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Optimal control problems with oscillations, concentrations and

discontinuities

Didier Henrion∗, Martin Kružík†, Tillmann Weisser‡

July 3, 2018

Abstract

Optimal control problems with oscillations (chattering controls) and concentrations (im-
pulsive controls) can have integral performance criteria such that concentration of the con-
trol signal occurs at a discontinuity of the state signal. Techniques from functional analysis
(anisotropic parametrized measures) are applied to give a precise meaning of the integral
cost and to allow for the sound application of numerical methods. We show how this can be
combined with the Lasserre hierarchy of semidefinite programming relaxations.

Keywords: optimal control, functional analysis, optimization.

1 Introduction

As a consequence of optimality, various limit behaviours can be observed in optimal control:
minimizing control law sequences may feature increasingly fast variations, called oscillations
(chattering controls [12]), or increasingly large values, called concentrations (impulsive controls
[10]). The simultaneous presence of oscillations and concentrations in optimal control needs
careful analysis and specific mathematical tools, so that the numerical methods behave correctly.
Previous work of two of the authors [2] combined tools from partial differential equation analysis
(DiPerna-Majda measures [3]) and semidefinite programming relaxations (the moment-sums-of-
squares or Lasserre hierarchy [9]) to describe a sound numerical approach to optimal control
in the simultaneous presence of oscillations and concentrations. To overcome difficulties in the
analysis, a certain number of technical assumptions were made, see [2, Assumption 1, Section
2.2], so as to avoid the simultaneous presence of concentrations (in the control signals) and
discontinuities (in the system trajectories).

In the present contribution we would like to remove these technical assumptions and accommo-
date the simultaneous presence of concentrations and discontinuities, while allowing oscillations
as well. For this, we exploit a recent extension of the notion of DiPerna-Majda measures called
anisotropic parametrized measures [7], so that it makes sense mathematically while allowing for
an efficient numerical implementation with semidefinite programming relaxations.

∗LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France & Faculty of Electrical Engineering, Czech
Technical University in Prague, Prague, Czechia (henrion@laas.fr)

†Czech Academy of Sciences, Institute of Information Theory and Automation, Praha, Czechia & Faculty of
Civil Engineering, Czech Technical University in Prague, Prague, Czechia (kruzik@utia.cas.cz)

‡LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France (tweisser@laas.fr)

1



To motivate further our work, let us use an elementary example to illustrate the difficulties that
may be faced in the presence of discontinuities and concentrations. Consider the optimal control
problem

inf
u

∫ 1

0
(t + y(t))u(t)dt

s.t. ẏ(t) = u(t), y(0) = 0, y(1) = 1,

1 ≥ y(t) ≥ 0, u(t) ≥ 0, t ∈ [0, 1]

(1.1)

where the infimum is with respect to measurable controls of time. The trajectory y should move
the state from zero at initial time to one at final time, yet for the non-negative integrand to be
as small as possible, the control u should be zero all the time, except maybe at time zero. We
can design a sequence of increasingly large controls u that drive y from zero to one increasingly
fast. We observe that this sequence has no limit in the space of measurable functions but it
tends (in a suitable weak sense) to the Dirac measure at time zero. We speak of control signal
concentration or impulsive control. The integrand contains the product yu of a function whose
limit becomes discontinuous at a point where the other function has no limit, hence requiring

careful analysis. Here however, this product can be written yẏ = d
dt

y2

2 and hence the integral

term is well defined since
∫ 1

0 yẏdt = y(1)2−y(0)2

2 = 1
2 . Consequently the cost in (1.1) is equal to

∫ 1
0 tu(t)dt + 1

2 and independent of the actual trajectory.

This reasoning is valid because ẏ(t) = u(t) in problem (1.1), but this integration trick cannot
be carried out for more general differential equations. For example we cannot solve analytically
the following modified optimal control problem

inf
u

∫ 1

0
(t + y(t))u(t)dt

s.t. ẏ(t) =
√

ε2 + u2(t), y(0) = 0, y(1) = 1,

1 ≥ y(t) ≥ 0, u(t) ≥ 0, t ∈ [0, 1]

(1.2)

where ε is a given real number. Providing a mathematically sound framework for the analysis of
this kind of phenomenon combining concentration and discontinuity, and possibly also oscillation
(not illustrated by the simple example above), is precisely the purpose of our paper.

2 Relaxing Optimal Control

Let L : [0, 1] ×R
n ×R

m → R and F : [0, 1] ×R
n ×R

m → R
n be continuous functions. For initial

y0 and final conditions y1 in R
n and some integer 1 ≤ p ≤ ∞, the formulation of the classical

optimal control problem is

v∗ := inf
u

∫ 1

0
L(t, y(t), u(t))dt

s.t. ẏ(t) = F (t, y(t), u(t)), y(0) = y0, y(1) = y1,

y ∈ W
1,1([0, 1];Rn), u ∈ L

p([0, 1];Rm)

(2.1)

where W 1,p([0, 1]; X) is the space of functions from [0, 1] to X whose weak derivative belongs to
L p([0, 1]; X), the space of functions from [0, 1] to X whose p-th power is Lebesgue integrable.

