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Introduction

As a consequence of optimality, various limit behaviours can be observed in optimal control: minimizing control law sequences may feature increasingly fast variations, called oscillations (chattering controls [START_REF] Young | Lectures on the calculus of variations and optimal control theory[END_REF]), or increasingly large values, called concentrations (impulsive controls [START_REF] Luenberger | Optimization by vector space methods[END_REF]). The simultaneous presence of oscillations and concentrations in optimal control needs careful analysis and specific mathematical tools, so that the numerical methods behave correctly. Previous work of two of the authors [START_REF] Claeys | Semi-definite relaxations for optimal control problems with oscillation and concentration effects[END_REF] combined tools from partial differential equation analysis (DiPerna-Majda measures [START_REF] Diperna | Oscillations and concentrations in weak solutions of the incompressible fluid equations[END_REF]) and semidefinite programming relaxations (the moment-sums-ofsquares or Lasserre hierarchy [START_REF] Lasserre | Nonlinear optimal control via occupation measures and LMI-relaxations[END_REF]) to describe a sound numerical approach to optimal control in the simultaneous presence of oscillations and concentrations. To overcome difficulties in the analysis, a certain number of technical assumptions were made, see [5, Assumption 1, Section 2.2], so as to avoid the simultaneous presence of concentrations (in the control signals) and discontinuities (in the system trajectories).

In the present contribution we remove these technical assumptions and accommodate the simultaneous presence of concentrations and discontinuities, while allowing oscillations as well. For this, we exploit a recent extension of the notion of DiPerna-Majda measures called anisotropic parametrized measures [START_REF] Kałamajska | Weak lower semicontinuity by means of anisotropic parametrized measures[END_REF], so that it makes sense mathematically while allowing for an efficient numerical implementation with semidefinite programming relaxations.

To motivate further our work, let us use an elementary example to illustrate the difficulties that may be faced in the presence of discontinuities and concentrations. Consider the optimal control problem inf u 1 0 (t + y(t))u(t)dt s.t. ẏ(t) = u(t), y(0) = 0, y(1) = 1,

1 ≥ y(t) ≥ 0, u(t) ≥ 0, t ∈ [0, 1] (1.1)
where the infimum is with respect to measurable controls of time. The trajectory y should move the state from zero at initial time to one at final time, yet for the non-negative integrand to be as small as possible, the control u should be zero all the time, except maybe at time zero. We can design a sequence of increasingly large controls u that drive y from zero to one increasingly fast. We observe that this sequence has no limit in the space of measurable functions but it tends (in a suitable weak sense) to the Dirac measure at time zero. We speak of control signal concentration or impulsive control. The integrand contains the product yu of a function whose limit becomes discontinuous at a point where the other function has no limit, hence requiring careful analysis. Here however, this product can be written y ẏ = d dt y 2 2 and hence the integral term is well defined since 1 0 y ẏdt = y(1) 2 -y(0) 2 2 = 1 2 . Consequently the cost in (1.1) is equal to 1 0 tu(t)dt + 1 2 and independent of the actual trajectory. This reasoning is valid because ẏ(t) = u(t) in problem (1.1), but this integration trick cannot be carried out for more general differential equations. For example we cannot solve analytically the following modified optimal control problem inf u 1 0 (t + y(t))u(t)dt

s.t. ẏ(t) = ε 2 + u 2 (t), y(0) = 0, y(1) = 1, 1 ≥ y(t) ≥ 0, u(t) ≥ 0, t ∈ [0, 1] (1.2)
where ε is a given real number. Providing a mathematically sound framework for the analysis of this kind of phenomenon combining concentration and discontinuity, and possibly also oscillation (not illustrated by the simple example above), is precisely the purpose of our paper.

Contribution

The contribution of our paper with respect to previous work can be summarized as follows:

• we propose a unified approach for handling the simulatenous presence of oscillations, concentrations and discontinuities, where previous work considered either oscillations without concentrations (see [START_REF] Vinter | Convex duality and nonlinear optimal control[END_REF][START_REF] Roubíček | Relaxation in optimization theory and variational calculus[END_REF][START_REF] Fattorini | Infinite Dimensional Optimization and Control Theory[END_REF][START_REF] Gaitsgory | Linear programming approach to deterministic infinite horizon optimal control problems with discounting[END_REF] and references therein), or concentrations without oscillations (see [START_REF] Claeys | Measures and LMIs for non-linear optimal impulsive control[END_REF] and references therein), or oscillations and concentrations without discontinuities (see [START_REF] Claeys | Semi-definite relaxations for optimal control problems with oscillation and concentration effects[END_REF] and references therein);

• we remove the technical assumptions of [START_REF] Claeys | Semi-definite relaxations for optimal control problems with oscillation and concentration effects[END_REF] to allow for the simultaneous presence of concentration (of the control) and discontinuity (of the trajectory);

• as in [START_REF] Claeys | Semi-definite relaxations for optimal control problems with oscillation and concentration effects[END_REF], our approach allows for a constructive solution via the Lasserre hierarchy [START_REF] Lasserre | Nonlinear optimal control via occupation measures and LMI-relaxations[END_REF]; this now provides a unified numerical scheme to deal with oscillations, concentrations and discontinuities;

• we make a connection between anisotropic measures and the occupation measures, which are classical objects in dynamical systems and Markov decision processes, and which have been used in linear reformulations of nonlinear optimal control problems [START_REF] Vinter | Convex duality and nonlinear optimal control[END_REF][START_REF] Lasserre | Nonlinear optimal control via occupation measures and LMI-relaxations[END_REF][START_REF] Gaitsgory | Linear programming approach to deterministic infinite horizon optimal control problems with discounting[END_REF]; the notion of occupation measure was extended in [START_REF] Claeys | Mesures d'occupation et relaxation semi-définies pour la commande optimale[END_REF][START_REF] Claeys | Measures and LMIs for non-linear optimal impulsive control[END_REF] to cope with concentration (also called implusive controls); it was pointed out in [18] that this extension allows for optimization over all possible graph completions, a tool introduced in [START_REF] Bressan | On differential systems with vector-valued impulsive controls[END_REF] -see also [START_REF] Bressan | Introduction to the mathematical theory of control[END_REF] -to deal with differential equations with discontinuous solutions. Anisotropic measures allow for a further generalization of these approaches.

