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Abstract We consider the semi-parametric estimation of a scale parameter of a one-dimensional Gaus-
sian process with known smoothness. We suggest an estimator based on quadratic variations and on the
moment method. We provide asymptotic approximations of the mean and variance of this estimator,
together with asymptotic normality results, for a large class of Gaussian processes. We allow for general
mean functions and study the aggregation of several estimators based on various variation sequences.
In extensive simulation studies, we show that the asymptotic results accurately depict the �nite-sample
situations already for small to moderate sample sizes. We also compare various variation sequences and
highlight the e�ciency of the aggregation procedure. Finally, we suggest an extension to the multi-
dimensional case, and we apply it to two real data sets in dimension two.
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1 Introduction

Gaussian process models are widely used in spatial statistics; in particular, in order to interpolate ob-
servations by Kriging. For example, this technique is used in computer experiment designs to build a
metamodel [21, 27]. Usually, the practitioner uses a model for which the mean function of the Gaussian
process (the drift) is assumed to be a linear combination of known functions (often polynomials), and
the covariance function is assumed to belong to a parametric set of the form {σ2ρθ;σ

2 ≥ 0, θ ∈ Θ} with
Θ ⊂ Rp. Classical examples are the set of Matérn or exponential covariance functions [21, 27].
In this paper, we consider an intrinsically stationary one-dimensional Gaussian process X (i.e. with
stationary increments). Its variogram is de�ned by

V (h) :=
1

2
E
[
(X(t+ h)−X(t))

2
]
, (1)

and has its 2D'th derivative satisfying V (2D)(h) ≈ V (2D)(0) + C(−1)D |h|s as h → 0 (see Section 2.1).
Here D is the number of derivatives of the process, s is the smoothness parameter and we call C the
scale parameter. In this paper, we assume D and s to be known and focus on the theoretical study of the
estimation of C in dimension one. We also perform some additional simulations in higher dimensions.
In applications, the estimation of the scale parameter C is crucial. Only the knowledge of the con-
stant C is involved in the covariance function and its estimation constitutes then a necessary prelim-
inary step to Kriging. Indeed, for instance when D = 1, C provides the �rst order approximation of
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2 Jean-Marc Azaïs et al.

E
[
(X(t+ h)−X(t))

2
]
when h is small. When it is assumed that the covariance function of the Gaussian

process belongs to a parametric set {σ2ρθ;σ
2 ≥ 0, θ ∈ Θ} with Θ ⊂ Rp, C is a function of σ2 and θ. In this

case, most of the software packages (like, e.g. DiceKriging [23]) use the maximum likelihood estimation
method (MLE) to estimate (σ2, θ) and thus C (see [21, 25] for more details on MLE). Unfortunately, MLE
is known to be computationally expensive. In addition, it may diverge in some complicated situations
(see Section 5.3). Finally, MLE is applicable to estimate C only when the parametric set of covariance
functions is given, while C is also relevant in the non-parametric case where no parametric assumptions
are made on the variogram V in (1).

In order to overcome the drawbacks of the MLE, we propose an alternative method based on quadratic
variations that estimates C with no parametric assumption. Quadratic variations have been �rst intro-
duced by Levy in [17] to quantify the oscillations of the Brownian motion. Levy showed that,

2n∑
i=1

(Z(i/2n)− Z((i− 1)/2n))2
a.s.−→

n→+∞
1,

where Z is the standard Brownian motion on [0, 1]. A preliminary result on quadratic variations of a
Gaussian non-di�erentiable process is Baxter's theorem (see e.g. [5], [11, Chap. 5] and [10]) that ensures
(under some conditions) the almost sure convergence (as n tends to in�nity) of

n∑
i=1

(X(i/n)−X((i− 1)/n))
2
. (2)

A generalization of the previous quadratic variations has been introduced in Guyon and Léon [12]: for a
given real function H, the H-variation is given by

VH,n :=

n∑
i=1

H

(
X(i/n)−X((i− 1)/n)√

Var(X(i/n)−X((i− 1)/n))

)
(3)

where X is assumed to be a centered stationary Gaussian process. The most unexpected result of [12] is
that, if ρ(h) = Cov(X(t + h), X(t)) is such that ρ(h) = 1 − |h|s l(h) where s is a real number such that
0 < s < 2 and l is a slowly varying function at zero and assuming some additional technical conditions,
then

1. if 0 < s < 3/2, (VH,n/n) has a limiting normal distribution with convergence rate n1/2;
2. if 3/2 < s < 2, (VH,n/n) has a limiting non normal distribution with convergence rate n2−s.

In fact for statistical purposes, it has been proved by Coeurjolly that quadratic variations are optimal
(details and precisions can be found in [6]). In [13], Istas and Lang generalized the results on quadratic
variations. They considered a Gaussian process with stationary increments which is weaker than assuming
the stationarity. The observations of the process are done at times∆nj for j = 1, . . . , n, with∆n depending
on n. They studied the generalized quadratic variations de�ned by:

Va,n :=

n−1∑
i=1

(∑
k∈K

akX((i+ k)∆n)

)2

, (4)

where the sequence a = (ak)k∈K has a �nite support and some vanishing moments. Then they built
estimators of the local Hölder index and the scale parameter C and showed that they are almost surely
consistent and asymptotically normal. In the more recent work of Lang and Roue� [15], the authors
generalized the results of Istas and Lang [13] and Kent and Wood [14] on an increment-based estimator in
a semi-parametric framework with di�erent sets of hypothesis. Another generalization for non-stationary
Gaussian processes and quadratic variations along curves is done in [1]. See also the studies of [19] and
[6].

Now let us present the framework considered in our paper. We assume that the intrinsically stationary
Gaussian process X is observed at times i∆n for i = 1, . . . , n with ∆n tending to zero. The paper is
devoted to the estimation of the scale parameter C from one or several generalized quadratic variations
Va,n de�ned in (4). Calculations show that the expectation of Va,n is a function of C so that C can be
estimated by the moment method.
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Semi-parametric estimation of the variogram of a Gaussian process with stationary increments 3

The paper is organized as follows. In Section 2, we detail the framework and present the assumptions on
the process. The study in Section 3 is close to the study of Istas and Lang [13] in which they estimate
both the scale parameter C and the local Hölder index. Nevertheless, since we want to estimate the
constant C only and not the local Hölder index, our assumptions and proofs are simpler than those in
[13]. Moreover, one can easily check that our hypotheses are satis�ed in all the commonly used Kriging
models. We compute the expectation and the variance for the variations and we establish a central limit
theorem for the variations and the estimators deduced from them. In particular, given a �nite number of
sequences a, we prove a joint central limit theorem (see Corollary 12) that allows the study of aggregated
estimators. In addition, our method does not require a parametric speci�cation of the drift (see Section
3.4); therefore it is more robust than MLE. Section 4 is dedicated to the e�ciency of the estimators
proposed. Indeed, natural questions then arise. What is the optimal sequence a? In particular, what is
the optimal order of the sequence, that is the number of zero moments (see Section 2.3)? Is it better
to use the elementary sequence of order 1 (−1, 1) or the one of order 2 (−1, 2,−1)? Is it better to use
the elementary sequence of order 1 (−1, 1) or a more general one, for example (−1,−2, 3) or even a
sequence based on discrete wavelets? Can we e�ciently combine the information of several quadratic
a-variations associated to several sequences? As long as we know, these questions are not addressed yet
in the literature. Unfortunately, the asymptotic variance given by Proposition 5 or Theorem 11 does
not allow either to address theoretically this issue. Anyway, we compute the optimal Cramér-Rao bound
in two examples. Moreover, by Corollary 12, one may aggregate the information of di�erent quadratic
variations with di�erent orders. In order to validate such a procedure, an important Monte Carlo study
is performed in Section 5. The main conclusion is that aggregating the information of di�erent quadratic
variations with di�erent orders produces closer results to the optimal Cramér-Rao bound computed in
Section 4.2. The simulations are illustrated in Figure 3. In Section 5, together with the simulation based on
aggregation, we illustrate numerically the convergence to the asymptotic distribution considering di�erent
models (exponential and Matérn models). Furthermore, in Section 5, we show that our suggested quadratic
variation estimator can be easily extended to the two-dimensional case, and we consider two real data
sets in dimension two. When comparing our suggested estimator with maximum likelihood, we observe a
very signi�cant computational bene�t in favor of our estimator.

