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Semi-parametric estimation of the variogram of a Gaussian
process with stationary increments

Jean-Marc Azaïs∗ François Bachoc† Thierry Klein‡ Agnès Lagnoux§

Thi Mong Ngoc Nguyen¶

June 8, 2018

Abstract
We consider the semi-parametric estimation of a scale parameter of a one-dimensional Gaussian

process with known smoothness. We suggest an estimator based on quadratic variations and on the
moment method. We provide asymptotic approximations of the mean and variance of this estimator,
together with asymptotic normality results, for a large class of Gaussian processes. We allow for
general mean functions and study the aggregation of several estimators based on various variation
sequences. In extensive simulation studies, we show that the asymptotic results accurately depict
the finite-sample situations already for small to moderate sample sizes. We also compare various
variation sequences and highlight the efficiency of the aggregation procedure.

Keywords: quadratic variations, scale covariance parameter, asymptotic normality, moment
method, aggregation of estimators.

1 Introduction
Gaussian processes models are widely used in spatial statistics and in particular to interpolate observations
by Kriging. For example, this technique is used in computer experiment designs to build a meta-model
[21, 24]. Usually the practitioner uses a model including a drift (often polynomial) and a stationary
Gaussian model whose covariance belongs to some family, e.g. Matérn or exponential. In this paper, we
limit the framework to unidimensional situations: we consider a real-valued process X on R for which

Cov(X(s), X(t)) = f(C, s− t), (1)

where the function f belongs to the prescribed class of covariance functions and the constant C is the
unknown scaling parameter. In applications, the estimation of the parameters C is a crucial step since it
constitutes a necessary preliminary to Kriging. Most of the software packages use the maximum likelihood
method which is known to be computer intensive and may diverge in some complicated situations.

The aim of this paper is to propose another method of estimation based on quadratic variations. Quadratic
variations have been first introduced by Levy in [17] that shows that,

2n∑
i=1

(Z(i/2n)− Z((i− 1)/2n))2
a.s.−→

n→+∞
1,

where Z is the standard Gaussian process on [0, 1]. A preliminary result on quadratic variations of a
Gaussian non-differentiable process is Baxter’s Theorem (see e.g. [5], [11, Chap. 5] and [10]) that ensures
(under some conditions) the almost sure convergence (as n tends to infinity) of V1,n defined by

V1,n :=

n−1∑
i=1

(X((i+ 1)∆n)−X(i∆n))
2 (2)
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where the scale ∆n tends to zero as n→ +∞. A generalization of the quadratic variations V1,n has been
introduced in Guyon and Léon [12]. For a given real function H, the H-variation is given by

VH,n :=

n∑
i=1

H

(
X(i/n)−X((i− 1)/n)√

Var(X(i/n)−X((i− 1)/n))

)
(3)

where X is assumed to be a centered stationary Gaussian process in [12]. In fact for statistical purposes, it
has been proved by Coeurjolly in [6] that quadratic variations are optimal. So we will limit our attention
to this last case. The most unexpected result of [12] is that, if the local irregularity of the process defined
by ρ(h) = Cor(X(t + h), X(t)) is such that ρ(h) = 1 − |h|s L(h) where s is a real number such that
0 < s < 2 and L is a slowly varying function at zero, then

1. if 0 < s < 3/2, (V1,n/n) has a limiting normal distribution with convergence rate n1/2;

2. if 3/2 < s < 2, (V1,n/n) has a limiting non normal distribution with convergence rate n2−s.

In [13], Istas and Lang generalize the results on quadratic variations of [12]. They consider a Gaussian
process with stationary increments and observations of the process at times ∆j for j = 1, . . . , n, with ∆
dependent on n and study a generalized quadratic variation:

Va,n :=

n−1∑
i=1

(∑
k

akX(k∆n)

)2

, (4)

where the sequence a has a finite support and some vanishing moments. Then they build estimators
for the local Hölder index and the constant C and showed that they are almost surely consistent and
asymptotic normal. In the more recent work of Lang and Roueff [15], the authors generalize the results
of Istas and Lang [13] and Kent and Wood [14] on an increment-based estimator in a semi-parametric
framework with different sets of hypothesis. Another generalization for non-stationary Gaussian processes
and quadratic variations along curves is done in [1]. See also the studies of [19] and [6].