Outline

The outline of the paper is as follows. In Section 2 we describe the limit phenomena typical of optimal control, namely oscillations, concentrations and discontinuities, as well as the linear formulation of optimal control problems using measures. In Section 3 we introduce the anisotropic parametrized measures, illustrating their use with elementary examples. We show how these measures can cope with concentrations and discontinuities, giving a meaning to otherwise ill-defined integrals. In Section 4 we apply the anisotropic parametrized measures to optimal control, and in Section 5 we describe their relationship with occupation measures, a classical tool in dynamical systems and Markov decision processes. In Section 6 we describe how the Lasserre hierarchy can be applied to our problem, and in Section 7 we provide a simple illustrative example that can be solved numerically, and then analytically. Finally, concluding remarks are gathered in Section 8.

Relaxing Optimal Control

Let L : [0, 1] × R n × R m → R and F : [0, 1] × R n × R m → R n be continuous functions.
For initial y 0 and final conditions y 1 in R n and some integer 1 ≤ p ≤ ∞, the formulation of the classical optimal control problem is

v * := inf u 1 0 L(t, y(t), u(t))dt s.t. ẏ(t) = F (t, y(t), u(t)), y(0) = y 0 , y(1) = y 1 , y ∈ W 1,1 ([0, 1]; R n ), u ∈ L p ([0, 1]; R m ) (2.1)
where W 1,p ([0, 1]; X) is the space of functions from [0, 1] to X whose weak derivative belongs to L p ([0, 1]; X), the space of functions from [0, 1] to X whose p-th power is Lebesgue integrable.

A pair (u, y) with a control u ∈ L p ([0, 1]; R m ) and the corresponding trajectory y ∈ W 1,1 ([0, 1]; R n ) satisfying the differential equation of problem (2.1) is called admissible. Given a minimizing admissible sequence (u k , y k ) k∈N , the infimum in (2.1) might not be attained because (u k ) k∈N might not converge in L p and (y k ) k∈N might not converge in W 1,1 as L 1 is not reflexive. To overcome this issue, it has been proposed to relax the regularity assumptions on u and y. We discuss some of the approaches now in detail.

Oscillations

The limit of a minimizing sequence for (2.1) might fall out of the feasible space because of oscillation effects of (u k ) k∈N . Consider for example the optimal control problem inf

u 1 0 (u(t) 2 -1) 2 + y(t) 2 dt s.t. ẏ(t) = u(t), y(0) = 0, y(1) = 0, y ∈ W 1,4 ([0, 1]), u ∈ L 4 ([0, 1]).
(2.2)

As the integrand in the cost is a sum of squares, the value is at least zero. To see that actually it is equal to zero, consider the sequence of controls (u k ) k∈N ⊆ L 4 ([0, 1]) defined by

u k (t) := 1, if t ∈ 2l+1 2 k , l+1 2 k-1 , 0 ≤ l ≤ k -1 -1, otherwise (2.3) 
for k > 1 and u 1 := 0. For the corresponding sequence of trajectories (y k ) k∈N defined by y k (t) := t 0 u k (s)ds it holds that y k ∈ W 1,4 ([0, 1]) and y k (1) = 0 as desired. Hence, (u k ) k∈N is a sequence of feasible controls. A short calculation shows that using this sequence the cost in (2.2) converges to zero. The sequence (y k ) k∈N converges to y ∞ := 0 in W 1,4 , but the sequence (u k ) k∈N does not converge to u ∞ := 0 in L 4 .

In contrast to that, the sequence of measures defined by dν k (t, u) := δ u(t) (du|t)dt converges weakly to dν(t, u) := 1 2 (δ -1 + δ 1 )(du)dt in the sense that for all f ∈ C ([0, 1]) and g ∈ C p (R):

lim k→∞ 1 0 R f (t)g(u)dν k (t, u) = 1 0 R f (t)g(u)dν(t, u) (2.4)
where C p (R) := {g ∈ C (R) : g(u) = o(|u| p ) for |u| → ∞} is the set of continuous functions of less than p-th growth. Integration then yields y ∞ (1) = 1 0 R udν(t, u) = 1 0 R u 1 2 (δ -1 + δ 1 )(du)dt = 0. A similar reasoning shows that the cost with respect to ν is zero. More generally, this observation motivates to relax the regularity assumptions on the control u in (2.1) and also allow for limits dν(t, u) = dω(u|t)dt of control sequences (u k ) k∈N ⊆ L p ([0, 1]; R m ). In general the measure ω depends on time, i.e., we have a family of probability measures ω(.|t) t∈[0,1] ⊂ P(R m ), where P(X) denotes the set of probability measures on X, i.e. nonnegative Borel regular measures with unit mass. Such parametrized measures obtained as limits of a sequence of functions (u k ) k∈N ⊆ L p ([0, 1]; R m ) have been called L p -Young measures. For an explicit characterization of these measures see e.g. [START_REF] Kružík | Explicit Characterization of L p -Young Measures[END_REF]. For a comprehensive reference on Young measures and their use in the control of ordinary and partial differential equations, see [START_REF] Fattorini | Infinite Dimensional Optimization and Control Theory[END_REF]Part III].