2 General setting and assumptions

2.1 Assumptions on the process

In this paper, we consider a Gaussian process (X(t))t∈R which is not necessarily stationary but only has
stationary increments. The process is observed at times j∆ for j = 1, . . . , n with ∆ = ∆n going to 0 as
n goes to in�nity. Its variogram is de�ned by

V (h) :=
1

2
E
[
(X(t+ h)−X(t))

2
]
.

In the sequel, we let ∆ = n−α, 0 < α ≤ 1 and we denote by (Const) a positive constant which value may
change from one occurrence to another. Note that the case α = 1 corresponds to the in�ll situation [27].
For the moment, we assume that X is centered, the case of non-zero expectation will be considered in
Section 3.4. We introduce the following assumptions.

(H0) V is a smooth function on (0,+∞].

(H1) The variogram is 2D times di�erentiable with D ≥ 0 and there exists C > 0 and 0 < s < 2
such that for any h ∈ R, we have

V (2D)(h) = V (2D)(0) + C(−1)D |h|s + r(h), with r(h) = o(|h|s) and |r(h)| ≤ (Const) |h|s . (5)

(H2) We assume that the remainder term r in (H1) is d-di�erentiable outside zero and
∣∣r(d)(h)∣∣ ≤

(Const) |h|β with s− d < β < −1/2. When s < 3/2, we set d = 2. When s ≥ 3/2, we set d = 3.

(H3) |r(h)| 6 (Const)|h|s+1/(2α).

If the covariance function belongs to a parametric set of the form {σ2ρθ;σ
2 ≥ 0, θ ∈ Θ} with Θ ⊂ Rp,

then C is a deterministic function of the parameters σ2 and θ.
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4 Jean-Marc Azaïs et al.

Remark 1

� When D > 0 , the D-th derivative X(D) in quadratic mean of X is a Gaussian stationary process with
covariance function ρ given by ρ(h) = Cov(X(t), X(t+h)) = (−1)D+1V (2D)(h). This implies that the
Hölder exponent of the paths of X(D) is s/2. Because s < 2, D is exactly the order of di�erentiation
of the paths of X.

� Note that in the in�ll case (α = 1), (H2) is almost minimal. Indeed, the condition β < −1/2 does
not matter since the smaller β, the weaker the condition. And for example, when s < 3/2, the second

derivative of the main term is of order |h|s−2 and we only assume that β > s− 2.

2.2 Examples of processes that satisfy our assumptions

We present a non exhaustive list of examples in dimension 1 that satisfy our hypotheses.

� The exponential model: ρ(h) = exp(−C|h|) (D = 0, s = 1, C = C).
� The generalized exponential model: ρ(h) = exp(−(C|h|)s), s ∈ (0, 2) (D = 0, s = s, C = C).
� The generalized Slepian model [26]: ρ(h) = (1− (C|h|)s)+, s ∈ (0, 1] (D = 0, s = s, C = C).
� The spherical model: ρ(h) = (1− C|h|+ 0.5(θ|h|)3)+ (D = 0, s = 1, C = C).
� The cubic model ρ(h) = (1− 3(θ|h|)2 + 2(θ|h|)3)+ (D = 1, s = 1, C = 6θ2).
� The Matérn model:

ρ(h) =
21−ν

Γ (ν)

(√
2νθh

)ν
Kν(
√
2νθh),

where ν > 0 is the regularity parameter of the process. The functionKν is the modi�ed Bessel function
of the second kind of order ν. See, e.g., [27] for more details on the model. In that case, D = bνc and
s = 2ν − 2D. Here, it requires tedious computations to express the scale parameter C as a function
of ν and θ. However, in Section 5.1, we derive the value of C in two settings (ν = 3/2 and ν = 5/2).

All the previous examples are stationary (and thus intrinsically stationary). The following one is intrin-
sically stationary but not stationary.

� The fractional Brownian motion (FBM) process denoted by (Bs(t))t∈R and de�ned by

Cov(Bs(u), Bs(t)) = C
(
|u|s + |t|s − |u− t|s

)
.

A reference on this subject is [7]. This process is classically indexed by its Hurst parameter H = s/2.
Here, D = 0, s = s and C = C. We call the FBM de�ned by C = 1 the standard FBM.

All classical spatial models satisfy our hypotheses, except the Gaussian model, or square-exponential,
de�ned by ρ(h) = σ2e−h

2θ2 , with (σ2, θ) ∈ (0,∞), which is too regular.

2.3 Discrete a-di�erences

Now, we consider a non-zero �nite support sequence a of real numbers with zero sum. Let L(a) be its
length. Since the starting point of the sequence plays no particular role, we will assume when possible
that the �rst non-zero element is a0. Hence, the last non-zero element is aL(a)−1. We de�ne the order
M(a) of the sequence as the �rst non-zero moment of the sequence a:

L(a)−1∑
j=0

ajj
k = 0, for 0 ≤ k < M(a) and

L(a)−1∑
j=0

ajj
M(a) 6= 0.

To any sequence a, with length L(a) and any function f , we associate the discrete a-di�erence of f de�ned
by

∆a,i(f) =

L(a)−1∑
j=0

ajf((i+ j)∆), i = 1, . . . n′, (6)

where n′ stands for n−L(a) + 1. As a matter of fact,
∑L(a)−1
j=0 ajf(j∆) is an approximation (up to some

multiplicative coe�cient) of the M(a)-th derivative (when it exists) of the function f at zero.
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Semi-parametric estimation of the variogram of a Gaussian process with stationary increments 5

We also de�ne ∆a(X) as the Gaussian vector of size n′ with entries∆a,i(X) andΣa its variance-covariance
matrix.

Examples - Elementary sequences. The simplest case is the order 1 elementary sequence a(1) de�ned

by a
(1)
0 = −1 and a

(1)
1 = 1 We have L(a(1)) = 2, M(a(1)) = 1. More generally, we de�ne the k-th order

elementary sequence a(k) as the sequence with coe�cients a
(k)
j = (−1)k−j

(
k
j

)
, j = 0, . . . , k. Its length is

given by L(a(k)) = k + 1.

For two sequences a and a′, we de�ne their convolution b = a ∗ a′ as the sequence given by bj =∑
k−l=j aka

′
l. In particular, we denote by a2∗ the convolution a ∗a. Notice that the �rst non-zero element

of b is not necessarily b0 but bL(a′)−1 as mentioned in the following properties.

Properties 2 The following properties of convolution of sequences are direct.

(i) The support of a∗a′ (the indices of the non-zero elements) is included in −(L(a′)−1), (L(a)−1) while
its order is M(a) +M(a′). In particular, a2∗ has length 2L(a)− 1, order 2M(a) and is symmetrical.