Now let us present the framework considered in our paper. We assume that the process X is observed
at times i∆n for i = 1, . . . , n with ∆n tending to zero. The paper is devoted to the estimation of the
parameter C in (1) from one or several generalized quadratic a-variations of the type (4). Calculations
show that the expectation of Va,n is a function of C so that C can be estimated by the moment method.

Natural questions then arise. What is the optimal sequence a ? In particular, what is the optimal order
of the sequence, that is the number of zero moments (see Section 2.3)? Is it better to use the elementary
sequence of order 1 (−1, 1) or the one of order 2 (−1, 2,−1)? Is it better to use the elementary sequence
of order 1 (−1, 1) or a more general one, for example (−1,−2, 3) or even a sequence based on discrete
wavelets? Can we efficiently combine the information of several variations associated to several sequences?
As long as we know, these questions are not addressed yet in the literature.

The first study of this paper in Section 3 is close to the study of Istas and Lang [13]. It establishes the
expectation, the variance and a central limit theorem for the variations and the estimators deduced from
them. Nevertheless, since we want to estimate the constant C only and not the local Hölder index, our
hypotheses and proofs are simpler than thoseobtained in [13]. Moreover, one can easily check that our
hypotheses are satisfied in all the commonly used Kriging models. In addition, we compute in Section4
the Cramér-Rao bound in this setting. Concerning the crucial choice of the sequence a, unfortunately
the asymptotic variance given by Proposition 3.1 or Theorem 3.8 does not allow to address theoretically
this issue. Thus, an important Monte-Carlo study is performed in Section 5. The main conclusion is
that, if we aggregate the information of different a-variations with different orders, the results are close
to the optimal Cramér-Rao bound as it can be seen in Figure 3. With this point of view, the choice of
the sequence does not matter. In addition, our method does not require a parametric specification of the
drift, see Section 3.4 and then is more robust than maximum likelihood.

2 General setting and assumptions

2.1 Assumptions on the process
In this paper, we consider actually a slightly more general framework than that in the introduction since
we only assume that the Gaussian process (X(t))t∈R has stationary increments. The process is observed
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at times j∆ for j = 0, . . . , n with ∆ = ∆n going to 0 as n goes to infinity. Its variogram is then defined
by

V (h) :=
1

2
E
[
(X(t+ h)−X(t))

2
]
. (5)

In the sequel, we let ∆ = n−α, 0 < α 6 1 and we denote by (Const) a positive constant which value may
change from one occurrence to another. Note that the case α = 1 then corresponds to the infill situation
[24]. For the moment, we assume that X is centered, the case of non-zero expectation will be considered
in Section 3.4. We introduce the following assumptions.

(H0) V is a smooth function on (0,+∞].

(H1) The variogram is 2D times differentiable with D > 0 and there exists C > 0 and 0 < s < 2
such that for any h ∈ R, we have

V (2D)(h) = V (2D)(0) + C(−1)D |h|s + r(h), with r(h) = o(|h|s) and |r(h)| 6 (Const) |h|s . (6)

(H2) We assume that the rest r in (H1) is d-differentiable outside zero and
∣∣r(d)(h)

∣∣ 6 (Const) |h|β
with s− d < β < −1/2. When s < 3/2, we set d = 2. When s > 3/2, we set d = 3.

(H3) |r(h)| 6 (Const)|h|s+1/(2α).

Remark 2.1.

• When D > 0 , the D-th derivative X(D) in quadratic mean of X is a Gaussian stationary process
with covariance function ρ given by ρ(h) = Cov(X(t), X(t+ h)) = (−1)D+1V (2D)(h). This implies
that the Hölder exponent of the paths of X(D) is s/2. Because s < 2, D is exactly the order of
differentiation of the paths of X.

• Note that in the infill case (α = 1), (H2) is almost minimal. Indeed, the condition β < −1/2 does
not matter since the smaller β, the weaker the condition. And for example, when s < 3/2, the
second derivative of the main term is of order |h|s−2 and we only assume that β > s− 2.