The relaxed version of (2.1) that now takes into account oscillating control sequences can be written as

inf ω 1 0 R m L(t, y(t), u) ω(du|t)dt s.t. 1 0 R m F (t, y(t), u) ω(du|t)dt = y 1 -y 0 y ∈ W 1,1 ([0, 1]; R n ), ω(.|t) ∈ P(R m ) (2.5)
where the constraint is a reformulation of the differential equation ẏ

(t) = R m F (t, y(t), u)ω(du|t), t ∈ [0, 1]
with the boundary conditions y(0) = y 0 and y(1) = y 1 .

Concentrations

Oscillation of the control sequence due to nonconvexity of the functional is not the only reason that prevents the infimum in (2.1) of being attained. As a second example consider the following problem of optimal control:

inf u 1 0 (t -1 2 ) 2 u(t)dt s.t. ẏ(t) = u(t) ≥ 0, y(0) = 0, y(1) = 1, y ∈ W 1,1 ([0, 1]), u ∈ L 1 ([0, 1]). (2.6)
Note that the control enters into the problem linearly. The value is zero as the integrand is positive and using the sequence of controls

u k (t) := k, if t ∈ k-1 2k , k+1 2k 0, else (2.7) 
the cost converges to zero. Neither (u k ) k∈N nor any subsequence converges in L 1 as this space is not reflexive. In contrast to the previous example this time (y k ) k∈N does not converge in W 1,1 ([0, 1]) neither because W 1,1 is not reflexive. We hence use the extension BV ([0, 1]), the space of functions with bounded variation, as a relaxed space for the trajectory. Following the same approach as before we consider the control as a measure dν k (t, u)

:= δ u k (t) (du)dt.
As u appears linearly in (2.6) we can directly integrate with respect to u and define a sequence of probability measures (τ k ) k∈N ⊆ P([0, 1]) by τ k (dt) := R udν k (t, u). A short calculation shows that this sequence has the weak limit τ := δ 1 2 , i.e. for all f ∈ C ([0, 1]) it holds

lim k→∞ 1 0 f (t)τ k (dt) = 1 0 f (t)τ (dt)
. Note that by integrating before passing to the limit we transfer the unboundedness of the control into the measurement of time and only keep the direction (i.e. +1 in this example) of the control. Whereas we observed a superposition of two different controls in the previous example, here we see a concentration of the control in time. For optimal control problems with linear growth in the control:

inf u 1 0 L(t, y(t))u(t)dt s.t. ẏ(t) = F (t, y(t))u(t), y(0) = y 0 , y(1) = y 1 , y ∈ W 1,1 ([0, 1]; R n ), u ∈ L 1 ([0, 1]; R m )
we can therefore build the following relaxation that can take into account concentration effects of the control:

inf τ 1 0 L(t, y(t))τ (dt) s.t. 1 0 F (t, y(t))τ (dt) = y 1 -y 0 , y ∈ BV ([0, 1]; R n ), τ ∈ P([0, 1]).
(2.8) See [START_REF] Claeys | Measures and LMIs for non-linear optimal impulsive control[END_REF] for an application of the moment-sums-of-squares hierarchy for solving numerically nonlinear control problems in the presence of concentration.

Oscillation and Concentration

The relaxations proposed so far allow to consider controls that are either oscillating in value or concentrating in time. However it is possible that both effects appear in the same problem. Consider for example inf

u 1 0 u(t) 2 1 + u(t) 4 + (y(t) -t) 2 dt s.t. ẏ(t) = u(t) ≥ 0, y(0) = 0, y(1) = 1, y ∈ W 1,1 ([0, 1]), u ∈ L 1 ([0, 1]).
(2.9)

The infimum value zero of (2.9) can be approached arbitrarily close by a sequence of controls (u k ) k∈N defined by

u k (t) := k, if t ∈ l k -1 2k 2 , l k + 1 2k 2 , 1 ≤ l < k 0, else (2.10) 
for k > 1 and u 1 := 1. The idea to capture the limit behaviour of this sequence is to combine a Young measure on the control and replacing the uniform measure on time by a more general measure on time. Note that due to linearity it was possible in Section 2.2 to transfer the limit behaviour of the control into the measurement of time. In the present example the control enters non-linearly in the cost, which is why we will need to allow the control to take values at infinity. We consider a metrizable compactification β U R of the control space corresponding to the ring U of complete and separable continuous functions (see Section 3.1 for more details).

Then the sequence of measures dν k (t, u) := δ u k (t) (du|t)dt converges to dν(t, u) := ω(du)τ (dt) with ω(du) := 1 2 (δ 0 + δ ∞ )(du) and τ (dt) := 2dt understood in the following weak sense for all f ∈ C ([0, 1]) and g 0 ∈ U:

lim k→∞ 1 0 R f (t)g 0 (u)(1 + |u| p )dν k (t, u) = 1 0 β U R f (t)g 0 (u)dν(t, u) = f g 0 ν.
(2.11)

In the remainder of the paper, we will sometimes use the above right hand side compact notation whenever the variables and domains of integration are clear from the context. 