Consider a minimizing sequence of controls (uk)k∈N ⊆ L p([0, 1];Rm) for problem (2.1) and
the corresponding sequence of trajectories (yk)k∈N ⊆ W 1,1([0, 1];Rn), the space of absolutely
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continuous functions. Then the infimum in (2.1) might not be attained because (uk)k∈N might
not converge in L p([0, 1];Rm) and (uk)k∈N might not converge in W 1,1([0, 1];Rn). To overcome
this issue, it has been proposed to relax the regularity assumptions on u. We discuss some of
the approaches now in detail.

2.1 Oscillations

The limit of a minimizing sequence for (2.1) might fall out of the feasible space because of
oscillation effects of (uk)k∈N. Consider for example the optimal control problem

inf
u

∫ 1

0
(u(t)2 − 1)2 + y(t)2dt

s.t. ẏ(t) = u(t), y(0) = 0, y(1) = 0,

y ∈ W
1,4([0, 1]), u ∈ L

4([0, 1]).

(2.2)

As the integrand in the cost is a sum of squares, the value is at least zero. To see that actually
it is equal to zero, consider the sequence of controls (uk)k∈N ⊆ L 4([0, 1]) defined by

uk(t) :=

{

1, if t ∈
[

2l+1
2k , l+1

2k−1

]

, 0 ≤ l ≤ k − 1

−1, otherwise
(2.3)

for k > 1 and u1 := 0. For the corresponding sequence of trajectories (yk)k∈N defined by
yk(t) :=

∫ t
0 uk(s)ds it holds that yk ∈ W 1,4([0, 1]) and yk(1) = 0 as desired. Hence, (uk)k∈N is

a sequence of feasible controls. A short calculation shows that using this sequence the cost in
(2.2) converges to zero. While the limit y∞ := 0 of (yk)k∈N stays in W 1,4([0, 1]), the sequence of
controls (uk)k∈N however does not converge in L 4([0, 1]).

In contrast to that, the sequence of measures defined by dνk(t, u) := δu(t)(du|t)dt converges

weakly to dν(t, u) := 1
2(δ−1 + δ1)(du)dt in the sense that for all f ∈ C ([0, 1]) and g ∈ Cp(R):

lim
k→∞

∫ 1

0

∫

R

f(t)g(u)dνk(t, u) =

∫ 1

0

∫

R

f(t)g(u)dν(t, u) (2.4)

where Cp(R) := {g ∈ C (R) : g(u) = o(|u|p) for |u| → ∞} is the set of continuous functions of
less than p-th growth. Integration then yields

y∞(1) =

∫ 1

0

∫

R

udν(t, u) =

∫ 1

0

∫

R

u1
2(δ−1 + δ1)(du)dt = 0.

A similar reasoning shows that the cost with respect to ν is zero.

More generally, this observation motivates to relax the regularity assumptions on the control u in
(2.1) and also allow for limits dν(t, u) = dω(u|t)dt of control sequences (uk)k∈N ⊆ L p([0, 1];Rm).
In general the measure ω depends on time, i.e., we have a family of probability measures
ω(.|t)t∈[0,1] ⊂ P(Rm), where P(X) denotes the set of probability measures on X, i.e. non-
negative Borel regular measures with unit mass. Such parametrized measures obtained as limits
of a sequence of functions (uk)k∈N ⊆ L p([0, 1];Rm) have been called Lp-Young measures. For
an explicit characterization of these measures see e.g. [8]. For a comprehensive reference on
Young measures and their use in the control of ordinary and partial differential equations, see
[6, Part III].
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The relaxed version of (2.1) that now takes into account oscillating control sequences can be
written as

inf
ω

∫ 1

0

∫

Rm
L(t, y(t), u) ω(du|t)dt

s.t.

∫ 1

0

∫

Rm
F (t, y(t), u) ω(du|t)dt = y1 − y0

y ∈ W
1,1([0, 1];Rn), ω(.|t) ∈ P(Rm)

(2.5)

where the constraint is a reformulation of the differential equation

ẏ(t) =

∫

Rm
F (t, y(t), u)ω(du|t), t ∈ [0, 1]

with the boundary conditions y(0) = y0 and y(1) = y1.

2.2 Concentrations

Oscillation of the control sequence is not the only reason that prevents the infimum in (2.1) of
being attained. As a second example consider the following problem of optimal control:

inf
u

∫ 1

0
(t − 1

2)2u(t)dt

s.t. ẏ(t) = u(t) ≥ 0, y(0) = 0, y(1) = 1,

y ∈ W
1,1([0, 1]), u ∈ L

1([0, 1]).

(2.6)

Note that the control enters into the problem linearly. The value is zero as the integrand is
positive and using the sequence of controls

uk(t) :=

{

k, if t ∈
[

k−1
2k

, k+1
2k

]

0, else
(2.7)

the cost converges to zero. As in the previous section neither (uk)k∈N nor any subsequence
converges in L 1([0, 1]). In contrast to the previous example this time (yk)k∈N does not converge
in W 1,1([0, 1]) neither. We hence use the extension BV ([0, 1]), the space of functions with
bounded variation, as a relaxed space for the trajectory. Following the same approach as before
we consider the control as a measure dνk(t, u) := δuk(t)(du)dt. As u appears linearly in (2.6) we
can directly integrate with respect to u and define a sequence of probability measures (τk)k∈N ⊆
P([0, 1]) by τk(dt) :=

∫

R
udνk(t, u). A short calculation shows that this sequence has the weak

limit τ := δ1
2
, i.e. for all f ∈ C ([0, 1]):

lim
k→∞

∫ 1

0
f(t)τk(dt) =

∫ 1

0
f(t)τ(dt).