2.2 Examples of processes that satisfy our assumptions

All classical spatial models satisfy our hypotheses, except the Gaussian model which is too regular. Here
is a non exhaustive list in dimension 1:

• the exponential model: ρ(h) = exp(−C|h|) (D = 0, s = 1);

• the generalized exponential model: ρ(h) = exp(−(C|h|)s), s ∈ (0, 2) (D = 0, s = s);

• the generalized Slepian model [23]: ρ(h) = (1− (C|h|)s)+, s ∈ (0, 1] (D = 0, s = s);

• the spherical model: ρ(h) = (1− C|h|+ 0.5(θ|h|)3)+ (D = 0, s = 1);

• the cubic model ρ(h) = (1− 3(θ|h|)2 + 2(θ|h|)3)+ (D = 1, s = 1);

• the Matérn model:

ρ(h) =
21−ν

Γ(ν)

(√
2νθh

)ν
Kν(
√

2νθh),

where ν > 0 is the regularity parameter of the process. The function Kν is the modified Bessel
function of the second kind of order ν. See, e.g., [24] for more details on the model. In that case,
2D + s = ν;

• the fractional Brownian motion (FBM) process denoted by (Bs(t))t∈R and defined by

Cov(Bs(u), Bs(t)) =
(
|u|s + |t|s − |u− t|s

)
.

A reference on this subject is [7]. This process is classically indexed by its Hurst parameter H = s/2
and a multiplicative variance σ2 is often introduced but we do not need it. Here, D = 0, s = s.
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2.3 Discrete a-differences

Now, we consider a non-zero finite support sequence a of real numbers with zero sum. Let L(a) be its
length. Since the starting point of the sequence plays no particular role, we will assume that the first
non-zero element is a0. Hence, the last non-zero element is aL(a)−1. We define the order M(a) of the
sequence as the first non-zero moment of the sequence a:

L(a)−1∑
j=0

ajj
k = 0, for 0 6 k < M(a) and

L(a)−1∑
j=0

ajj
M(a) 6= 0.

To any sequence a, with length L(a), we associate its discrete a-difference defined by

∆a,i(f) =

L(a)−1∑
j=0

ajf((i+ j)∆), i = 1, . . . n′, (7)

for a function f where n′ stands for n−L(a)+1. As a matter of facts,
∑L(a)−1
j=0 ajf(j∆) is an approximation

(up to some multiplicative coefficient) of theM(a)-th derivative (when it exists) of the function f at zero.

We also define ∆a(X) as the Gaussian vector with entries ∆a,i(X) and Σa its variance-covariance matrix.

Examples - Elementary sequences. The simplest case is the order 1 elementary sequence a(1) defined
by a(1)0 = −1 and a(1)1 = 1 We have L(a(1)) = 2, M(a(1)) = 1. More generally, we define the k-th order
elementary sequence a(k) as the sequence with coefficients a(k)j = (−1)k−j

(
k
j

)
, j = 0, . . . , k. Its length is

given by L(a(k)) = k + 1.

For two sequences a and a′, we define their convolution b = a ∗ a′ as the sequence given by bj =∑
k−l=j aka

′
l. In particular, we denote a2∗ the convolution a ∗ a.

Properties 2.2. The following properties of convolution of sequences are direct.

(i) The support of a∗b (the indices of the non-zero elements) is included in −(L(b)−1), (L(a)−1) while
its order is M(a) +M(b). In particular, a2∗ has length 2L(a)− 1, order 2M(a) and is symmetrical.

(ii) The composition of two elementary sequences gives another elementary sequence.

To state our next result, we need to define the integrated fractional Brownian motion (IFBM). We start
from the FBM defined in Section 2.2 which has the following non anticipative representation:

Bs(u) =

∫ u

−∞
fs(t, u)dW (t),

where dW (t) is a white noise defined on the whole real line and

fs(t, u) = (Const)
(
((u− t)+)(s−1)/2 − ((−t)+)(s−1)/2

)
.

For m > 0 and t > 0, we define inductively the IFBM by

B(−0)
s (u) = Bs(u)

B(−m)
s (u) =

∫ u

0

B(−(m−1))
s (t)dt.