Measures ν ∈ P([0, 1] × β U R m ) obtained as limits of sequences (u k ) k∈N ⊆ L p ([0, 1]; R m )
s.t. F 0 (t, y(t), u)dν(t, u) = y 1 -y 0 , ν ∈ P([0, 1] × β U R m ) (2.12)
where

L 0 (t, y, u) := L(t, y, u) 1 + |u| p , F 0 (t, y, u) := F (t, y, u) 1 + |u| p . (2.13)
In [START_REF] Claeys | Semi-definite relaxations for optimal control problems with oscillation and concentration effects[END_REF], the moment-sums-of-squares hierarchy is adapted to compute numerically DiPerna-Majda measures and solve optimal control problem featuring oscillations and concentrations. However, the approach is valid under a certain number of technical assumptions on the data L and F , see [5, Assumption 1, Section 2.2]. These assumptions are enforced to prevent the simultaneous presence of concentration and discontinuity.

Oscillations, Concentrations and Discontinuities

As mentioned in the introduction, the integrals in (2.1) might not be well defined, as concentration effects of the control are likely to cause discontinuities in the trajectory occurring at the same time. In view of the previous examples we propose to generalize the DiPerna-Majda measures, which themselves are a generalization of Young measures, even further and now also relax the trajectory to a measure valued function depending on time and control. In the sequel we describe accordingly the set of anisotropic parametrized measures. Then we provide a linear formulation of optimal control problem (2.1) that can cope with oscillations, concentrations and discontinuities in a unified fashion.

Anisotropic Parametrized Measures

In the following we describe the generalized DiPerna-Majda measures. For this it will be instructive to review first the classical DiPerna-Majda measures.

DiPerna-Majda measures

Let U be a complete1 and separable subring of continuous bounded functions from R m to R.

It is known [7, Sect. 3.12.22] that there is a one-to-one correspondence between such rings and metrizable compactifications of R m . By a compactification we mean a compact set, denoted by β U R m , into which R m is embedded homeomorphically and densely. For simplicity, we will not distinguish between R m and its image in β U R m . Similarly, we will not distinguish between elements of U and their unique continuous extensions defined on β U R m .

DiPerna and Majda [START_REF] Diperna | Oscillations and concentrations in weak solutions of the incompressible fluid equations[END_REF], see also [START_REF] Roubíček | Relaxation in optimization theory and variational calculus[END_REF], have shown that every bounded sequence (u k ) k∈N in L p ([0, 1]; R m ) with 1 ≤ p < ∞ has a subsequence (denoted by the same indices) such that there exists a probability measure τ ∈ P([0, 1]) and an L p -Young measure ω(.|t) ∈ P(β U R m ) satisfying for all f ∈ C ([0, 1]) and g 0 ∈ U:

lim k→∞ 1 0 f (t)g 0 (u k (t))(1 + |u k (t)| p )dt = 1 0 β U R m f (t)g 0 (u)ω(du|t)τ (dt) = 1 0 β U R m f (t)g 0 (u)dν(t, u) = f g 0 ν, ( 3.1) 
compare with (2.11). The limit measure dν(t, u) := ω(du|t)τ (dt) of such a sequence, or sometimes the pair (τ, ω), is called a DiPerna-Majda measure.

Generalization

The drawback of DiPerna-Majda measures is that g in (3.1) must be a continuous function. This does not fit to our aim to study interactions of discontinuities and concentrations. To go further the simplistic illustration of the introduction, let us consider the following example.

Example 3.1. Consider a sequence (y k ) k∈N ⊂ W 1,1 ([0, 1]) such that lim k→∞ y k = y in L q ([0, 1]) for every 1 ≤ q < +∞. We are interested in the integral

lim k→∞ 1 0 g(u k (t))h(y k (t))dt
for continuous functions g and h such that |g(u)| ≤ C(1 + |u|) with some constant C > 0, and where

u k := ẏk ∈ L 1 ([0, 1]
) is the weak derivative of y k . If g is the identity then the calculation is easy, namely the limit equals lim inf k→∞ H(y k (1)) -H(y k (0)) where H is the primitive of h.

In the case of a more general function g, the situation is more involved. For example for k ≥ 2 let

u k (t) :=        0 if 0 ≤ t ≤ 1 2 , k if 1 2 ≤ t ≤ 1 2 + 1 k , 0 if 1 2 + 1 k ≤ t ≤ 1 whose primitive is y k (t) :=        0 if 0 ≤ t ≤ 1 2 , k(t -1 2 ) if 1 2 ≤ t ≤ 1 2 + 1 k , 1 if 1 2 + 1 k ≤ t ≤ 1 see Figure 1. It is easy to see that 0 0 1 2 1 2 1 k 1 y t 0 0 1 2 1 2 1 k 1 u t Figure 1: Sequences (y k , u k ) k∈N from Example 3.1. lim k→∞ 1 0 g(u k (t))h(y k (t))dt = 1 2 0 g(0)h(0)dt+ lim k→∞ 1 2 + 1 k 1 2 g(k)h(k(t -1 2 ))dt+ lim k→∞ 1 1 2 + 1 k g(0)h(1)dt = 1 2 g(0)(h(0) + h(1))+ lim k→∞ 1 2 + 1 k 1 2 Ḣ(k(t-1 2 )) k g(k)dt = 1 2 g 0 (0)(h(0) + h(1))+ (H(1) -H(0)) lim k→∞ g(k) k .
The sequence (u k ) k∈N concentrates at 1 2 which is exactly the point of discontinuity of the pointwise limit of (y k ) k∈N . Also notice that u k converges weakly to δ 1 2 in P([0, 1]) when k → ∞. The factor H(1) -H(0) in the previous equation suggests that we should refine the definition of the pointwise limit of (y k ) k∈N at 1 2 by enforcing that it is the Lebesgue measure supported on the interval of the jump. We will make this rigourous in the following. The other term in the factor also shows that the limit of g(k)/k should exist when k tends to infinity.