Note that by integrating before passing to the limit we transfer the unboundedness of the control
into the measurement of time and only keep the direction (i.e. +1 in this example) of the control.
Whereas we observed a superposition of two different controls in the previous example, here we
see a concentration of the control in time. For optimal control problems with linear growth in
the control:

inf
u

∫ 1

0
L(t, y(t))u(t)dt

s.t. ẏ(t) = F (t, y(t))u(t), y(0) = y0, y(1) = y1,

y ∈ W
1,1([0, 1];Rn), u ∈ L

1([0, 1];Rm)
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we can therefore build the following relaxation that can take into account concentration effects
of the control:

inf
τ

∫ 1

0
L(t, y(t))τ(dt)

s.t.

∫ 1

0
F (t, y(t))τ(dt) = y1 − y0,

y ∈ BV ([0, 1];Rn), τ ∈ P([0, 1]).

(2.8)

See [1] for an application of the moment-sums-of-squares hierarchy for solving numerically non-
linear control problems in the presence of concentration.

2.3 Oscillation and Concentration

The relaxations proposed so far allow to consider controls that are either oscillating in value
or concentrating in time. However it is possible that both effects appear in the same problem.
Consider for example

inf
u

∫ 1

0

u(t)2

1 + u(t)4
+ (y(t) − t)2 dt

s.t. ẏ(t) = u(t) ≥ 0, y(0) = 0, y(1) = 1,

y ∈ W
1,1([0, 1]), u ∈ L

1([0, 1]).

(2.9)

The infimum value zero of (2.9) can be approached arbitrarily close by a sequence of controls
(uk)k∈N defined by

uk(t) :=

{

k, if t ∈
[

l
k

− 1
2k2 , l

k
+ 1

2k2

]

, 1 ≤ l < k

0, else
(2.10)

for k > 1 and u1 := 1. The idea to capture the limit behaviour of this sequence is to combine
a Young measure on the control and replacing the uniform measure on time by a more general
measure on time. Note that due to linearity it was possible in Section 2.2 to transfer the limit
behaviour of the control into the measurement of time. In the present example the control
enters non-linearly in the cost, which is why we will need to allow the control to take values at
infinity. We consider a metrizable compactification βUR of the control space corresponding to
the ring U of complete and separable continuous functions (see Section 3.1 for more details).
Then the sequence of measures dνk(t, u) := δuk(t)(du|t)dt converges to dν(t, u) := ω(du)τ(dt)

with ω(du) := 1
2(δ0 + δ∞)(du) and τ(dt) := 2dt understood in the following weak sense for all

f ∈ C ([0, 1]) and g0 ∈ U :

lim
k→∞

∫ 1

0

∫

R

f(t)g0(u)(1 + |u|p)dνk(t, u) =

∫ 1

0

∫

βUR

f(t)g0(u)dν(t, u) =

∫

f g0 ν. (2.11)

In the remainder of the paper, we will sometimes use the above right handside compact notation
whenever the variables and domains of integration are clear from the context.

Measures ν ∈ P([0, 1] × βUR
m) obtained as limits of sequences (uk)k∈N ⊆ L p([0, 1];Rm) in

the sense of (2.11) have been called DiPerna-Majda measures. They will be discussed in more
detail in Section 3.1. It turns out that every DiPerna-Majda measure ν ∈ P([0, 1] × βUR

m)
can be disintegrated into a measure τ on time and an Lp-Young measure ω on βUR

m, i.e.
dν(t, u) = dω(du|t)dτ(t) for some τ ∈ P([0, 1]) and ω(.|t) ∈ P(βUR

m).

5



A relaxed version of (2.1) taking into account both oscillation and concentration effects can
hence be stated as

inf
ν

∫

L0(t, y(t), u) dν(t, u)

s.t.

∫

F0(t, y(t), u)dν(t, u) = y1 − y0,

ν ∈ P([0, 1] × βUR
m)

(2.12)

where

L0(t, y, u) :=
L(t, y, u)

1 + |u|p
, F0(t, y, u) :=

F (t, y, u)

1 + |u|p
. (2.13)

In [2], the moment-sums-of-squares hierarchy is adapted to compute numerically DiPerna-Majda
measures and solve optimal control problem featuring oscillations and concentrations. However,
the approach is valid under a certain number of technical assumptions on the data L and F ,
see [2, Assumption 1, Section 2.2]. These assumptions are enforced to prevent the simultaneous
presence of concentration and discontinuity.

2.4 Oscillations, Concentrations and Discontinuities

As mentioned in the introduction, the integrals in (2.1) might not be well defined, as concen-
tration effects of the control are likely to cause discontinuities in the trajectory occurring at
the same time. In view of the previous examples we propose to generalize the DiPerna-Majda
measures, which themselves are a generalization of Young measures, even further and now also
relax the trajectory to a measure valued function depending on time and control. In the sequel
we describe accordingly the set of anisotropic parametrized measures. Then we provide a linear
formulation of optimal control problem (2.1) that can cope with oscillations, concentrations and
discontinuities in a unified fashion.

3 Anisotropic Parametrized Measures

In the following we describe the generalized DiPerna-Majda measures. For this it will be in-
structive to review first the classical DiPerna-Majda measures.

