈ [1, ∞) and uniformly convex solution of

V ij w ij = tf δ (x, u), w = det(D 2 v) -1 in B, v = ϕ, w = ψ on ∂B (4.8)
where V denotes the cofactor matrix of D 2 v. We denote by v = T t (u) the solution of (4.8). Moreover, by Theorem 2.1 of [START_REF] Chau | Monge-Ampère functionals and the second boundary value problem[END_REF], for every α ∈ (0, 1) there are a priori bounds on v C 3,α and on sup B (det Finally, uniqueness follows from the same argument as in Lemma 7.1 from [START_REF] Trudinger | Boundary regularity for the Monge-Ampère and affine maximal surface equations[END_REF] where it is proven that two smooth solutions actually have the same gradient on ∂B and then are the minimizers of the same strictly convex minimization problem hence coincide.

(D 2 v) + det(D 2 v) -1 ) that only depend on C, α, δ, ϕ C 3,1 and the constant λ in (2.1). Therefore (t, u) ∈ [0, 1] × D → T t (u) is continuous on [0, 1] × D and T t is compact in C(B)
In dimension d = 2, following the argument of Remark 4.2 of Trudinger and Wang [START_REF] Trudinger | The affine Plateau problem[END_REF] and taking advantage of the fact that the right-hand side of the Abreu equation (4.2) does not depend on δ on Ω, we have the following local bound (which we have used in the proof of Proposition 3.4): We also have

z ij = w ij w - w i w j w 2 + 2 δ ij η + 2 η i η j η 2 -u ijk u k -u ik u jk , (4.10) 
multiplying by wU = [D 2 u] -1 , using

wU ij z ij ≥ 0 at x 0 , U ij w ij = f (x, u) ≤ C
and the identities

wU ij u ik u jk = u ii = ∆u, wU ij u ijk u k = - w k w u k = - ∇w w • ∇u, (4.11) 
(the second identity is classically obtained by first differentiating the relation -log(w) = log(det D 2 u) and then taking the scalar product with ∇u) as well as the fact that Tr(U) = ∆u in dimension d = 2, we get

0 ≤ C -wU ∇w w • ∇w w + 2 w η ∆u + 2wU ∇η η • ∇η η + ∇w w • ∇u -∆u. (4.12) 
Using (4.9) and using again wU = [D 2 u] -1 , we then obtain

wU ∇w w • ∇w w = 4wU ∇η η • ∇η η + D 2 u∇u • ∇u + 4 ∇η η • ∇u (4.13) and ∇w w • ∇u = 2 ∇η η • ∇u + D 2 u∇u • ∇u. (4.14) 
Replacing (4.13), (4.14) in (4.12), multiplying by η and rearraging gives (4.15) gives η(x 0 )∆u(x 0 ) ≤ 2C ′ and since ∆u(x 0 )w(x 0 ) 1/2 ≥ 2 we get the desired lower bound on the minimum of η -2 w. In the remaining case w(x 0 ) ≥ 1 4 η(x 0 ) ≥ η 2 (x 0 ) 2r 2 and we reach the same conclusion. This gives a local lower bound on w i.e. the desired local upper bound on det(D 2 u).

∆u(η -2w) ≤ Cη -2 w η U∇η •∇η -2∇η •∇u ≤ Cη + ∇η L ∞ ∇u L ∞ (Ω) ≤ C ′ (4.15) If η(x 0 ) ≥ 4w(x 0 ),

Convergence

Letting δ → 0 for fixed ε

In this paragraph, we fix ε (and thus normalize it to ε = 1 as we did in the whole of section 4).

Theorem 5.1. Let u δ be the unique smooth strictly convex solution of (4.2), then u δ converges uniformly on Ω to the unique minimizer of (4.1) as δ → 0 + . Proof. We already know from (4.4) that (possibly up to an extraction) u δ converges locally uniformly on B to some convex u and it also follows from (4.4) that u ∈ S[ϕ, Ω]. Let v ∈ S[ϕ, Ω] (extended by ϕ on B \ Ω), thanks to (4.2) and the convexity of J δ 1 we first have We now have to pay attention to the boundary term, we know from (4.6) that θ δ := ψU νν δ satisfies 0 ≤ θ δ ≤ C(1 + (∂ ν u δ ) d-1 ) so that thanks to (4.4), θ δ is bounded in L d d-1 (∂B), up to an extraction we may therefore assume that it weakly converges in L d d-1 (∂B) to some nonnegative function θ. By convexity we also have that for τ > 0