To cope with the simultaneous presence of oscillations, concentrations and discontinuities, a new tool was recently introduced in [START_REF] Kałamajska | Weak lower semicontinuity by means of anisotropic parametrized measures[END_REF], namely anisotropic parametrized measures generated by pairs (y k , u k ) k∈N where u k is the control and y k the corresponding state trajectory. Let us describe now what we need in our optimal control context. First, let us make the following observation: Lemma 3.1. Any admissible trajectory of optimal control problem (2.1) is such that y ∈ L ∞ ([0, 1]; Y ) for some compact set Y ⊂ R n , e.g. a ball of sufficiently large radius.

Proof: The function t → y(t) is the integral of a Lesbesgue integrable function, and on a bounded time interval, it is bounded.

Then, the following result is a special case of [11, Theorem 2]:

Theorem 3.1. Let 1 ≤ p < +∞. Let (u k ) k∈N be a bounded sequence in L p ([0, 1]; R m ) and (y k ) k∈N a bounded sequence in W 1,1 ([0, 1]; R n ). Then there is a (non-relabeled) subsequence (u k , y k ) k∈N , a measure τ ∈ P([0, 1]), a measure ω(.|t) ∈ P(β U R m ) parametrized in t ∈ [0, 1] and a measure υ(.|t, u) ∈ P(Y ) parametrized in t ∈ [0, 1] and u ∈ β U R m such that for every f ∈ C ([0, 1]), g 0 ∈ U, h 0 ∈ C (Y ), it holds lim k→∞ 1 0 f (t)g 0 (u k (t))(1 + |u k (t)| p )h 0 (y k (t))dt = 1 0 β U R m Y f (t)g 0 (u)h 0 (y)υ(dy|t, u)ω(du|t)τ (dt) = 1 0 β U R m Y f (t)g 0 (u)h 0 (y)dµ(t, y, u) = f g 0 h 0 µ. (3.2)
The measure dµ(t, u, y) := υ(dy|t, u)ω(du|t)τ (dt), or sometimes the triplet (τ, ω, υ), is called an anisotropic parametrized measure. Moreover, the DiPerna-Majda measure (τ, ω) is generated by 

(u k ) k∈N .
lim k→∞ 1 0 f (t)g(u k (t))h(y k (t))dt = 1 2 0 f (t)g(0)h(0)dt+ lim k→∞ 1 2 + 1 k 1 2 f (t)g(k)h(k(t -1 2 )))dt+ lim k→∞ 1 1 2 + 1 k f (t)g(0)h(1)dt = 1 2 0 f (t)g(0)h(0)dt+ 1 1 2 f (t)g(0)h(1)dt + lim k→∞ 1 2 + 1 k 1 2 f (t)g(k) Ḣ(k(t-1 2 )) k dt = 1 2 0 f (t)g(0)h(0)dt + 1 1 2 f (t)g(0)h(1)dt+ lim k→∞ 1 2 + 1 k 1 2 f (t)g 0 (k) Ḣ(k(t -1 2 )) 1+k k dt = 1 2 0 f (t)g(0)h(0)dt + 1 1 2 f (t)g(0)h(1)dt+ f ( 1 2 )g 0 (+∞)(H(1) -H(0)) = 1 0 β U R m Y f (t)g 0 (u)h(y)υ(dy|t, u)ω(du|t)τ (dt)
where

τ (dt) = λ [0,1] + 2δ 1 2
and

ω(du|t) = δ +∞ if t = 1 2 , δ 0 otherwise and υ(dy|t, u) =        δ 0 if t ∈ [0, 1 2 ) , λ [0,1] if t = 1 2 , δ 1 if t ∈ ( 1 2 , 1]
where λ X denotes the Lebesgue measure on X, and Y = [0, 1].

Example 3.3. Let us revisit the slightly more complicated [11, Example 3], appropriately scaled on [0, 1]. The trajectory sequence is

y k (t) :=              0 if 0 ≤ t ≤ 1 2 -1 k , k(t -1 2 + 1 k ) if 1 2 -1 k ≤ t ≤ 1 2 , -2k(t -1 2 -1 2k ) if 1 2 ≤ t ≤ 1 2 + 1 k , -1 if 1 2 + 1 k ≤ t ≤ 1
and its weak derivative u k := ẏk is

u k (t) :=              0 if 0 ≤ t ≤ 1 2 -1 k , k if 1 2 -1 k ≤ t ≤ 1 2 , -2k if 1 2 ≤ t ≤ 1 2 + 1 k , 0 if 1 2 + 1 k ≤ t ≤ 1 see Figure 3.3. Let f ∈ C ([0, 1]), let h ∈ C (R)
be bounded with primitive denoted by H, and let g = (1 + |.|)g 0 where g 0 ∈ U corresponding to the two-point (or sphere) compactification 

y t 0 1/2-1/k 1/2 1/k 1 1 1/2 1 u t 0 1/2-1/k 1/2 1/k 2 1/2 1
β U R m = R ∪ {±∞}, i.e. such that lim u→±∞ g 0 (u) =: g 0 (±∞) ∈ R. Then it holds lim k→∞ 1 0 f (t)g(u k (t))h(y k (t))dt = lim k→∞ 1 2 -1 k 0 f (t)g(0)h(0)dt+ lim k→∞ 1 2 1 2 -1 k f (t)g(k)h(k(t -1 2 + 1 k ))dt+ lim k→∞ 1 2 + 1 k 1 2 f (t)g(-2k)h(-2k(t -1 2 -1 2k ))dt+ lim k→∞ 1 1 2 + 1 k f (t)g(0)h(-1)dt = 1 2 0 f (t)g(0)h(0)dt+ 1 1 2 f (t)g(0)h(-1)dt+ lim k→∞ 1 2 1 2 -1 k f (t)g 0 (k) Ḣ(k(t -1 2 + 1 k )) 1+k k dt+ lim k→∞ 1 2 + 1 k 1 2 f (t)g 0 (-2k) Ḣ(-2k(t -1 2 -1 2k )) 1+2k -2k dt = 1 2 0 f (t)g(0)h(0)dt + 1 1 2 f (t)g(0)h(-1)dt+ f ( 1 2 )g 0 (+∞)(H(1) -H(0)) + f ( 1 2 )g 0 (-∞)(H(1) -H(-1)) = 1 0 β U R m Y f (t)g 0 (u)h(y)υ(dy|t, u)ω(du|t)τ (dt)
where