3.1 DiPerna-Majda measures

Let U be a complete1 and separable subring of continuous bounded functions from R
m to R.

It is known [4, Sect. 3.12.22] that there is a one-to-one correspondence between such rings and
metrizable compactifications of R

m. By a compactification we mean a compact set, denoted
by βUR

m, into which R
m is embedded homeomorphically and densely. For simplicity, we will

not distinguish between R
m and its image in βUR

m. Similarly, we will not distinguish between
elements of U and their unique continuous extensions defined on βUR

m.

DiPerna and Majda [3], see also [11], have shown that every bounded sequence (uk)k∈N in
L p([0, 1];Rm) with 1 ≤ p < ∞ has a subsequence (denoted by the same indices) such that

1A ring of functions is complete if it contains all constant functions, it separates points from closed subsets
and it is closed with respect to the supremum norm.
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there exists a probability measure τ ∈ P([0, 1]) and an Lp-Young measure ω(.|t) ∈ P(βUR
m)

satisfying for all f ∈ C ([0, 1]) and g0 ∈ U :

lim
k→∞

∫ 1

0
f(t)g0(uk(t))(1 + |uk(t)|p)dt

=

∫ 1

0

∫

βURm
f(t)g0(u)ω(du|t)τ(dt)

=

∫ 1

0

∫

βURm
f(t)g0(u)dν(t, u) =

∫

f g0 ν,

(3.1)

compare with (2.11). The limit measure dν(t, u) := ω(du|t)τ(dt) of such a sequence, or some-
times the pair (τ, ω), is called a DiPerna-Majda measure.

Note that, letting g0 ≡ 1 ∈ U in (3.1), the measure on time τ can be computed as the weak
limit of the sequence (1 + |uk|p)k∈N, i.e. for all f ∈ C ([0, 1]):

lim
k→∞

∫ 1

0
(1 + |uk|p)dt =

∫ 1

0

∫

βURm
f(t)ω(du|t)τ(dt) =

∫ 1

0
f(t)τ(dt) (3.2)

where the last equality follows from the fact that a Young measure is a probability measure i.e.
∫

βURm ω(du|t) = 1 for each t ∈ [0, 1].

As a second remark, consider any f ∈ C ([0, 1]) ⊆ L∞([0, 1]) and g0 ∈ U ∩ C0(Rm). Then, as
g0( · )(1 + | · |p) ∈ Cp(Rm), the limit in (3.1) is already given by (2.4). This means that the
restriction of a DiPerna-Majda measure (τ, ω) to [0, 1] ×R

m is (dt, ω̃), where ω̃(.|t) ∈ P(Rm) is
the Young measure generated by (uk)k∈N. Hence the right side of (3.1) can - now again in full
generality - be written as

∫ 1

0

∫

Rm
f(t)g0(u)(1 + |u|p)ω̃(du|t)dt +

∫ 1

0

∫

βURm\Rm
f(t)g0(u)ω(du|t)τ(dt). (3.3)

This illustrates clearly that Young measures can only capture oscillations of the sequence but
not concentrations.

3.2 Generalization

The drawback of DiPerna-Majda measures is that g in (3.1) must be a continuous function.
This does not fit to our aim to study interactions of discontinuities and concentrations. To go
further the simplistic illustration of the introduction, let us consider the following example.

Example 3.1. Consider a sequence (yk)k∈N ⊂ W 1,1([0, 1]) such that limk→∞ yk = y in L q([0, 1])
for every 1 ≤ q < +∞. We are interested in the integral

lim
k→∞

∫ 1

0
g(uk(t))h(yk(t))dt

for continuous functions g and h such that |g(u)| ≤ C(1 + |u|) with some constant C > 0, and
where uk := ẏk ∈ L 1([0, 1]) is the weak derivative of yk. If g is the identity then the calculation
is easy, namely the limit equals lim infk→∞ H(yk(1)) − H(yk(0)) where H is the primitive of h.
In the case of a more general function g, the situation is more involved. For example for k ≥ 2
let

uk(t) :=















0 if 0 ≤ t ≤ 1
2 ,

k if 1
2 ≤ t ≤ 1

2 + 1
k
,

0 if 1
2 + 1

k
≤ t ≤ 1
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whose primitive is

yk(t) :=















0 if 0 ≤ t ≤ 1
2 ,

k(t − 1
2) if 1

2 ≤ t ≤ 1
2 + 1

k
,

1 if 1
2 + 1

k
≤ t ≤ 1

see Figure 1. it is easy to see that

�

0

0 1�2 1�2 � 1�k �1

y�

t

�

0

0 1�2 1�2 � 1�k �1

u�

t

Figure 1: Sequences (yk, uk)k∈N from Example 3.1.

lim
k→∞

∫ 1

0
g(uk(t))h(yk(t))dt

=

∫ 1

2

0
g(0)h(0)dt + lim

k→∞

∫ 1

2
+ 1

k

1

2

g(k)h(k(t −
1

2
))dt + lim

k→∞

∫ 1

1

2
+ 1

k

g(0)h(1)dt

=
1

2
g(0)(h(0) + h(1)) + lim

k→∞

∫ 1

2
+ 1

k

1

2

Ḣ(k(t − 1
2))

k
g(k)dt

=
1

2
g0(0)(h(0) + h(1)) + (H(1) − H(0)) lim

k→∞

g(k)

k
.