Definition 2.3. A process Z has the ND property if for every k > 0 and every t1 < t2 < · · · < tk
belonging to the domain of definition of Z, the distribution of Z(t1), . . . , Z(tk) is non degenerated.

We have the following.

Proposition 2.4. The IFBM has the ND property.
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Proof. By the stochastic Fubini theorem,

B(−m)
s (u1) =

∫ u1

0

du2· · ·
∫ um

0

dum+1

∫ um+1

−∞
dW (t)fs(t, um+1)

=

∫ u1

−∞
dW (t)

∫ u1

t

du2· · ·
∫ um

t

dum+1fs(t, um+1)

=:

∫ u1

0

gm,s(u1, t)dW (t).

The positivity of fs(t, u) for u > 0 implies that of gm,s(t, u). As a consequence, for 0 < t1 < . . . tk,
B

(−m)
s (tk) includes a non-zero component:∫ tk

tk−1

gm,s(u, t)dW (t),

which is independent of (B
(−m)
s (t1), . . . , B

(−m)
s (tk−1)) implying that B(−m)

s (tk) is not collinear to this set
of variables. By induction, this implies in turn that B(−m)

s (t1), . . . , B
(−m)
s (tk) are not collinear.

We also need the following lemma.

Lemma 2.5. The variance function of the IFBM satisfies, for all m ∈ N,

Var
(
B(−m)
s (u)−B(−m)

s (v)
)

=

Nm∑
i=1

(
Pm,i(v)hm,i(u) + Pm,i(u)hm,i(v)

)
+ (−1)m

2|u− v|s+2m

(s+ 1) . . . (s+ 2m)
,

where Nm ∈ N, for i = 1, ..., Nm, Pm,i is a polynomial of degree less or equal to m and hm,i is some
function.

The proof of Lemma 2.5 is given in the appendix in Section 6.

Proposition 2.6. If the sequence a has order M(a) > D, then∑
j

a2∗j |j|
2D+s 6= 0 (i.e. (−1)D

∑
j

a2∗j |i|
2D+s

< 0). (8)

Note that (8) is stated as an hypothesis in [13].

Proof. Using Lemma 2.5 (with m = D) and the vanishing moments of a of order less or equal than D,
we have

∑
k,l

akal |k − l|2D+s
= (Const)(−1)D

∑
k,l

akalVar(B(−D)
s (k)−B(−D)

s (l))

= (Const)(−1)DVar

(∑
k

akB
(−D)
s (k)

)
.

We conclude using the ND property of the IFBM stated in Proposition 2.4.

3 Quadratic a-variations

3.1 Definition
Here, we consider the discrete a-difference applied to the process X and we define the quadratic a-
variations by

Va,n = ‖∆a(X)‖2 =

n′∑
i=1

(∆a,i(X))2, (9)

recalling that n′ = n − L(a) + 1. When no confusion is possible, we will use the shorthand notation L
and M for L(a) and M(a).
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3.2 Results on quadratic a-variations
The basis of our computations of variances is the identity

E[∆a,i(X)∆a′,i′(X)] = −∆a∗a′,i−i′(V ), (10)

for any sequences a and a′. A second main tool is the Taylor expansion with integral remainder (see, for
example, (15)). So we introduce another notation. For a sequence a, a scale ∆, an order q and a function
f , we define

R(i,∆, q, f, a) = −
∑
j

ajj
q

∫ 1

0

(1− η)q−1

(q − 1)!
f((i+ jη)∆)dη. (11)

By convention, we let R(i,∆, 0, f, a) = −∆a,i(f). Note that R(−i,∆, 2q, |·|s , a ∗ a′) = R(i,∆, 2q, |·|s , a′ ∗
a). One of our main results is the following.

Proposition 3.1 (Moments of Va,n). Assume that V satisfies (H0) and (H1).
1) If we choose a sequence a such that M > D, then

E[Va,n] = nC(−1)D∆2D+s
[
R(0, 1, 2D, |·|s , a2∗)

]
(1 + o(1)), (12)

as n tends to infinity. Furthermore, (−1)DR(0, 1, 2D, |·|s , a2∗) is positive.