(ii) The composition of two elementary sequences gives another elementary sequence.

The main result of this section is Proposition 4 that is required to quantify the asymptotic behaviors of
the two �rst moments of the quadratic a-variations de�ned in (8) (see Proposition 5). In order to prove
(7), we establish two preliminary tools (Proposition 3 and Lemma 1). In that view, we need to de�ne the
integrated fractional Brownian motion (IFBM). We start from the FBM de�ned in Section 2.2 which has
the following non anticipative representation:

Bs(u) =

∫ u

−∞
fs(t, u)dW (t),

where dW (t) is a white noise de�ned on the whole real line and

fs(t, u) = (Const)
(
((u− t)+)(s−1)/2 − ((−t)+)(s−1)/2

)
.

For m ≥ 0 and t ≥ 0, we de�ne inductively the IFBM by

B(−0)
s (u) = Bs(u)

B(−m)
s (u) =

∫ u

0

B(−(m−1))
s (t)dt.

De�nition 1 (Non degenerated property) A process Z has the ND property if for every k > 0 and
every t1 < t2 < · · · < tk belonging to the domain of de�nition of Z, the distribution of Z(t1), . . . , Z(tk)
is non degenerated.

We have the following.

Proposition 3 The IFBM has the ND property.

Proof By the stochastic Fubini theorem,

B(−m)
s (u1) =

∫ u1

0

du2· · ·
∫ um

0

dum+1

∫ um+1

−∞
dW (t)fs(t, um+1)

=

∫ u1

−∞
dW (t)

∫ u1

t

du2· · ·
∫ um

t

dum+1fs(t, um+1)

=:

∫ u1

0

gm,s(u1, t)dW (t).

The positiveness of fs(t, u) for u > 0 implies that of gm,s(t, u). As a consequence, for 0 < t1 < . . . tk,

B
(−m)
s (tk) includes a non-zero component:∫ tk

tk−1

gm,s(u, t)dW (t),

which is independent of (B
(−m)
s (t1), . . . , B

(−m)
s (tk−1)) implying that B

(−m)
s (tk) is not collinear to this set

of variables. By induction, this implies in turn that B
(−m)
s (t1), . . . , B

(−m)
s (tk) are not collinear. �

We also need the following lemma.
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6 Jean-Marc Azaïs et al.

Lemma 1 The variance function of the IFBM satis�es, for all m ∈ N,

Var
(
B(−m)
s (u)−B(−m)

s (v)
)
=

Nm∑
i=1

(
Pm,i(v)hm,i(u) + Pm,i(u)hm,i(v)

)
+ (−1)m 2|u− v|s+2m

(s+ 1) . . . (s+ 2m)
,

where Nm ∈ N, for i = 1, . . . , Nm, P
m,i is a polynomial of degree less or equal to m and hm,i is some

function.

The proof of Lemma 1 is given in the appendix in Section 6.

Proposition 4 If the sequence a has order M(a) > D, then∑
j

a2∗j |j|
2D+s 6= 0 (i.e. (−1)D

∑
j

a2∗j |i|
2D+s

< 0). (7)

Note that (7) is stated as an hypothesis in [13].

Proof Using Lemma 1 (with m = D) and the vanishing moments of a of order less or equal than D, we
have

∑
k,l

akal |k − l|2D+s
= (Const)(−1)D

∑
k,l

akalVar(B
(−D)
s (k)−B(−D)

s (l))

= (Const)(−1)D+1Var

(∑
k

akB
(−D)
s (k)

)
.

We conclude using the ND property of the IFBM stated in Proposition 3. �

3 Quadratic a-variations

3.1 De�nition

Here, we consider the discrete a-di�erence applied to the process X and we de�ne the quadratic a-
variations by

Va,n = ‖∆a(X)‖2 =

n′∑
i=1

(∆a,i(X))2, (8)

recalling that n′ = n − L(a) + 1. When no confusion is possible, we will use the shorthand notation L
and M for L(a) and M(a).

3.2 Results on quadratic a-variations

The basis of our computations of variances is the identity

E[∆a,i(X)∆a′,i′(X)] = −∆a∗a′,i−i′(V ), (9)

for any sequences a and a′. A second main tool is the Taylor expansion with integral remainder (see, for
example, (14)). So we introduce another notation. For a sequence a, a scale ∆, an order q and a function
f , we de�ne

R(i,∆, q, f, a) = −
∑
j

ajj
q

∫ 1

0

(1− η)q−1

(q − 1)!
f((i+ jη)∆)dη. (10)

By convention, we letR(i,∆, 0, f, a) = −∆a,i(f). Note thatR(−i,∆, 2q, |·|s , a∗a′) = R(i,∆, 2q, |·|s , a′∗a).
One of our main results is the following.
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Semi-parametric estimation of the variogram of a Gaussian process with stationary increments 7

Proposition 5 (Moments of Va,n) Assume that V satis�es (H0) and (H1).
1) If we choose a sequence a such that M > D, then

E[Va,n] = nC(−1)D∆2D+s
[
R(0, 1, 2D, |·|s , a2∗)

]
(1 + o(1)), (11)

as n tends to in�nity. Furthermore, (−1)DR(0, 1, 2D, |·|s , a2∗) is positive.

2) If V satis�es additionally (H2) and if we choose a sequence a so that M > D + s/2 + 1/4, then as n
tends to in�nity:

Var(Va,n) = 2nC2∆4D+2s
∑
i∈Z

R2(i, 1, 2D, |·|s , a2∗)(1 + o(1)) (12)

and the series above is positive and �nite.

Remark 6 (i) Notice that (11) and (12) imply concentration in the sense that

Va,n
E[Va,n]

L2

−→
n→+∞

1.

(ii) In practice, since the parameters D and s are known, it su�ces to choose M such that M ≥ D + 1
when s < 3/2 and M ≥ D + 2 when 3/2 ≤ s < 2.
(iii) The expression of the asymptotic variance appears to be complicated. Anyway, in practice, it can be
easily approximated. Some explicit examples are given in Section 5.

Proof 1) By de�nition of Va,n in (8) and identity (9), we get

E[Va,n] =n′E[∆a,i(X)2] = −n′∆a2∗,0(V ) = −n′
∑
j

a2∗j V (j∆). (13)

Recall that n′ = n − L + 1 is the size of the vector ∆a(X). In all the proof, j is assumed to vary from
−L+ 1 to L− 1. We use a Taylor expansion of V ((i+ j)∆) at (i∆) and of order q ≤ 2D:

V ((i+ j)∆) =V (i∆) + · · ·+ (j∆)q−1

(q − 1)!
V (q−1)(i∆) + (j∆)q

∫ 1

0

(1− η)q−1

(q − 1)!
V (q)((i+ jη)∆)dη. (14)

Note that this expression is "telescopic" in the sense that if q < q′ ≤ 2D,

(j∆)q
∫ 1

0

(1− η)q−1

(q − 1)!
V (q)((i+ jη)∆)dη

=
(j∆)q

(q)!
V (q)(i∆) + · · ·+ (j∆)q

′−1

(q′ − 1)!
V (q′−1)(i∆) + (j∆)q

′
∫ 1

0

(1− η)q′−1

(q′ − 1)!
V (q′)((i+ jη)∆)dη. (15)

Combining (14) (with i = 0 and q = 2D), the vanishing moments of the sequence a2∗ and (H1) yields:

E[Va,n] =n′∆2DR(0, ∆, 2D,V (2D), a2∗)

=n′C(−1)D∆2D+sR(0, 1, 2D, |·|s , a2∗) + n′∆2DR(0, ∆, 2D, r, a2∗).