(3.4)

The sequence (uk)k∈N concentrates at 1
2 which is exactly the point of discontinuity of the pointwise

limit of (yk)k∈N. Also notice that uk converges weakly to δ 1

2

in P([0, 1]) when k → ∞. Hence,

the second term on the right-hand side of (3.4) suggests that we should refine the definition of
the pointwise limit of (yk)k∈N at 1

2 by enforcing that is the Lebesgue measure supported on the
interval of the jump. We will make this rigourous in the following. This also shows that it is
very important that the limit of g(u)/u exists when u tends to infinity.

To cope with the simultaneous presence of oscillations, concentrations and discontinuities, a
new tool was recently introduced in [7], nanemy anisotropic parametrized measures generated
by pairs (yk, uk)k∈N where uk is the control and yk the corresponding state trajectory. Let us
describe now what we need in our optimal control context. First, let us make the following
observation:

Lemma 3.1. Any admissible trajectory of optimal control problem (2.1) is such that y ∈
L ∞([0, 1]; Y ) for some compact set Y ⊂ R

n, e.g. a ball of sufficiently large radius.

Proof. The function t 7→ y(t) is the integral of a Lesbesgue integrable function, and on a bounded
time interval, it is bounded.

Then, the following result is a special case of [7, Theorem 2]:
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Theorem 3.1. Let 1 ≤ p < +∞. Let (uk)k∈N be a bounded sequence in L p([0, 1];Rm) and
(yk)k∈N a bounded sequence in W 1,1([0, 1];Rn). Then there is a (non-relabeled) subsequence
(uk, yk)k∈N, a measure τ ∈ P([0, 1]), a measure ω(.|t) ∈ P(βUR

m) parametrized in t ∈ [0, 1]
and a measure υ(.|t, u) ∈ P(Y ) parametrized in t ∈ [0, 1] and u ∈ βUR

m such that for every
f ∈ C ([0, 1]), g0 ∈ U , h0 ∈ C (Y ), it holds

lim
k→∞

∫ 1

0
f(t)g0(uk(t))(1 + |uk(t)|p)h0(yk(t))dt

=

∫ 1

0

∫

βURm

∫

Y
f(t)g0(u)h0(y)υ(dy|t, u)ω(du|t)τ(dt)

=

∫ 1

0

∫

βURm

∫

Y
f(t)g0(u)h0(y)dµ(t, y, u) =

∫

f g0 h0 µ.

(3.5)

The measure dµ(t, u, y) := υ(dy|t, u)ω(du|t)τ(dt), or sometimes the triplet (τ, ω, υ), is called
an anisotropic parametrized measure. Moreover, the Lp-Young measure (τ, ω) is generated by
(uk)k∈N.

Note that

Example 3.2. Let us revisit Example 3.1 and the calculations of the integral in (3.4). Let
f ∈ C ([0, 1]), let h ∈ C (R) be bounded with primitive denoted by H, and let g := (1 + |.|)g0

where g0 ∈ U corresponding to the two-point (or sphere) compactification βUR
m = R ∪ {±∞},

i.e. such that limu→±∞ g0(u) =: g0(±∞) ∈ R. Then it holds

lim
k→∞

∫ 1

0
f(t)g(uk(t))h(yk(t))dt

=

∫ 1

2

0
f(t)g(0)h(0)dt + lim

k→∞

∫ 1

2
+ 1

k

1

2

f(t)g(k)h(k(t −
1

2
)))dt + lim

k→∞

∫ 1

1

2
+ 1

k

f(t)g(0)h(1)dt

=

∫ 1

2

0
f(t)g(0)h(0)dt +

∫ 1

1

2

f(t)g(0)h(1)dt + lim
k→∞

∫ 1

2
+ 1

k

1

2

f(t)g(k)
Ḣ(k(t − 1

2))

k
dt

=

∫ 1

2

0
f(t)g(0)h(0)dt +

∫ 1

1

2

f(t)g(0)h(1)dt + lim
k→∞

∫ 1

2
+ 1

k

1

2

f(t)g0(k)Ḣ(k(t −
1

2
))

1 + k

k
dt

=

∫ 1

2

0
f(t)g(0)h(0)dt +

∫ 1

1

2

f(t)g(0)h(1)dt + fg0(+∞)(
1

2
)(H(1) − H(0))

=

∫ 1

0

∫

βURm

∫

Y
f(t)g0(u)h(y)υ(dy|t, u)ω(dut)τ(dt)

where
τ(dt) = λ[0,1] + 2δ 1

2

and

ω(du|t) =

{

δ+∞ if t = 1
2 ,

δ0 otherwise

and

υ(dy|t, u) =















δ0 if t ∈ [0, 1
2) ,

λ[0,1] if t = 1
2 ,

δ1 if t ∈ (1
2 , 1]

where λX denotes the Lebesgue measure on X, and Y = [0, 1].
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Example 3.3. Let us revisit the slightly more complicated [7, Example 3], appropriately scaled
on [0, 1]. The trajectory sequence is