τ (dt) = λ [0,1] + 3δ 1 2
and

ω(du|t) = 1 2 δ +∞ + 1 2 δ -∞ if t = 1 2 , δ 0 otherwise and υ(dy|t, u) =              δ 0 if t ∈ [0, 1 2 ) , λ [0,1] if t = 1 2 and u = +∞, 1 2 λ [-1,1] if t = 1 2 and u = -∞, δ -1 if t ∈ ( 1 2 , 1]
where λ X denotes the Lebesgue measure on X, and Y = [-1, 1].

Relaxed Optimal Control with Oscillations, Concentrations and Discontinuities

To the classical optimal control problem (2.1) we associate the relaxed optimal control problem

v * R := inf µ L 0 µ s.t. F 0 µ = y T -y 0 , µ ∈ P([0, 1] × β U R m × Y ) (4.1)
which is linear in the unknown measure µ. In contrast, classical problem (2.1) is non-linear in the unknown trajectory y and control u.

Since optimal control problem (4.1) is a relaxation of the optimal control problem (2.1), it may happen that the infimum in (4.1) is strictly less than the infimum in (2.1), i.e. v * R < v * . Formulating necessary and sufficient conditions on the problem data F and L such that v * R = v * , i.e. there is no relaxation gap is an open problem. However, if we know that the probability measure in problem (4.1) is generated by limits of functions, then there is no relaxation gap. Let us explain this now. Assumption 4.1 (Regularity of the data). Let L and F be such that in (2.13) it holds

L 0 ∈ C ([0, 1] × β U R m × Y ) (4.2)
and

F 0 ∈ C ([0, 1] × β U R m × Y ; R n ). (4.3)
Moreover, there is a constant c L > 0 such that

L(t, u, y) ≥ c L |u| p (4.4)
for all t, u, y and there is a constant c F > 0 such that

|F (t, u, y 1 ) -F (t, u, y 2 )| ≤ c F (|u| p + 1)|y 1 -y 2 | (4.5)
for all t, u, y 1 , y 2 .

The following result follows from classical existence and uniqueness results for differential equations, see e.g. [1, Theorem 3.1]:

Lemma 4.1. Assume that p ≥ 1, u ∈ L p ([0, 1]; R m ) and y 0 ∈ R n are given. Let further F : [0, 1] × R m × R n → R n satisfy (4.
3) and (4.5). Then

dy(t) = F (t, u(t), y(t))dt , y(0) = y 0 (4.6) has a unique solution y ∈ L ∞ ([0, 1]; Y ) with values in a compact subset Y of R n .
Assume that there is a bounded sequence (u k ) k∈N ⊂ L p and that {y k } k∈N ⊂ W 1,1 is a sequence of corresponding solutions obtained in Lemma 4.1. Then {y k } is uniformly bounded in W 1,1 . Indeed, due to (4.3) we see that

d|y k (t)| dt ≤ dy k (t) dt = |F (t, u k (t), y k (t))| ≤ c F (1+ |u k (t)| p + |y k (t)|). Then the Gronwall inequality [8, Appendix B.2.j] implies that sup k∈N y k W 1,1 < ∞ and since y k is the integral of an integrable function on a bounded time interval, it holds that y k ∈ L ∞ ([0, 1]; Y ) for Y ⊂ R n a ball of radius sup k∈N y k L ∞ < ∞.
The limit of the right-hand side of (4.6) can then be expressed in terms of an anisotropic parametrized measure µ:

lim k→∞ F (t, u k (t), y k (t))dt = β U R m Y F 0 (t, u, y)dµ(t, u, y). ( 4.7) 
As explained in [START_REF] Kałamajska | Weak lower semicontinuity by means of anisotropic parametrized measures[END_REF]Theorem 7], the integral (3.2) in the definition of the anisotropic parametrized measure can be decomposed as follows

1 0 β U R m Y f (t)g 0 (u)h 0 (y)dµ(t, y, u) = 1 0 R m f (t)g 0 (u)(1 + |u| p )h 0 (y(t))ω(du|t)dt+ 1 0 β U R m \R m Y f (t)g 0 (u)h 0 u)ω(du|t)τ (dt) (4.8)
where ω is a classical Young measure on R m . Using the decomposition (4.8), instead of (4.6) we get the following differential equation

dy(t) = F (t, u, y(t))ω(du|t)dt+ β U R m \R m Y F 0 (t, u, y)υ(dy|t, u)ω(du|t)τ (dt). (4.9) 
Lemma 4.2. Given an anisotropic parametrized measure µ and an initial condition y 0 , the solution y to (4.9) is unique.