The �rst term is non-zero by (7) in Proposition 4 and a dominated convergence argument together with
(H1) shows that the last term is o(∆2D+s) giving (11).

2) Using Lemma 5, (14) with q = 2D, the fact that D ≤M , and the vanishing moments of the sequence
a2∗, we obtain

Var(Va,n) =2

n′∑
i,i′=1

Cov2 (∆a,i(X), ∆a,i′(X)) = 2

n′∑
i,i′=1

(
−∆a2∗,i−i′(V )

)2
= 2

n′−1∑
i=−n′+1

(n′ − |i|)∆a2∗,i(V )2

=2∆4D
n′−1∑

i=−n′+1

(n′ − |i|)R2(i,∆, 2D,V (2D), a2∗)

=2∆4D
n′−1∑

i=−n′+1

(n′ − |i|)
(
C(−1)D∆sR(i, 1, 2D, |·|s , a2∗) +R(i,∆, 2D, r, a2∗)

)2
.

=:An +Bn + Cn,
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8 Jean-Marc Azaïs et al.

where Bn comes from the double product.

(i) We show that An converges. Indeed,

An = 2C2∆4D
n′−1∑

i=−n′+1

(n′ − |i|)∆2sR2(i, 1, 2D, |·|s , a2∗) = 2C2n′∆4D+2s
∑
i∈Z

fn(i),

with

fn(i) :=
n′ − |i|
n′

R2(i, 1, 2D, |·|s , a2∗)1|i|≤n′−1.

Since fn(i) ↑ R2(i, 1, 2D, |·|s , a2∗) for �xed i and n′ going to in�nity, it su�ces to study the series∑
i∈Z

R2(i, 1, 2D, |·|s , a2∗).

Using (15) , with q′ = 2M , |·|s instead of V (2D) and ∆ = 1, and using the vanishing moments of the
sequence a2∗, we get, for i large enough so that i and i+ j always have the same sign in the sum below,

R(i, 1, 2D, |·|s , a2∗) = R(i, 1, 2M, g, a2∗) = −
∑
j

a2∗j j
2M

∫ 1

0

(1− η)2M−1

(2M − 1)!
g((i+ jη))dη,

where g is the 2(M − D)-th derivative of |·|s (de�ned on R \ {0}). For i su�ciently large, g(i + jη) is
bounded by (Const)|i|s−2(M−D) so that

R2(i, 1, 2D, |·|s , a2∗) is bounded by (Const)i2(s−2(M−D)), (16)

which is the general term of a convergent series.

(ii) Now we show that the term Cn is negligible compared to An. This will imply in turn that Bn is
negligible compared to An, from the Cauchy-Schwarz inequality. We have to give bounds to the series
with general term R2(i,∆, 2D, r, a2∗) with

R(i,∆, 2D, r, a2∗) = −
∑
j

a2∗j j
2D

∫ 1

0

(1− η)2D−1

(2D − 1)!
r ((i+ jη)∆) dη.

For �xed i, the assumptions (5) on r in (H1) are su�cient to build a dominated convergence argument
to prove that R2(i,∆, 2D, r, a2∗) = o(∆2s) which leads to the required result. So we concentrate our
attention on indices i such that |i| > 2L. Using (15) as in the proof of item 1), if 2D+ d ≤ 2M , one gets

R(i,∆, 2D, r, a2∗) = −
∑
j

a2∗j j
2D+d∆d

∫ 1

0

(1− η)2D+d−1

(2D + d− 1)!
r(d) ((i+ jη)∆) dη.

The condition |i| > 2L ensures that the integral is always convergent. Using (5),

R2(i,∆, 2D, r, a2∗) ≤ (Const)∆2d+2βi2β . (17)

Since β < −1/2 , the series in i converges and the contribution to C of the indices i such that |i| > 2L is
bounded by (Const)∆4D+2d+2β which is negligible compared to ∆4D+2s since d+ β > s. �

Following the same lines as in the proof of Proposition 5 and using the identities (a ∗ a′)j = (a′ ∗ a)−j
and R(i, 1, 2D, |·|s , a ∗a′) = R(−i, 1, 2D, |·|s , a′ ∗a), one may easily derive the corollary below. The proof
is omitted.

Corollary 7 (Covariance of Va,n and Va′,n) Assume that V satis�es (H0), (H1), and (H2). Let us
consider two sequences a and a′ so that M(a)∧M(a′) > D+ s/2+1/4. Then, as n tends to in�nity, one
has

Cov(Va,n, Va′,n) = 2nC2∆4D+2s

[∑
i∈Z

R2(i, 1, 2D, |·|s , a ∗ a′)

]
(1 + o(1)). (18)
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Semi-parametric estimation of the variogram of a Gaussian process with stationary increments 9

Particular case - D = 0:

(i) We choose a as the �rst order elementary sequence (a0 = −1, a1 = 1 and M = 1). As n tends to
in�nity, one has

E[Va,n] = nC∆s(2 + o(1));

Var(Va,n) = 2nC2∆2s
∑
i∈Z

(|i− 1|s − 2 |i|s + |i+ 1|s)2 (1 + o(1)), s < 3/2.

(ii) General sequences. We choose two sequences a and a′ so that M(a) ∧M(a′) > s/2 + 1/4. Then, as n
tends to in�nity, one has

E[Va,n] = −nC∆s

∑
j

a2∗j |j|
s

 (1 + o(1));

Var(Va,n) = 2nC2∆2s
∑
i∈Z

∑
j

a2∗j |i+ j|s
2

(1 + o(1));

Cov(Va,n, Va′,n) = 2nC2∆2s

∑
|j|≤L

a ∗ a′j |j|
s

2

(1 + o(1))

+ nC2∆2s
∑
i∈Z∗


∑
|j|≤L

a ∗ a′j |i+ j|s
2

+

∑
|j|≤L

a′ ∗ aj |i+ j|s
2
 (1 + o(1)).

Now we establish the central limit theorem.

Theorem 8 (Central limit theorem for Va,n) Assume (H0), (H1) and (H2) and M > D+s/2+1/4.
Then Va,n is asymptotically normal in the sense that

Va,n − E[Va,n]√
Var(Va,n)

D−→
n→+∞

N (0, 1). (19)

Proof By a diagonalization argument, Va,n can be written as

Va,n =

n′′∑
i=1

λiZ
2
i ,

where λ1, . . . , λn′′ are the non-zero eigenvalues of variance-covariance matrix Σa of ∆a(X) and the Zi
are independent and identically distributed standard Gaussian variables. Hence,

Va,n − E(Va,n)√
Var(Va,n)

=

n′′∑
i=1

λi√∑n′′

r=1 λ
2
r

(Z2
i − 1). (20)

In such a situation, Lemma 2 in [13] implies that the Lindeberg condition is a su�cient condition required
to prove the central limit theorem and is equivalent to

max
i=1,...,n′′

|λi| = o

(√
Var(Va,n)

)
.

From Lemma 6, one has

max
i=1,...,n′′

 n′′∑
j=1

|Σa(i, j)|

 = o


√√√√ n′′∑

r=1

λ2r


and the result follows using the following classical linear algebra result (see for instance [18, Ch. 6.2,
p194])

max
i=1,...,n′′

|λi| ≤ max
i=1,...,n′

 n′∑
j=1

|Σa(i, j)|

 .

�
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10 Jean-Marc Azaïs et al.