yk(t) :=



























0 if 0 ≤ t ≤ 1
2 − 1

k
,

k(t − 1
2 + 1

k
) if 1

2 − 1
k

≤ t ≤ 1
2 ,

−2k(t − 1
2 − 1

2k
) if 1

2 ≤ t ≤ 1
2 + 1

k
,

−1 if 1
2 + 1

k
≤ t ≤ 1

and its weak derivative uk := ẏk is

uk(t) :=



























0 if 0 ≤ t ≤ 1
2 − 1

k
,

k if 1
2 − 1

k
≤ t ≤ 1

2 ,

−2k if 1
2 ≤ t ≤ 1

2 + 1
k
,

0 if 1
2 + 1

k
≤ t ≤ 1

see Figure 3.3. Let f ∈ C ([0, 1]), let h ∈ C (R) be bounded with primitive denoted by H, and

y�

t
0

1/2-1/k

1/2�1/k

1

�1

1/2 1

u�

t

0

1/2-1/k

1/2�1/k

�

�2�

1/2 1

Figure 2: Sequences (yk, uk)k∈N from Example 3.3.

let g = (1 + |.|)g0 where g0 ∈ U corresponding to the two-point (or sphere) compactification
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βUR
m = R ∪ {±∞}, i.e. such that limu→±∞ g0(u) =: g0(±∞) ∈ R. Then it holds

lim
k→∞

∫ 1

0
f(t)g(uk(t))h(yk(t))dt

= lim
k→∞

∫ 1

2
− 1

k

0
f(t)g(0)h(0)dt + lim

k→∞

∫ 1

2

1

2
− 1

k

f(t)g(k)h(k(t −
1

2
+

1

k
))dt

+ lim
k→∞

∫ 1

2
+ 1

k

1

2

f(t)g(−2k)h(−2k(t −
1

2
−

1

2k
))dt + lim

k→∞

∫ 1

1

2
+ 1

k

f(t)g(0)h(−1)dt

=

∫ 1

2

0
f(t)g(0)h(0)dt +

∫ 1

1

2

f(t)g(0)h(−1)dt + lim
k→∞

∫ 1

2

1

2
− 1

k

f(t)g0(k)Ḣ(k(t −
1

2
+

1

k
))

1 + k

k
dt

+ lim
k→∞

∫ 1

2
+ 1

k

1

2

f(t)g0(−2k)Ḣ(−2k(t −
1

2
−

1

2k
))

1 + 2k

−2k
dt

=

∫ 1

2

0
f(t)g(0)h(0)dt +

∫ 1

1

2

f(t)g(0)h(−1)dt + f(
1

2
)g0(+∞)(H(1) − H(0))

+ f(
1

2
)g0(−∞)(H(1) − H(−1))

=

∫ 1

0

∫

βURm

∫

Y
f(t)g0(u)h(y)υ(dy|t, u)ω(dut)τ(dt)

where
τ(dt) = λ[0,1] + 3δ 1

2

and

ω(du|t) =

{

1
2δ+∞ + 1

2δ−∞ if t = 1
2 ,

δ0 otherwise

and

υ(dy|t, u) =



























δ0 if t ∈ [0, 1
2 ) ,

λ[0,1] if t = 1
2 and u = +∞,

1
2λ[−1,1] if t = 1

2 and u = −∞,

δ−1 if t ∈ (1
2 , 1]

where λX denotes the Lebesgue measure on X, and Y = [−1, 1].

4 Relaxed Optimal Control with Oscillations, Concentrations

and Discontinuities

To the classical optimal control problem (2.1) we associate the relaxed optimal control problem

v∗
R := inf

µ

∫

L0 µ

s.t.

∫

F0 µ = yT − y0,

µ ∈ P([0, 1] × βUR
m × Y )

(4.1)

which is linear in the unknown measure µ. In contrast, classical problem (2.1) is non-linear in
the unknown trajectory y and control u.
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Since optimal control problem (4.1) is a relaxation of the optimal control problem (2.1), it
may happen that the infimum in (4.1) is strictly less than the infimum in (2.1), i.e. v∗

R < v∗.
Formulating necessary and sufficient conditions on the problem data F and L such that v∗

R = v∗,
i.e. there is no relaxation gap is an open problem. However, if we know that the anisotropic
parametrized measure in problem (4.1) is generated by limits of functions, then there is no
relaxation gap. Let us explain this now.

Assumption 4.1 (Regularity of the data). Let L and F be such that in (2.13) it holds

L0 ∈ C ([0, 1] × βUR
m × Y ) (4.2)

and

F0 ∈ C ([0, 1] × βUR
m × Y ;Rn). (4.3)

Moreover, there is a constant cL > 0 such that

L(t, u, y) ≥ cL|u|p (4.4)

for all t, u, y and there is a constant cF > 0 such that

|F (t, u, y1) − F (t, u, y2)| ≤ cF (|u|p + 1)|y1 − y2| (4.5)

for all t, u, y1, y2.

The following result follows from the Carathéodory theorem.

Lemma 4.1. Assume that p ≥ 1, u ∈ L p([0, 1];Rm) and y0 ∈ R
n are given. Let further

F : [0, 1] × R
m × R

n → R
n satisfy (4.3) and (4.5). Then

dy(t) = F (t, u(t), y(t))dt , y(0) = y0 (4.6)

has a unique solution y ∈ L ∞([0, 1]; Y ) with values in a compact subset Y of Rn.