2) If V satisfies additionally (H2) and if we choose a sequence a so that M > D + s/2 + 1/4, then as n
tends to infinity:

Var(Va,n) = 2nC2∆4D+2s
∑
i∈Z

R2(i, 1, 2D, |·|s , a2∗)(1 + o(1)) (13)

and the series above is positive and finite.

Remark 3.2. (i) Notice that (12) and (13) imply concentration in the sense that

Va,n
E[Va,n]

L2

−−−−→
n→∞

1.

(ii) In practice, since the parameters D and s are known, it suffices to choose M such that M > D + 1
when s < 3/2 and M > D + 2 when 3/2 6 s < 2.

Proof. 1) By definition of Va,n in (9) and identity (10), we get

E[Va,n] =n′E[∆a,i(X)2] = −n′∆a2∗,0(V ) = −n′
∑
j

a2∗j V (j∆). (14)

Recall that n′ = n − L + 1 is the size of the vector ∆a(X). In all the proof, j is assumed to vary from
−L+ 1 to L− 1. We use a Taylor expansion of V ((i+ j)∆) at (i∆) and of order q 6 2D:

V ((i+ j)∆) =V (i∆) + · · ·+ (j∆)q−1

(q − 1)!
V (q−1)(i∆) + (j∆)q

∫ 1

0

(1− η)q−1

(q − 1)!
V (q)((i+ jη)∆)dη. (15)

Note that this expression is "telescopic" in the sense that if q < q′ 6 2D,

(j∆)q
∫ 1

0

(1− η)q−1

(q − 1)!
V (q)((i+ jη)∆)dη

=
(j∆)q

(q)!
V (q)(i∆) + · · ·+ (j∆)q

′−1

(q′ − 1)!
V (q′−1)(i∆) + (j∆)q

′
∫ 1

0

(1− η)q
′−1

(q′ − 1)!
V (q′)((i+ jη)∆)dη. (16)

Combining (15) (with i = 0 and q = 2D), the vanishing moments of the sequence a2∗ and (H1) yields:

E[Va,n] =n′∆2DR(0,∆, 2D,V (2D), a2∗)

=n′C(−1)D∆2D+sR(0, 1, 2D, |·|s , a2∗) + n′∆2DR(0,∆, 2D, r, a2∗).
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The first term is non-zero by Proposition 8 and a dominated convergence argument together with (H1)
shows that the last term is o(∆2D+s) giving (12).

2) Using Lemma 6.1, (15) with q = 2D, the fact that D 6M , and the vanishing moments of the sequence
a2∗, we obtain

Var(Va,n) =2

n′∑
i,i′=1

Cov2 (∆a,i(X),∆a,i′(X)) = 2

n′∑
i,i′=1

(
−∆a2∗,i−i′(V )

)2
= 2

n′−1∑
i=−n′+1

(n′ − |i|)∆a2∗,i(V )2

=2∆4D
n′−1∑

i=−n′+1

(n′ − |i|)R2(i,∆, 2D,V (2D), a2∗)

=2∆4D
n′−1∑

i=−n′+1

(n′ − |i|)
(
C(−1)D∆sR(i, 1, 2D, |·|s , a2∗) +R(i,∆, 2D, r, a2∗)

)2
.

=:A+B + C,

where B comes from the double product.

(i) We study the first term:

A = 2C2∆4D
n′−1∑

i=−n′+1

(n′ − |i|)∆2sR2(i, 1, 2D, |·|s , a2∗) = 2C2n′∆4D+2s
∑
i∈Z

fn(i),

with
fn(i) :=

n′ − |i|
n′

R2(i, 1, 2D, |·|s , a2∗)1|i|6n′−1.

Since fn(i) ↑ R2(i, 1, 2D, |·|s , a2∗) for fixed i and n′ going to infinity, it suffices to study the series∑
i∈Z

R2(i, 1, 2D, |·|s , a2∗).