Remark 9

� If M = D + 1, the condition M > D + s/2 + 1/4 in Proposition 5 implies s < 3/2. However, when
M = D+ 1 and s ≥ 3/2, it is still possible to compute the variance but the convergence is slower and
the central limit theorem does not hold anymore. More precisely, we have the following.
� If s > 3/2 and M = D + 1 then, as n tends to in�nity,

Var(Va,n) = (Const)×∆4D+2s × n2s−4(M−D)+2 × (1 + o(1)). (21)

� If s = 3/2 and M = D + 1 then, as n tends to in�nity

Var(Va,n) = (Const)×∆4D+2s × n log n× (1 + o(1)). (22)

We omit the proof. Analogous formula for the covariance of two variations can be derived similarly.
� Since the work of Guyon and León [12], it is a well known fact that in the simplest case (D = 0, L =

2,M = 1) and in the in�ll situation (α = 1), the central limit theorem holds true for quadratic
variations if and only if s < 3/2. Hence assumption M > D + s/2 + 1/4 is minimal.

Corollary 10 (Joint central limit theorem) Assume that V satis�es (H0), (H1) and (H2). Let a
(1), . . . , a(k)

be k sequences with order greater than D+ s/2+1/4. Assume also that, as n→∞, the k×k matrix with
term i, j equal to

1

n∆4D+2s
Cov

(
Va(i),n, Va(j),n

)
converges to an invertible matrix Λ∞. Then, Va(1),...,a(k),n = (Va(1),n, . . . , Va(k),n)

> is asymptotically nor-
mal in the sense that n→∞

Va(1),...,a(k),n − E
[
Va(1),...,a(k),n

]
n1/2∆2D+s

D−→
n→+∞

N (0, Λ∞).

Proof To prove the asymptotic joint normality it is su�cient to prove the asymptotic normality of any
non-zero linear combination

LC(γ) =

k∑
j=1

γjVa(j),n,

where γj ∈ R for j = 1, . . . , k. We have again the representation

LC(γ) =

n′′∑
i=1

λiZ
2
i ,

where the λi's are now the non-zero eigenvalues of the variance-covariance matrix

σ′ =

k∑
j=1

γjΣa(j),n,

and the Zi's are as before. The Lindeberg condition has the same expression. On one hand, as n goes to
in�nity,

1

n∆4D+2s

n′′∑
i=1

λi → γ>Λ∞γ

where > stands for the transpose. On the other hand, by the triangular inequality for the operator norm
(which is the maximum of the |λi|'s), one gets

max
i=1,...,n′′

|λi| = ‖σ′‖op ≤
k∑
j=1

γj‖Σa(j),n‖op.

In the proof of Theorem 8, we have established that ‖Σa(j),n‖op = o(n1/2∆2D+s) leading to the result. �
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Semi-parametric estimation of the variogram of a Gaussian process with stationary increments 11

3.3 Estimators of C based on the quadratic a-variations

Guided by the moment method, we de�ne

Ca,n :=
Va,n

n(−1)D∆2D+sR(0, 1, 2D, |·|s , a2∗)
. (23)

Then Ca,n is an estimator of C which is asymptotically unbiased by Proposition 5. Now our aim is to
establish its asymptotic behavior.

Theorem 11 (Central limit theorem for Ca,n) Under the assumptions (H0) to (H3), and if M(a) >
D + s/2 + 1/4, then Ca,n is asymptotically normal. More precisely, we have

Ca,n − C√
Var(Ca,n)

D−→
n→+∞

N (0, 1), (24)

with Var(Ca,n) = (Const)n−1(1 + o(1)).

Proof We use the de�nition of Ca,n and the following decomposition:

Ca,n − C√
Var(Ca,n)

=
Ca,n − E[Ca,n]√

Var(Ca,n)
+

E[Ca,n]− C√
Var(Ca,n)

=
Va,n − E[Va,n]√

Var(Va,n)
+

E[Ca,n]− C√
Var(Ca,n)

.

Following the proof of Proposition 5, the second term is proportional to

√
n∆−sR(0, ∆, 2D, r, a2∗) = −

√
n∆−s

∑
i

a2∗i i
2D

∫ 1

0

(1− η)2D−1

(2D − 1)!
r(iη∆)dη

which converges to 0 as n goes to in�nity by assumption (H3). Then Slutsky's lemma and Theorem 8
lead straightforwardly to the required result. �

The following corollary is of particular interest: it will give theoretical results when one aggregates the
information of di�erent quadratic a-variations with di�erent orders. As one can see numerically in Section
5.2, such a procedure appears to be really promising and circumvents the problem of the determination
of the optimal sequence a.

Corollary 12 Under the assumptions of Theorem 11, consider k sequences a(1), . . . , a(k) so that, for
i = 1, . . . , k, M(a(i)) > D + s/2 + 1/4. Assume furthermore that the covariance matrix of
(Ca(i),n/Var(Ca(i),n)

1/2)i=1,...,k converges to an invertible matrix Γ∞ as n → ∞. Then, ([Ca(i),n −
C]/Var(Ca(i),n)

1/2)i=1,...,k converges in distribution to the N (0, Γ∞) distribution.

3.4 Adding a drift

In this section, we do not assume anymore that the process X is centered and we set for t ≥ 0,

f(t) = E[X(t)].

We write X the corresponding centered process: X(t) = X(t)− f(t). As it is always the case in Kriging
applications, we assume that f is smooth.

Corollary 13 De�ne

Kα
M,n = sup

t∈[0,n1−α]

|f (M)(t)|.

Under the assumptions of Theorem 11 and if we assume in addition that

Kα
M,n = o(n−1/4∆D−M+s/2), (25)

then (24) still holds for X.
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12 Jean-Marc Azaïs et al.

Note that in the in�ll situation (α = 1), K1
M,n does not depend on n. Obviously, (25) is met if f is a

polynomial up to an appropriate choice of the sequence a (and M). In the in�ll situation, a su�cient
condition for (25) is M > D + s/2 + 1/4 which is always true. Moreover, it is worth noticing that we
only assume regularity on the M -th derivative of the drift. No parametric assumption on the model is
required, unlike in the MLE procedure.

Proof Obviously, one has

V Xa,n = ‖∆a(X)‖2 = ‖∆a(f) + ∆a(X)‖2.

Using the triangular inequality ‖A + B‖2 − ‖A‖2 ≤ ‖B‖2 + 2‖A‖‖B‖, it su�ces to have ‖∆a(f)‖2 =
o(Var(Va,n(X)1/2) = o(n1/2∆2D+s) to deduce the central limit theorem for X from that for X. By
application of the Taylor-Lagrange formula, one gets

∆a,i(f) = (Const)×∆M × f (M)(ξ),

with ξ ∈ [0, n1−α]. Then ‖∆a(f)‖2 ≤ n(Kα
M,n)

2∆2M and a su�cient condition is (25). �

3.5 Elements of comparison with the MLE procedure

In this section, we compare our methodology to the very popular MLE method. For details on the MLE
procedure, the reader is referred to, e.g. [21, 25].

Model �exibility As mentioned in the introduction, the MLE methodology is a parametric method and
requires the kernel to belong to a parametric family of the form {σ2ρθ;σ

2 ≥ 0,∈ Θ}. In the procedure
proposed in this paper, it is only assumed that the variogram satis�es the conditions given in Section 2.1,
and that D and s are known. In this latter case, the suggested variation estimator is feasible, while the
MLE is not de�ned.