J δ 1 (v) -J δ 1 (u δ ) ≥ ∂B U νν δ ψ∂ ν (u δ -ϕ) i.e. J 1 (v) -J 1 (u δ ) ≥ 1 2δ B\Ω (u δ -ϕ) 2 + B\Ω (log(det(D 2 ϕ)) -log(det(D 2 u δ ))) + ∂B U νν δ ψ∂ ν (u δ -ϕ)
∂ ν u δ (x) ≥ D τ,ν u δ (x) := 1 τ u δ (x -τ ν(x)) -u δ (x -2τ ν(x)) , ∀x ∈ ∂B
For small fixed τ > 0 note that D τ,ν u δ is bounded independently of δ thanks to (4.4) and that it converges as δ → 0 pointwise to D τ,ν ϕ, we thus have lim inf

δ→0 ∂B θ δ ∂ ν (u δ -ϕ) ≥ lim inf δ→0 ∂B θ δ (D τ,ν u δ -∂ ν ϕ) = ∂B θ(D τ,ν ϕ -∂ ν ϕ)
where in the last line we have passed to the limit using the fact that we have the product of a weakly convergent sequence with a strongly convergent sequence. Now letting τ → 0 and using the smoothness of ϕ, we deduce that lim inf

δ→0 ∂B U νν δ ψ∂ ν (u δ -ϕ) ≥ 0.
Since J 1 is lower semi-continuous thanks to Lemma 2.2, we can conclude that

J 1 (v) ≥ lim inf δ→0 J 1 (u δ ) ≥ J 1 (u)
so that u solves (4.1) and by uniqueness of the minimizer there is in fact convergence of the whole sequence.

In the previous proof we have used:

Lemma 5.2. Let u δ be the unique smooth strictly convex solution of (4.2) as before, then

lim sup δ→0 B\Ω log(det(D 2 u δ )) ≤ B\Ω log(det(D 2 ϕ)).
Proof. The key point here is the estimate B ∆u δ = ∂B ∂ ν u δ ≤ C which follows from (4.4). Let ω be an arbitrary Borel subset of B, we have (for some constant C varying from a line to another):

ω log(det(D 2 u δ )) ≤ C(|ω| + ω det(D 2 u δ ) 1/2d ) ≤ C |ω| + ω ∆u δ ≤ C |ω| + |ω| 1/2 B ∆u δ 1/2 = C |ω| + |ω| 1/2 ∂B ∂ ν u δ 1/2 so that ω log(det(D 2 u δ )) ≤ C(|ω| + |ω| 1/2 ). ( 5.1) 
Take 0 < R ′ < R with Ω contained in B R ′ (recall R is the radius of B), we then have, thanks to Lemma 2.2, the fact that log(det(D 2 ϕ)) is bounded and (5.1):

lim sup δ→0 F B\Ω (u δ ) = lim sup δ→0 F B\Ω (u δ ) ≤ lim sup δ→0 F B R ′ \Ω (u δ ) + lim sup δ→0 F B\B R ′ (u δ ) ≤ F B R ′ \Ω (ϕ) + C(|B \ B R ′ | + |B \ B R ′ | 1/2 ) ≤ F B\Ω (ϕ) + C ′ (|B \ B R ′ | + |B \ B R ′ | 1/2 ).
The desired result follows by letting R ′ tend to R.

Full convergence

We now take δ = δ ε > 0 with

lim ε→0 + δ ε = 0, ( 5.2) 
i.e. we only have a single small parameter ε and we consider the secondboundary value problem

εU ij ε w ε ij = g ε (x, u ε ), in B, u ε = ϕ, w ε = ψ on ∂B (5.3) 
where ψ := det((D 2 ϕ) -1 ),

g ε (x, u) := f (x, u) if x ∈ Ω 1 δε (u -ϕ(x)) if x ∈ B \ Ω , w ε = det(D 2 u ε ) -1
and U ε is the cofactor matrix of D 2 u ε . We further assume that there is an α > 0 such that

(f (x, u) -f (x, v))(u -v) ≥ α(u -v) 2 , ∀(u, v) ∈ R d ,
and a.e. x ∈ Ω (5.4) which amounts to say that the integrand F is uniformly convex in its second argument. Under these assumptions, we have a full convergence result:

Theorem 5.3. Let u ε be the unique smooth strictly convex solution of (5.3), then u ε converges uniformly on Ω to the unique minimizer of (1.1) as ε → 0 + .