Using (16) , with q′ = 2M , |·|s instead of V (2D) and ∆ = 1, and using the vanishing moments of the
sequence a2∗, we get, for i large enough so that i and i+ j always have the same sign in the sum below,

R(i, 1, 2D, |·|s , a2∗) = R(i, 1, 2M, g, a2∗) = −
∑
j

a2∗j j
2M

∫ 1

0

(1− η)2M−1

(2M − 1)!
g((i+ jη))dη,

where g is the 2(M − D)-th derivative of |·|s (defined on R \ {0}). For i sufficiently large, g(i + jη) is
bounded by (Const)|i|s−2(M−D) so that

R2(i, 1, 2D, |·|s , a2∗) is bounded by (Const)i2(s−2(M−D)), (17)

which is the general term of a convergent series.

(ii) Now we show that the term C is negligible compared to A. This will imply in turn that B is negligible
compared to A, from the Cauchy-Schwarz inequality. We have to give bounds to the series with general
term R2(i,∆, 2D, r, a2∗) with

R(i,∆, 2D, r, a2∗) = −
∑
j

a2∗j j
2D

∫ 1

0

(1− η)2D−1

(2D − 1)!
r ((i+ jη)∆) dη.

For fixed i, the assumptions (6) on r in (H1) are sufficient to build a dominated convergence argument
to prove that R2(i,∆, 2D, r, a2∗) = o(∆2s) which leads to the required result. So we concentrate our
attention on indices i such that |i| > 2L. Using (16) as in the proof of item 1), if 2D+ d 6 2M , one gets

R(i,∆, 2D, r, a2∗) = −
∑
j

a2∗j j
2D+d∆d

∫ 1

0

(1− η)2D+d−1

(2D + d− 1)!
r(d) ((i+ jη)∆) dη.

7



The condition |i| > 2L ensures that the integral is always convergent. Using (6),

R2(i,∆, 2D, r, a2∗) 6 (Const)∆2d+2βi2β . (18)

Since β < −1/2 , the series in i converges and the contribution to C of the indices i such that |i| > 2L is
bounded by (Const)∆4D+2d+2β which is negligible compared to ∆4D+2s since d+ β > s.

Following the same lines as in the proof of Proposition 3.1 and using the identities (a ∗ a′)j = (a′ ∗ a)−j
and R(i, 1, 2D, |·|s , a∗a′) = R(−i, 1, 2D, |·|s , a′ ∗a), one may easily derive the corollary below. The proof
is omitted.

Corollary 3.3 (Covariance of Va,n and Va′,n). Assume that V satisfies (H0), (H1), and (H2). Let us
consider two sequences a and a′ so that M(a) ∧M(a′) > D + s/2 + 1/4. Then, as n tends to infinity,
one has

Cov(Va,n, Va′,n) = 2nC2∆4D+2s

[∑
i∈Z

R2(i, 1, 2D, |·|s , a ∗ a′)

]
(1 + o(1)). (19)

Particular case - D = 0:

(i) We choose a as the first order elementary sequence (a0 = −1, a1 = 1 and M = 1). One has

E[Va,n] = nC∆s(2 + o(1));

Var(Va,n) = 2nC2∆2s
∑
i∈Z

(|i− 1|s − 2 |i|s + |i+ 1|s)2 (1 + o(1)), s < 3/2

as n tends to infinity.

(ii) General sequence. We choose two sequences a and a′ so that M(a) ∧M(a′) > s/2 + 1/4. Then

E[Va,n] = −nC∆s

∑
j

a2∗j |j|
s

 (1 + o(1));

Var(Va,n) = 2nC2∆2s
∑
i∈Z

∑
j

a2∗j |i+ j|s
2

(1 + o(1));

Cov(Va,n, Va′,n) = 2nC2∆2s

∑
|j|6L

a ∗ a′j |j|
s

2

(1 + o(1))

+ nC2∆2s
∑
i∈Z∗


∑
|j|6L

a ∗ a′j |i+ j|s
2

+

∑
|j|6L

a′ ∗ aj |i+ j|s
2
 (1 + o(1))

as n tends to infinity.

Remark 3.4. If M = D + 1, the condition M > D + s/2 + 1/4 in Proposition 3.1 implies s < 3/2.
However, when M = D+1 and s > 3/2, it is still possible to compute the variance but the speed is worse
and the central limit theorem does not hold anymore. More precisely, we have the following.