Adding a drift In order to use the MLE estimator, it is necessary to assume that the mean function of
the process is a linear combination of known parametric functions:

f(t) =

q∑
i=1

βifi(t),

with known f1, . . . , fq and where β1, . . . , βq need to be estimated. Our method is less restrictive and more
robust. Indeed, we only assume the regularity of the M -th derivative of the mean function in assumption
(25).

Computational cost The cost of our method is only O(n) (the method only requires the computation
of a sum) while the cost of the MLE procedure is known to be O(n3).

Practical issues In some real data frameworks, it may occur that the MLE estimation diverges as can
be seen in Section 5.3. Such a dead end can not be possible with our procedure.

4 E�ciency of our estimation procedure

In this section, in order to decrease the asymptotic variance, we propose a procedure to combine several
quadratic a-variations leading to aggregated estimators. Then our goal is to evaluate the quality of these
proposed estimators. In that view, we compare their asymptotic variance with the theoretical Cramér-Rao
bound in some particular cases in which this bound can be explicitly computed.
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Semi-parametric estimation of the variogram of a Gaussian process with stationary increments 13

4.1 Aggregation of estimators

In order to improve the estimation procedure, we suggest to aggregate a �nite number of estimators:

k∑
j=1

λjCa(j),n

based on k di�erent sequences a(1), . . . , a(k) with weights λ1, . . . , λk. Ideally, one should provide an adap-
tive statistical procedure to choose the optimal number k∗ of sequences, the optimal sequences and the
optimal weights λ∗1, . . . , λ

∗
k. Such a task is beyond the scope of this paper. Nevertheless, in this section, we

consider a given number k of given sequences a(1), . . . , a(k) leading to the estimators Ca(1),n, . . . , Ca(k),n
de�ned by (23). Then we provide the optimal weights λ∗1, . . . , λ

∗
k. Using [16] or [4], one can establish the

following lemma.

Lemma 2 We assume that the conditions of Corollary 12 are met. Let R be the k×k asymptotic variance-
covariance matrix of the vector of length k whose elements are given by (n1/2/C)Ca(j),n, j = 1, . . . , k.
Then, for any λ1, . . . , λk for which λ1 + · · ·+ λk = 1,

(n1/2/C)(

k∑
j=1

λjCa(j),n − C)
D−→

n→+∞
N (0, λTRλ).

Let 1k be the "all one" column vector of size k and de�ne

λ∗ := (λ∗1, . . . , λ
∗
k)
> =

R−11k
1TkR

−11k
.

One has
∑k
j=1 λ

∗
j = 1 and

λ∗TRλ∗ 6 λTRλ.

As will be shown with simulations in Section 5, the aggregated estimator considerably improves each of
the original estimators Ca(1),n, . . . , Ca(k),n.

4.2 Cramér-Rao bound

To validate the aggregation procedure, we want to compare the obtained asymptotic variance with the
theoretical Cramér-Rao bound. In that view, we compute this bound in two particular cases.

We consider a family YC (C ∈ R+) of centered Gaussian processes. Let RC be the (n − 1) × (n − 1)
variance-covariance matrix de�ned by

(RC)i−1,j−1 = Cov (YC (i∆)− YC ((i− 1)∆) , YC (j∆)− YC ((j − 1)∆)) , i, j = 2, . . . , n.

Assume that C 7→ RC is twice di�erentiable and RC is invertible for all C ∈ R+. Then, let

IC =
1

2
Tr

(
R−1C

(
∂

∂C
RC

)
R−1C

(
∂

∂C
RC

))
(26)

be the Fisher information. The quantity 1/IC is the Cramér-Rao lower bound for estimating C based on{
YC(i∆)− YC((i− 1)∆)

}
i=2,...,n

(see for instance [3, 8]). Now we give two examples of families of processes for which we can compute the
Cramér-Rao lower bound explicitly. The �rst example is obtained from the IFBM de�ned in Section 2.2.

Lemma 3 Let 0 < s < 2 and let X be equal to
√
CB

(−D)
s where B

(−D)
s is the IFBM. Then YC = X(D)

is a FBM whose variogram VC is given by

VC(h) =
1

2
E
[
(YC(t+ h)− YC(t))2

]
= C|h|s. (27)

Hence in this case, we have 1/IC = 2C2/(n− 1).
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Proof (27) implies that ∂RC/∂C = R1 then (26) gives the result. �

Now we consider a second example given by the generalized Slepian process de�ned in Section 2.2.

Let s ≤ 1 and YC with stationary covariance function ρC de�ned by

ρC(h) = (1− (C/2)|h|s)+, for any h ∈ R. (28)

This function is convex on R and it follows from Pólya's theorem [20] that ρC is a valid covariance
function. We thus easily obtain the following lemma whose proof is omitted.

Lemma 4 Let X be the integration D times of YC de�ned via (28). Then, in the in�ll situation (α = 1)
and for C < 2, the variogram of YC is given by (27) and by consequence 1/IC = 2C2/(n− 1).

5 Numerical results

In this section, we �rst study to which extent the asymptotic results of Proposition 5 and Theorem 11
are representative of the �nite sample behavior of quadratic a-variations estimators. Then, we study
the asymptotic variances of these estimators provided by Proposition 5 and that of the aggregated a-
variations estimators of Section 4.1. We conclude this section extending our empirical procedure to the
multidimensional setting on two real data sets.

5.1 Simulation study of the convergence to the asymptotic distribution

We carry out a Monte Carlo study of the quadratic a-variations estimators in three di�erent cases. In
each of the three cases, we simulate N = 10, 000 realizations of a Gaussian process on [0, 1] with zero
mean function and stationary covariance function ρ. In the case D = 0, we let ρ(h) = exp(−C|h|). Hence
(H1) holds with D = 0 and s = 1. In the case D = 1, we use the Matérn 3/2 covariance [24] :

ρ(h) =

(
1 +
√
3
|h|
θ

)
e−
√
3
|h|
θ .

One can show, by developing ρ into power series, that (H1) holds with D = 1, s = 1 and C = 6
√
3/θ3.

Finally, in the case D = 2, we use the Matérn 5/2 covariance function:

ρ(h) =

(
1 +
√
5
|h|
θ

+
5|h|2

3θ2

)
e−
√
5
|h|
θ .

Also (H1) holds true with D = 2, s = 1 and C = 200
√
5/3θ5.

In each of the three cases, we set C = 3. For n = 50, n = 100 and n = 200, we observe each generated
process at n equispaced observation points on [0, 1] and compute the quadratic a-variations estimator
Ca,n of Section 3.3. When D = i, i = 0, 1, 2, we choose a to be the elementary sequence of order i+ 1.

In Figure 1, we display the histograms of the 10, 000 estimated values of C for the nine con�gurations of
D and n. We also display the corresponding asymptotic Gaussian probability density functions provided
by Proposition 5 and Theorem 11. We observe that there are few di�erences between the histograms
and limit probability density functions between the cases (D = 0, 1, 2). In these three cases, the limiting
Gaussian distribution is already a reasonable approximation when n = 50. This approximation then
improves for n = 100 and becomes very accurate when n = 200. Naturally, we can also see that the
estimators' variances decrease as n increases. Finally, the �gures suggest that the discrepancies between
the �nite sample and asymptotic distributions are slightly more pronounced with respect to the di�erence
in mean values than to the di�erence in variances. As already pointed out, these discrepancies are mild
in all the con�gurations.
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Fig. 1 Comparison of the �nite sample distribution of Ca,n (histograms) with the asymptotic Gaussian distribution pro-
vided by Proposition 5 and Theorem 8 (probability density function in blue line). The vertical red line denotes the true
value of C = 3. From left to right, n = 50, 100, 200. From top to bottom, D = 0, 1, 2.