Assume that there is a bounded sequence {uk}k∈N ⊂ L p and that {yk}k∈N ⊂ W 1,1 is a sequence
of corresponding solutions obtained in Lemma 4.1. Then {yk} is uniformly bounded in W 1,1.
Indeed, due to (4.3) we see that

d|yk(t)|

dt
≤

∣

∣

∣

∣

dyk(t)

dt

∣

∣

∣

∣

= |F (t, uk(t), yk(t))| ≤ cF (1 + |uk(t)|p + |yk(t)|) . (4.7)

Then the Gronwall inequality [5, Appendix B.2.j] implies that supk∈N ‖yk‖W 1,1 < ∞ and since
yk is the integral of an integrable function on a bounded time interval, it holds that y ∈
L ∞([0, 1]; Y ) for Y ⊂ R

n a ball of radius supk∈N ‖yk‖L∞ < ∞. The limit of the right-hand
side of (4.6) can then be expressed in terms of an anisotropic parametrized measure µ:

lim
k→∞

F (t, uk(t), yk(t))dt =

∫

βURm

∫

Y
F0(t, u, y)dµ(t, u, y). (4.8)

Thus instead of (4.6) we get the following differential equation

dy(t) =

∫

βURm

∫

Y
F0(t, u, y)dµ(t, u, y) (4.9)

which should be understood in the weak sense, i.e. for all g ∈ C ([0, 1]) it holds

∫ 1

0
g(t)dy(t) =

∫ 1

0

∫

βURm

∫

Y
g(t)F0(t, u, y)dµ(t, u, y) =

∫

g F0 µ.

12



Lemma 4.2. Given an anisotropic parametrized measure µ and an initial condition y0, the
solution y to (4.9) is unique.

Proof. Assume that it is not the case, i.e., that there are two solutions y1, y2 ∈ L ∞([0, 1]; Y ).
Desintegrating dµ(t, y, u) = υ(dy|t, u)ω(du|t)τ(dt), we get the following relationship for the
difference yd := y1 − y2 because of (4.5)

|ẏd| ≤

∫

Rm
|F (t, u, y1(t)) − F (t, u, y2(t))|ωt(du) ≤

∫

Rm
cF (|u|p + 1)ωt(du)|yd(t)|. (4.10)

The right hand side belongs to L 1([0, 1]), therefore the measure dyd(t) is absolutely continuous
with respect to the uniform measure dt. As yd(0) = 0 we have yd(t) = 0 for all t ∈ [0, 1], by the
Gronwall inequality [5, Appendix B.2.j].

In relaxed optimal control problem (4.1) we use an integral formulation of (4.9) incorporating
the initial and terminal conditions:

∫ 1

0

∫

βURm

∫

Y
F0(t, u, y)dµ(t, u, y) =

∫

F0 µ = y1 − y0.

For each anisotropic parametrized measure µ, we can therefore associate a sequence of trajec-
tories {yk} ⊂ W 1,1 and controls {uk} ⊂ L p satisfying the differential equation (4.6) and such
that (4.8) holds. Conversely, the limit of each such sequence of trajectories and controls can be
modeled by an anisotropic parametrized measure. The following result of absence of relaxation
gap then follows immediately from the construction of problem (4.1).

Proposition 4.1 (No relaxation gap). Let Assumption 4.1 hold. If for each anisotropic parametrized
measure µ and corresponding sequences {yk, uk} it holds

lim
k→∞

L(t, uk(t), yk(t))dt =

∫

βURm

∫

Y
L0(t, u, y)dµ(t, u, y) (4.11)

then v∗
R = v∗.

5 Relaxed Optimal Control with Occupation Measures

In the previous section, we proposed a linear reformulation of non-linear optimal control, thanks
to the introduction of anisotropic parametrized measures. In the current section, we describe
another linear reformulation proposed in [9] and relying on the notion of occupation measure.
The relation between this linear reformulation and the classical Majda-DiPerna measures was
investigated in [2], with the help of a graph completion argument. In the sequel we show that
the generalized Majda-DiPerna measures also fit naturally this framework.

Let v ∈ C 1([0, 1] × Y ). For any admissible trajectory y and control u solving the differential
equation (4.6), it holds

∫ 1

0
dv(t, y(t)) = v(1, y(1)) − v(0, y(0)) =

∫ 1

0

(

∂v

∂t
(t, y(t)) +

∂v

∂y
(t, y(t)) · ẏ(t)

)

dt.

Optimal control problem (2.1) can then be rewritten as

v∗ = inf
u

∫ 1

0
L(t, u(t), y(t))dt

s.t.

∫ 1

0

(

∂v

∂t
+

∂v

∂y
· F

)

(t, u(t), y(t))dt = v(1, y1) − v(0, y0), ∀v ∈ C
1([0, 1] × R

n)

y ∈ W
1,1([0, 1];Rn), u ∈ L

p([0, 1];Rm).

(5.1)
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Definition 5.1 (Occupation measure). Given a control u and a trajectory y solving the dif-
ferential equation (4.6), we define the occupation measure µu,y ∈ y ∈ P([0, 1] × R

n × R
m)

by
dµu,y(t, u, y) := δy(t)(dy)δu(t)(du)dt.