Proof: Assume that it is not the case, i.e., that there are two solutions y 1 , y 2 ∈ L ∞ ([0, 1]; Y ). Desintegrating dµ(t, y, u) = υ(dy|t, u)ω(du|t)τ (dt), we get the following relationship for the difference y d := y 1 -y 2 because of (4.5), it holds

| ẏd | ≤ R m |F (t, u, y 1 (t))-F (t, u, y 2 (t))|ω t (du) ≤ R m c F (|u| p + 1)ω t (du)|y d (t)|.
The right hand side belongs to L 1 ([0, 1]), therefore the measure dy d (t) is absolutely continuous with respect to the uniform measure dt. As y d (0) = 0 we have y d (t) = 0 for all t ∈ [0, 1], by the Gronwall inequality [8, Appendix B.2.j].

In relaxed optimal control problem (4.1) we use an integral formulation of (4.9) incorporating the initial and terminal conditions:

1 0 β U R m Y F 0 (t, u, y)dµ(t, u, y) = F 0 µ = y 1 -y 0 .
For each anisotropic parametrized measure µ, we can therefore associate a sequence of trajectories {y k } ⊂ W 1,1 and controls (u k ) ⊂ L p satisfying the differential equation (4.6) and such that (4.7) holds. Conversely, the limit of each such sequence of trajectories and controls can be modeled by an anisotropic parametrized measure. The following result of absence of relaxation gap then follows immediately from the construction of problem (4.1). 

Relaxed Optimal Control with Occupation Measures

In the previous section, we proposed a linear reformulation of non-linear optimal control, thanks to the introduction of anisotropic parametrized measures. In the current section, we describe another linear reformulation proposed in [START_REF] Lasserre | Nonlinear optimal control via occupation measures and LMI-relaxations[END_REF] and relying on the notion of occupation measure.

The relation between this linear reformulation and the classical Majda-DiPerna measures was investigated in [START_REF] Claeys | Semi-definite relaxations for optimal control problems with oscillation and concentration effects[END_REF], with the help of a graph completion argument. In the sequel we show that the generalized Majda-DiPerna measures also fit naturally this framework.

Let v ∈ C 1 ([0, 1]×Y ). For any admissible trajectory y and control u solving the differential equation (4.6), it holds 

= v(1, y 1 ) -v(0, y 0 ), ∀v ∈ C 1 ([0, 1] × R n ) y ∈ W 1,1 ([0, 1]; R n ), u ∈ L p ([0, 1]; R m ).
( 

A × B × C of [0, 1] × R m × Y .
Analytically, integration with respect to µ u,y is the same as integration along (u(t), y(t)) with respect to time. In particular [START_REF] Claeys | Semi-definite relaxations for optimal control problems with oscillation and concentration effects[END_REF]Proposition 4], we can reformulate optimal control problem (5.1) as a linear problem on measures, leading to the following relaxed formulation:

v * M := inf µ L 0 µ s.t. ∂v ∂t (1 + |u| p ) -1 + ∂v ∂y • F 0 µ = v(1, y 1 ) -v(0, y 0 ) ∀v ∈ C 1 ([0, 1] × Y ), µ ∈ P([0, 1] × β U R m × Y ).
(5.2)

Note that µ in the above problem is not necessarily an occupation measure in the sense of Definition 5. Proof: Just observe that problem (4.1) corresponds to the particular choice of test functions v(t, y) := y k , k = 1, . . . , n in problem (5.2). Hence the infimum in (4.1) is smaller than the infimum in (5.2), which is in turn smaller than the infimum in (2.1), i.

e. v * R ≤ v * M . Now if v * R = v * then obviously v * M = v * .

Illustrative example

Let us illustrate this strategy on our introductory example (1.2). The trajectory y should move the state from zero at initial time to one at final time, yet for the non-negative integrand to be as small as possible, the control u should be zero all the time, except maybe at time zero. If ε = 1 this problem has a trivial optimal solution u(t) = 0. For ε = 0 as explained already we can solve the problem by integration by parts because ẏ(t) = u(t). The integration trick cannot be carried out in the case of ε ∈ (0, 1).

We use the relaxation proposed in Section 5 to formulate problem (1.2) as a measure LP:

inf µ (t + y)u 1 + u µ s.t. ∂v ∂t 1 1 + u + ∂v ∂y √ ε 2 + u 2 1 + u µ = v(1, 1) -v(0, 0), for all v ∈ C 1 ([0, 1] 2 ) µ ∈ P([0, 1] × βR + × [0, 1]). (7.1) 
Note that we can omit the absolute value in the denominator, as u is constrained to be nonnegative.

Since in problem (1.2) the growth of the Lagrangian and the dynamics is at most linear, we expect the control to concentrate. Therefore let u(t) :

= r(t) 1-r(t) with r(t) ∈ [0, 1]. Then the dynamic of y reads ẏ(t) = r(t) 1-r(t) 2 + ε 2 = √ r(t) 2 +ε 2 (1-r(t)) 2 1-r(t)
. Introduce the auxiliary variable 

w(t) such that w(t) 2 = r(t) 2 + ε 2 (1 -r(t))
= v(1, 1) -v(0, 0), for all v ∈ R[t, y], γ ∈ P([0, 1] 3 ). (7.2)
With the following GloptiPoly script we could solve the problem numerically for different values of the parameter ε. From these numerical solutions we could guess the analytic optimal solution. The measure dµ(t, y, u) = τ (dt)ω(du|t)υ(dy|t, u) with

τ (dt) = λ [0,1] + (1 -ε)δ 0 (7.3) ω(du|t) = δ ∞ , t = 0 δ 0 , t > 0 (7.4) υ(dy|t, u) = 1 1-ε λ [0,1-ε] , t = 0 δ 1-ε+εt , t > 0 (7.5)
solves the relaxation (4.1) and hence yields a lower bound (1-ε) 2 2 on the optimum. Moreover, this optimum is attained by the sequences

u k (t) = (k(1 -ε) + ε) 2 -ε 2 , t ∈ [0, 1 k ] 0, t > 1 k , and 
y k (t) = (k(1 -ε) + ε)t, t ∈ [0, 1 k ] εt + 1 -ε, t > 1 k
see Figure 3, which proves that we got the optimal solution according to Proposition 4.1.