5.2 Analysis of the asymptotic distributions

Now we consider the normalized asymptotic variance of Ca,n obtained from (12) in Proposition 5. We let
∆ = 1/n and

ṽa,s =
2
∑
i∈ZR

2(i, 1, 2D, |·|s , a2∗)
R2(0, 1, 2D, |·|s , a2∗)

, (29)

so that (n1/2/C)(Ca,n−C) converges to a N (0, ṽa,s) distribution as n→∞, where ṽa,s does not depend
on C (nor on n).

First, we consider the case D = 0 and we plot ṽa,s as a function of s for various sequences a in the left
hand side of Figure 2. The considered sequences are the following:

� the elementary sequence of order 1: a(1) given by (-1,1);
� the elementary sequence of order 2: a(2) given by (1,-2,1);
� the elementary sequence of order 3: a(3) given by (-1, 3, -3, 1);
� the elementary sequence of order 4, a(4) given by (1,-4, 6,-4,1);
� a sequence of order 1 and with length 3: a(5) given by (-1,-2,3);
� a Daubechies wavelet sequence withM = 2 [9] as in [13]: a(6) given by (-0.1830127,-0.3169873,1.1830127,-
0.6830127);

� a second Daubechies wavelet sequence withM = 3: a(7) given by (0.0498175,0.12083221,-0.19093442,-
0.650365,1.14111692,-0.47046721).

From the left hand side of Figure 2, we can draw several conclusions. First, the results of Section 4.2
suggest that 2 is a plausible lower bound for ṽa,s. We shall call the value 2 the Cramér-Rao lower bound.
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Fig. 2 Case D = 0 (left hand side) and D = 1 (right hand side). Plot of the normalized asymptotic variance ṽa,s of the
quadratic a-variations estimator, as a function of s, for various sequences a. The legend shows the values a0, . . . , al of these
sequences (rounded to two digits). For D = 0, from top to bottom in the legend, the sequences are the elementary sequence
of order 1, the sequence (−1,−2, 3) which has order 1, the d Daubechies sequences of order 2 and 3 and the elementary
sequences of orders 2 and 3. For D = 1, from top to bottom in the legend, the sequences are the elementary sequences of
order 2, 3 and 4 and the Daubechies sequences of order 2 and 3. The horizontal line corresponds to the Cramér-Rao lower
bound 2.

Indeed, we observe numerically that ṽa,s ≥ 2 for all the s and a considered here. Then we observe that,
for any value of s, there is one of the ṽa,s which is close to 2 (below 2.5). This suggests that quadratic
variations can be approximately as e�cient as maximum likelihood, for appropriate choices of the sequence
a. We observe that, for s = 1, the elementary sequence of order 1 (a0 = −1, a1 = 1) satis�es ṽa,s = 2. This
is natural since for s = 1, this quadratic a-variations estimator coincides with the maximum likelihood
estimator, when the observations stem from the standard Brownian motion. Except from this case s = 1,
we could not �nd other quadratic a-variations estimators reaching exactly the Cramér-Rao lower bound
2 for other values of s.

Second, we observe that the normalized asymptotic variance ṽa,s blows up for the two sequences a
satisfying M = 1 when s reaches 1.5. This comes from Remark 9: the variance of the quadratic a-
variations estimators with M = 1 is of order larger than 1/n when s ≥ 1.5. Consequently, we plot ṽa,s
for 0.1 ≤ s ≤ 1.4 for these two sequences. For the other sequences satisfying M ≥ 2, we plot ṽa,s for
0.1 ≤ s ≤ 1.9.

Third, it is di�cult to extract clear conclusions about the choice of the sequence: for s smaller than, say,
1.2 the two sequences with order M = 1 have the smallest asymptotic variance. Similarly, the elementary
sequence of order 2 has a smaller normalized variance than that of order 3 for all values of s. Also, the
Daubechies sequence of order 2 has a smaller normalized variance than that of order 3 for all values of
s. Hence, a conclusion of the study in the left hand side of Figure 2 is the following. When there is a
sequence of a certain order for which the corresponding estimator reaches the rate 1/n for the variance,
there is usually no bene�t in using a sequence of larger order. Finally, the Daubechies sequences appear to
yield smaller asymptotic variances than the elementary sequences (the orders being equal). The sequence
of order 1 given by (a0, a1, a2) = (−1,−2, 3) can yield a smaller or larger asymptotic variance than the
elementary sequence of order 1, depending on the value of s. For two sequences of the same order M , it
seems nevertheless challenging to explain why one of the two provides a smaller asymptotic variance.

Now, we consider aggregated estimators, as presented in Section 4.1. A clear motivation for considering
aggregation is that, in the left hand side of Figure 2, the smallest asymptotic variance ṽa,s corresponds
to di�erent sequences a, depending on the values of s.
In Figure 3 left, we consider the case D = 0 and we use four sequences: a(1), a(5) a(2) and a(6). We
plot their corresponding asymptotic variances ṽa(i),s as a function of s, for 0.1 ≤ s ≤ 1.4 as well as
the variance of their aggregation. It is then clear that aggregation drastically improves each of the four
original estimators. The asymptotic variance of the aggregated estimator is very close to the Cramér-Rao
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Fig. 3 Case D = 0. Plot of the normalized asymptotic variance ṽa,s of the quadratic a-variations estimator, as a function
of s, for various sequences a and for their aggregation. On the left, including the order one elementary sequence, on the
right without. The horizontal line corresponds to the Cramér-Rao lower bound 2.
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Fig. 4 Same setting as in Figure 3 but for D = 1. On the left, from top to bottom in the legend, the sequences are the
elementary sequence of order 2, the Daubechies sequence of order 2 and the elementary sequence of order 3. On the right,
from top to bottom in the legend, the sequences are the elementary sequences of orders 3 and 4 and the Daubechies sequence
of order 3.

lower bound 2 for all the values of s. In Figure 3 right, we perform the same analysis but with sequences
of order larger than 1. The four considered sequences are now a(6), a(2) a(3) and a(4). The value of s varies
from 0.1 to 1.9 Again, the aggregation is clearly the best.

Finally, the right hand side of Figure 2 and Figure 4 explore the case D = 1. Conclusions are similar.

5.3 Real data examples

In this section, we illustrate in two real data sets a possible extension of the estimation procedure in a two
dimensional setting. Moreover, we show that our procedure based on quadratic a-variations outperforms
the maximum likelihood procedure when the dimension is larger than 2.
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Fig. 5 For the data set of Section 5.3.2: the two images to be registrated (left and middle) and the �eld of deformation
amplitude (right). On the right, light colors indicate large deformation amplitudes and dark colors indicate small deformation
amplitudes.

5.3.1 A moderate size data set

We compare two methods of estimation of the covariance function of a separable Gaussian model on a
real data set of atomic force spectroscopy1. The data consist of observations taken on a grid of step 1/15
on [0, 1]2, so they consist of 256 points of the form

X(i/15, j/15) i = 0, . . . , 15, j = 0, . . . , 15.

The �rst method is maximum likelihood estimation in a Kriging model, obtained from the function km

or the R toolbox DiceKriging [24]. For this method, the mean is assumed to be E(X(i/15, j/15)) = µ
and the covariance functions are assumed to be exponential (see Section 2.2):

Cov(X(i/15, j/15), X(i′/15, j′/15)) = σ2e−θ1|i−i
′|/15e−θ2|j−j

′|/15. (30)

The parameters µ, σ2, θ1, θ2 are estimated by maximum likelihood.
The second method assumes the same covariance model (30) and consists in the following steps.