Proof.

Step 1: a priori estimates. The first step of the proof is similar to the proof of Proposition 4.1. Again define u := ϕ, U as the cofactor matrix of D 2 ϕ, w := det(D 2 ϕ) -1 and f ε := ε U ij w ij . We then have together with (5.4):

0 ≥ ε(F ′ B (u ε ) -F ′ B ( u))(u ε -u) ≥ Ω (f (x, ϕ) -f ε )(u ε -ϕ) + α Ω (u ε -ϕ) 2 + 1 δ ε B\Ω (u ε -ϕ) 2 + ε ∂B ψ(U νν ε -U νν )∂ ν (u ε -ϕ)
thanks to the fact that f (x, ϕ)f ε is bounded uniformly with respect to ε, using Young's inequality and invoking (4.6), we get

Ω (u ε -ϕ) 2 + 1 δ ε B\Ω (u ε -ϕ) 2 + ε ∂B (∂ ν u ε ) d ≤ C.
(5.5)

Step 2: convergence. Thanks to (5.5), up to taking a subsequence of vanishing ε n , we may assume that u ε converges locally uniformly in B to some u such that u = ϕ in B \ Ω so that the restriction of u to Ω belongs to S[ϕ, Ω]. For every v convex on B such that v = ϕ on ∂B, define Let then v ∈ S[ϕ, Ω] (extended by ϕ on B \ Ω), we then have

J ε (v) -J ε (u ε ) ≥ ε ∂B ψU νν ε ∂ ν (u ε -ϕ) hence J 0 (v) ≥ lim inf ε J 0 (u ε ) + lim inf ε ε(F B (v) -F B (u ε )) -lim sup ε ε ∂B ψU νν ε ∂ ν ϕ.
Arguing as in the proof of Proposition 3.5, we may actually assume that F Ω (v) > -∞ so that lim inf ε εF B (v) ≥ 0. As for an upper bound for εF B (u ε ) we use the fact that thanks to (5.5), we have ∂B ∂ ν u ε ≤ Cε 
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  for every t ∈ [0, 1]. Since T 0 is constant and by(4.4) it has a unique fixed point in D, again by (4.4), T t has no fixed point on ∂D, it thus follows from the Leray-Schauder Theorem that T 1 has a fixed point in D, this proves the existence claim for (4.2).

Proposition 4 . 3 .

 43 Let d = 2 and u be the solution of (4.2) then for every open set ω ⊂⊂ Ω, det(D 2 u) L ∞ loc (ω) is bounded independently of δ.Proof. Let B r := B r (0) ⊂⊂ Ω, and observe that thanks to (4.4) both f δ (., u(.)) L ∞ (Ω) = f (., u(.)) L ∞ (Ω) and ∇u L ∞ (Ω) are bounded independently of δ. Define then η(x) := 1 2 (r 2 -|x| 2 ) and consider z := log(w) -2 log(η) -1 2 |∇u| 2 , by construction z achieves its minimum at an interior point x 0 of B r at such a point, we have

  det(D 2 ϕ)) -log(det(D 2 u δ ))) + ∂B U νν δ ψ∂ ν (u δϕ). It follows from Lemma 5.2 below that lim inf δ→0 B\Ω (log(det(D 2 ϕ)) -log(det(D 2 u δ ))) ≥ 0.

JF

  ε (v) := Ω (x, v(x))dx + 1 2δ ε B\Ω (vϕ) 2ε B log(det(∂ 2 v)).

  -1/d and argue in a similar way as in the proof of Lemma 5.2, to obtainεF B (u ε ) ≤ Cε(1 + B det(D 2 u ε ) 1/d ) ≤ Cε(1 + ∂B ∂ ν u ε ) ≤ C(ε + ε 1-1/d ), which yields lim inf ε ε(F B (v) -F B (u ε )) ≥ 0.14 Thanks to (4.6), we have∂B ψU νν ε ∂ ν ϕ ≤ C ∂B (1 + (∂ ν u ε ) d-1 )but, thanks to (5.5) and Hölder's inequality, we deduceε ∂B (∂ ν u ε ) d-1 ≤ Cε 1 d so that J 0 (v) ≥ lim inf ε J 0 (u ε ) = J 0 (u)hence u solves (1.1) (and the whole family u ε converges uniformly on Ω to u by uniqueness of the minimizer of J 0 on S[ϕ, Ω]).
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