Geometrically µu,y(A × B × C) is the time spent by the trajectory (t, u(t), y(t)) in any Borel
subset A × B × C of [0, 1] × R

m × Y . Analytically, integration with respect to µu,y is the same
as integration along (u(t), y(t)) with respect to time. In particular

∫ 1

0
L(t, u(t), y(t))dt =

∫ 1

0

∫

Rm

∫

Rn
L(t, u, y)dµu,y(t, u, y) =

∫

L µu,y

and for all test functions v ∈ C 1([0, 1] × Y ), it holds that

∫ 1

0

(

∂v

∂t
+

∂v

∂y
· F

)

(t, u(t), y(t))dt =

∫ 1

0

∫

Rm

∫

Y

(

∂v

∂t
+

∂v

∂y
· F

)

(t, u, y)dµu,y(t, u, y) =

∫
(

∂v

∂t
+

∂v

∂y
· F

)

µu,y.

Using the same arguments as in [2, Proposition 4], we can reformulate optimal control problem
(5.1) as a linear problem on measures, leading to the following relaxed formulation:

v∗
M := inf

µ

∫

L0 µ

s.t.

∫
(

∂v

∂t
(1 + |u|p)−1 +

∂v

∂y
· F0

)

µ = v(1, y1) − v(0, y0) ∀v ∈ C
1([0, 1] × Y ),

µ ∈ P([0, 1] × βUR
m × Y ).

(5.2)

Note that µ in the above problem is not necessarily an occupation measure in the sense of
Definition 5.1, but a general probability measure in P([0, 1] × βUR

m × Y ). For this reason, the
infimum in relaxed problem (5.2) can be strictly less than the infimum in classical problem (2.1),
i.e. v∗

M < v∗.

Proposition 5.1 (No relaxation gap). It holds v∗
R ≤ v∗

M ≤ v∗ and hence if there is no relaxation
gap in relaxed problem (4.1) then there is no relaxation gap in relaxed problem (5.2).

Proof. Just observe that problem (4.1) corresponds to the particular choice of test functions
v(t, y) := yk, k = 1, . . . , n in problem (5.2). Hence the infimum in (4.1) is smaller than the
infimum in (5.2), which is in turn smaller than the infimum in (2.1), i.e. v∗

R ≤ v∗
M . Now if

v∗
R = v∗ then obviously v∗

M = v∗.

6 Numerical example

Once we get to the measure linear problem (5.2), we follow the same strategy as in [2, Section
4]:

1. compactify the control space by using a change of variables and homogenization;

2. since all the data are polynomial, construct an equivalent moment linear problem where the
unknown are moments of the occupation measure supported on a compact semialgebraic
set;
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3. use the moment-sums-of-squares hierarchy as in [9] to obtain a sequence of approximate
moments at the price of solving numerically semidefinite programming problems;

4. from the approximate moments, construct an approximate solution to the optimal control
problem.

Let us illustrate this strategy on our introductory example (1.2). The trajectory y should move
the state from zero at initial time to one at final time, yet for the non-negative integrand to be
as small as possible, the control u should be zero all the time, except maybe at time zero. If
ε = 1 this problem has a trivial optimal solution u(t) = 0. For ε = 0 as explained already we
can solve the problem by integration by parts because ẏ(t) = u(t). The integration trick cannot
be carried out in the case of ε ∈ (0, 1).

We use the relaxation proposed in Section 5 to formulate problem (1.2) as a measure LP:

inf
µ

∫

(t + y)
u

1 + u
µ

s.t.

∫

∂v

∂t

1

1 + u
+

∂v

∂y

u

1 + u
µ = v(1, 1) − v(0, 0), for all v ∈ C

1([0, 1]2)

µ ∈ P([0, 1] × βR+ × [0, 1]).

(6.1)

Note that we can omit the absolute value in the denominator, as u is constrained to be non-
negative.

We expect the control to concentrate. Therefore let u(t) := r(t)
1−r(t) with r(t) ∈ [0, 1]. Then the

dynamic of y reads

ẏ(t) =

√

(

r(t)
1−r(t)

)2
+ ε2 =

√

r(t)2 + ε2(1 − r(t))2

1 − r(t)
.

Introduce the auxiliary variable w(t) such that w(t)2 = r(t)2 + ε2(1 − r(t))2. By knowledge of
bounds for ε and r(t) we can conclude that 0 ≤ w(t) ≤ 1. The linear problem on moments than
reads

inf
γ

∫

(t + y) r γ

s.t.

∫

∂v

∂t
(1 − r) +

∂v

∂y
w γ = v(1, 1) − v(0, 0), for all v ∈ R[t, y],

γ ∈ P([0, 1]3).

(6.2)

With the following GloptiPoly script we could solve the problem numerically for different values
of the parameter ε and we could guess the analytic optimal solution.

The measure dµ(t, y, u) = τ(dt)ω(du|t)υ(dy|t, u) with

τ(dt) = λ[0,1] + (1 − ε)δ0 (6.3)

ω(du|t) =

{

δ∞, t = 0
δ0, t > 0

(6.4)

υ(dy|t, u) =

{

1
1−ε

λ[0,1−ε], t = 0

δ1−ε+εt, t > 0
(6.5)

is optimal for (1.2) and yields the value (1−ε)2

2 . It is attained by the sequences

uk(t) =

{

√

(k(1 − ε) + ε)2 − ε2, t ∈ [0, 1
k
]

0, t > 1
k

, yk(t) =

{

(k(1 − ε) + ε)t, t ∈ [0, 1
k
]

εt + 1 − ε, t > 1
k

(6.6)
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