The numerical methods obtained with the GloptiPoly script of Figure 4 and the SeDuMi semidefinite solver for the 6th relaxation (i.e. moments of degree up to 12) are reported in Table 1.

They match to 4 significant digits with the analytic moments reported in Table 2. y k dµ r k dµ w k dµ 0 1.8000 1.8000 1.8000 1.8000 1 0.5000 1.2200 0.8000 1.0000 2 0.3333 0.9840 0.8000 0.8400 3 0.2500 0.8404 0.8000 0.8080 4 0.2000 0.7379 0.8000 0.8016 5 0.1667 0.6586 0.8000 0.8003 6 0.1429 0.5944 0.8000 0.8001 7 0.1250 0.5411 0.8000 0.8000 8 0.1111 0.4959 0.8000 0.8000 9 0.1000 0.4571 0.8000 0.8000 10 0.0909 0.4233 0.8000 0.8000 11 0.0833 0.3938 0.8000 0.8000 12 0.0769 0.3677 0.8000 0.8000 Table 1: Approximate moments for ε = 0.2, computed with Gloptipoly and SeDuMi.

t k dµ 1 k+1 + (1 -ε)0 k y k dµ (1-ε) k+1 (k+1) -(1-ε) k+1 -1 ε(k+1) r k dµ 0 k + (1 -ε) w k dµ ε k + (1 -ε)
Table 2: Analytic expressions of the moments.

Conclusion

In this paper we have described a unified methodology to cope with limit phenomena typical of optimal control, namely oscillations, concentrations and discontinuities. Our approach relies numerically on the Lasserre hierarchy of semidefinite programming relaxations, which allows for the application of off-the-shelf computer software and hence opens the possibility for engineering applications. The key mathematical tool are anisotropic parametrized measures, an extension of DiPerna-Majda measures, themselves an extension of Young measures, objects familiar to PDE analysts.

From the numerical solution and the nature of the measure computed, we can deduce whether an integrable optimal control function exists or not:

• if the control measure is concentrated on the graph of a function, then there exists an integrable optimal control law, and hence there is no oscillation of the control;

• if the time measure is absolutely continuous w.r.t. the Lebesgue measure, then there is no concentration of the control, and hence no discontinuity of the trajectory.

Our approach is global, and hence closer in spirit to the Hamilton-Jacobi-Bellmann approach rather than the Pontryagin Maximum Principle. We are not aware of first-order optimality conditions for optimal control problems at the level of generality considered in our paper.

Beyond providing a numerical solution to optimal control problems that are potentially troublesome for alternative numerical methods, we believe that our work can pave the way for the application of the Lasserre hierarchy to other problems of calculus of variations and optimal control, especially subject to PDE constraints. Indeed, we would like to emphasize that the theory of anisotropic parametrized measures can also deal with vector-valued multi-dimensional problems.

Example 3 . 2 .

 32 Let us revisit Example 3.1 and the calculations of the integrals there. Let f ∈ C ([0, 1]), let h ∈ C (R) be bounded with primitive denoted by H, and let g := (1 + |.|)g 0 where g 0 ∈ U corresponding to the two-point (or sphere) compactification β U R m = R ∪ {±∞}, i.e. such that lim u→±∞ g 0 (u) =: g 0 (±∞) ∈ R. Then it holds
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 2 Figure 2: Sequences (y k , u k ) k∈N from Example 3.3.
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 41 No relaxation gap). Let Assumption 4.1 hold and let µ solve problem (4.1). If there is an admissible sequence (u k , y k ) k∈N such that (3.2) holds then v * R = v * .
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 113 Figure 3: Sequence (y k ) k=1,2,4,8 from Example 1.2.

d = 6 ;

 6 % relaxation order (moments of degree <= 2*d) e = 0.2; % epsilon mpol t y r w gamma = meas([t y r w]); % measure v = mmon([t y],2*d); % test functions assign([t y r w],[0 0 0 0]); v0 = double(v); % initial condition assign([t y r w],[1 1 0 0]); vT = double(v); % terminal condition % moment problem obj = min((t+y)*r); spt = [t-t^2>=0, y-y^2>=0, r-r^2>=0, w-w^2>=0, .. w^2==r^2+e^2*(1-r)^2]; dyn = [vT-v0 == mom(diff(v,t)*(1-r) + diff(v,y)*w)]; P = msdp(obj, spt, dyn); % solve semidefinite relaxation [stat,bnd] = msol(P); % display moments of solution if stat>=0 double(mom(mmon(t,2*d))) % time double(mom(mmon(y,2*d))) % trajectory double(mom(mmon(r,2*d))) % normalized control end

Figure 4 :

 4 Figure 4: GloptiPoly script.

  .1) Definition 5.1 (Occupation measure). Given a control u and a trajectory y solving the differential equation (4.6), we define the occupation measure µ u,y ∈ y∈ P([0, 1] × R n × R m ) by dµ u,y (t, u, y) := δ y(t) (dy)δ u(t) (du)dt.Geometrically µ u,y (A × B × C) is the time spent by the trajectory (t, u(t), y(t)) in any Borel subset

A ring of functions is complete if it contains all constant functions, it separates points from closed subsets and it is closed with respect to the supremum norm.
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