(1) Estimate σ2 by the sum of squares

σ̂2 =
1

256

15∑
i,j=0

(X(i/15, j/15)− µ̂)2

with µ̂ = (1/256)
∑15
i,j=0X(i/15, j/15).

(2) For each column j of [X(i/15, j/15)]i,j=0,...,15, the vector of 16 observations obey our model with

s = 1 and C1 = σ2θ1. Hence, we can estimate C1 by Ĉ1,j with the estimator (23), with the elementary

sequence of order 1. Thus we obtain an estimate Ĉ1 by averaging the Ĉ1,j for j = 0, . . . , 15.

(3) We perform the same analysis row by row to obtain an estimate Ĉ2.

(4) For i = 1, 2, θi is estimated by θ̂i = Ĉi/σ̂
2.

The �rst method, based on maximum likelihood, provides in�nite values for θ1 and θ2, so that it considers
the 256 observed values as completely spatially independent. On the other hand, the second method
provides the values θ̂1 = 14.72 and θ̂2 = 15.73. This corresponds to a correlation of approximately
1/e ≈ 0.36 between direct neighbors on the grid. Hence, the second method, based on our suggested
quadratic a-variations estimator, is able to detect a weak correlation (that can be checked graphically)
unlike the maximum likelihood estimator.

5.3.2 A large size data set

The second data set is a two-dimensional �eld of deformation amplitude, corresponding to the registration
of two real images. The deformation �eld is obtained from the software presented in [22]. Figure 5 displays
the two images to be registered and the deformation �eld.

1 Personal communication from C. Gales and J. M. Senard.
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After a subsampling of the �eld of deformation amplitude, the data consist of observations taken on a
rectangular grid of steps 1/56 and 1/59 on [0, 1]2, so they consist of 3420 points of the form

X(i/56, j/59) i = 0, . . . , 56, j = 0, . . . , 59.

With these data, we consider the same covariance model as in Section 5.3.1 and we estimate the parameters
θ1 and θ2 from the same two methods as in Section 5.3.1. The �rst method provides θ̂1 = 0.8770 and
θ̂2 = 0.6547 and takes about 22 minutes on a personal computer, while the second method provides
θ̂1 = 0.607 and θ̂2 = 0.107 in 0.05 seconds. Hence, our suggested quadratic a-variations estimator provides
a very signi�cant computational bene�t.
Both estimators conclude that the spatial correlation is more important along the x-axis than along the
y-axis, which is graphically con�rmed in Figure 5. As in Section 5.3.1, the maximum likelihood estimator
provides less correlation than the quadratic a-variations estimator.
Finally, if the �eld of deformation is considered with no preliminary subsampling, its size is 400× 600. In
this case, the ML estimator can not be directly implemented while the quadratic a-variations estimator
can be.

6 Appendix and technical results

Lemma 5 Let Z = (X,Y ) be a centered Gaussian vector of dimension 2 then Cov
(
X2, Y 2

)
= 2Cov2 (X,Y ).

Proof This Lemma is a consequence of the so called Mehler formula [2]. Its proof is immediate using the
cumulant method. �

Proof of Lemma 1 For m = 0, we have Var
(
B

(−0)
s (u)−B(−0)

s (v)
)
= 2|u− v|s so that the lemma holds

with the convention (s+ 1) . . . (s+ 0) = 1. Thus we prove it by induction on m and assume that it holds

for m ∈ N. We have, with K(−r)(u, v) = E
[
B

(−r)
s (u)B

(−r)
s (v)

]
, for r ∈ N,

K(−m)(u, v) =
1

2

(
Var
(
B(−m)
s (u)−B(−m)

s (0)
)
+Var

(
B(−m)
s (v)−B(−m)

s (0)
)
−Var

(
B(−m)
s (u)−B(−m)

s (v)
))

=ψ(u) + ψ(v)− 1

2

Nm∑
i=1

Pm,i(v)hm,i(u)−
1

2

Nm∑
i=1

Pm,i(u)hm,i(v)−
1

2
(−1)m 2|u− v|s+2m

(s+ 1) . . . (s+ 2m)
,

where ψ is some function. Since we have K(−(m+1))(u, v) =
∫ u
0

∫ v
0
K(−m)(x, y)dxdy,

K(−(m+1))(u, v) =

Ñm+1∑
i=1

P̃m+1,i(v)h̃m+1,i(u) +

Ñm+1∑
i=1

P̃m+1,i(u)h̃m+1,i(v)

+ (−1)m+1 1

(s+ 1) . . . (s+ 2m)

∫ v

0

(∫ u

0

|x− y|s+2mdx

)
dy, (31)

where Ñm+1 ∈ N, where for i = 1, . . . , Ñm+1, P̃
m+1,i is a polynomial of degree less or equal to m+1 and

h̃m+1,i is some function. For v ≤ u, we have∫ v

0

(∫ u

0

|y − x|s+2mdx

)
dy =

∫ v

0

(∫ y

0

(y − x)s+2mdx+

∫ u

y

(x− y)s+2mdx

)
dy

=

∫ v

0

(
ys+2m+1

2m+ 1
+

(u− y)s+2m+1

2m+ 1

)
dy

=
vs+2m+2

(2m+ 1)(2m+ 2)
− (u− v)s+2m+2

(2m+ 1)(2m+ 2)
+

us+2m+2

(2m+ 1)(2m+ 2)
.

By symmetry, we obtain, for u, v ∈ N,∫ u

0

(∫ v

0

|x− y|s+2mdx

)
dy =

us+2m+2

(2m+ 1)(2m+ 2)
+

vs+2m+2

(2m+ 1)(2m+ 2)
− |u− v|s+2m+2

(2m+ 1)(2m+ 2)
. (32)

Hence, from the relation

Var
(
B(−(m+1))
s (u)−B(−(m+1))

s (v)
)
= K(−(m+1))(v, v) +K(−(m+1))(u, u)− 2K(−(m+1))(v, u),

(31), and (32), we conclude the proof of the lemma. �
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Lemma 6 Assume that V satis�es (H0), (H1), and (H2). One has, when M > D + s+ 1/4,

max
i=1,...,n′

 ∑
i′=1,...,n′

|Σa(i, i′)|

 = o
(
Var(Va,n)

1/2
)
.

Proof Using the stationary increments of the process, one has

max
i=1,...,n′

 ∑
i′=1,...,n′

|Σa(i, i′)|

 ≤ 2

n′−1∑
i=0

|Σa(1, 1 + i)| . (33)

Recall that

Σa(1, 1 + i) = Cov (∆a,1(X), ∆a,1+i(X)) = −∆a2∗,i(V ) = ∆2DR(i,∆, 2D,V (2D), a2∗).

We have seen in the proof of Proposition 5 ((16) and (17)) that for i su�ciently large

R(i,∆, 2D,V (2D), a2∗) ≤ (Const)
(
∆sis−2(M−D) +∆d+βiβ

)
.

Thus the sum in (33) is bounded by

(Const)∆2D+s(ns−2(M−D)+1 + 1) + (Const)∆2D+d+β(n1+β + 1).

On the other hand, we have proved also in the proof of Proposition 5 that

Var(Va,n)
1/2 = (Const)n1/2∆2D+s(1 + o(1))

giving the result. Thus, one has to check that

∆2D+sns−2(M−D)+1, ∆2D+s, ∆2D+d+βn1+β , and ∆2D+d+β

are o(n1/2∆2D+s) which is true by the assumptions made. We skip the details. �
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