• If s > 3/2 and M = D + 1 then, as n tends to infinity,

Var(Va,n) = (Const)×∆4D+2s × n2s−4(M−D)+2 × (1 + o(1)). (20)

• If s = 3/2 and M = D + 1 then, as n tends to infinity

Var(Va,n) = (Const)×∆4D+2s × n log n× (1 + o(1)). (21)

We omit the proof. Analogous formula for the covariance of two variations can be derived similarly.
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Now we establish the central limit theorem.

Theorem 3.5 (Central limit theorem for Va,n). Assume (H0), (H1) and (H2) and M > D+ s/2 + 1/4.
Then Va,n is asymptotically normal in the sense that

Va,n − E[Va,n]√
Var(Va,n)

D−→ N (0, 1). (22)

Proof. By a diagonalization argument, Va,n can be written as

Va,n =

n′′∑
i=1

λiZ
2
i ,

where λ1, . . . , λn′′ are the non-zero eigenvalues of variance-covariance matrix Σa of ∆a(X) and the Zi
are independent and identically distributed standard Gaussian variables. Hence,

Va,n − E(Va,n)√
Var(Va,n)

=

n′′∑
i=1

λi√∑n′′

r=1 λ
2
r

(Z2
i − 1). (23)

In such a situation, the Lindeberg condition is a sufficient condition required to prove the central limit
theorem and is equivalent to

max
i=1,...,n′′

|λi| = o

(√
Var(Va,n)

)
,

see Lemma 2 in [13]. From Lemma 6.2, one has

max
i=1,...,n′′

 n′′∑
j=1

|Σa(i, j)|

 = o


√√√√ n′′∑

r=1

λ2r


and the result follows using the following classical linear algebra result

max
i=1,...,n′′

|λi| 6 max
i=1,...,n′

 n′∑
j=1

|Σa(i, j)|

 .

See [18, Ch. 6.2, p194].

Remark 3.6. Since the work of Guyon and León [12], it is a well known fact that in the simplest case
(D = 0, L = 2,M = 1) and in the infill situation (α = 1), the central limit theorem holds true for
quadratic variations if and only if s < 3/2.

Corollary 3.7 (Joint central limit theorem). Assume that V satisfies (H0), (H1) and (H2). Let
a(1), . . . , a(k) be k sequences with order greater than D + s/2 + 1/4. Assume also that, as n → ∞,
the k × k matrix with term i, j equal to

1

n∆4D+2s
Cov

(
Va(i),n, Va(j),n

)
converges to an invertible matrix Λ∞. Then, Va(1),...,a(k),n = (Va(1),n, . . . , Va(k),n)> is asymptotically
normal in the sense that n→∞

Va(1),...,a(k),n − E
[
Va(1),...,a(k),n

]
n1/2∆2D+s

D−→ N (0,Λ∞).
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Proof. To prove the asymptotic joint normality it is sufficient to prove the asymptotic normality of any
non-zero linear combination

LC =

k∑
j=1

γjVa(j),n,

where γj ∈ R for j = 1, . . . , k. We have again the representation

LC =

n′′∑
i=1

λiZ
2
i ,

where the λi’s are now the non-zero eigenvalues of the variance-covariance matrix

σ′ =

k∑
j=1

γjΣa(j),n,

and the Zi’s are as before. The Lindeberg condition has the same expression. On one hand, as n goes to
infinity,

1

n∆4D+2s

n′′∑
i=1

λi → γ>Λ∞γ

with obvious notation. On the other hand, by the triangular inequality for the operator norm (which is
the maximum of the |λi|’s), one gets

max
i=1,...,n′′

|λi| = ‖σ′‖op 6
k∑
j=1

γj‖Σa(j),n‖op.

In the proof of Theorem 3.5, we have established that ‖Σa(j),n‖op = o(n1/2∆2D+s) leading to the result.

3.3 Estimators of C based on the quadratic a-variations
Guided by the moment method, we define

Ca,n :=
Va,n

n(−1)D∆2D+sR(0, 1, 2D, |·|s , a2∗)
. (24)

Then Ca,n is an estimator of C which is asymptotically unbiased by Proposition 3.1. Now our aim is to
establish its asymptotic behavior.

Theorem 3.8 (Central limit theorem for Ca,n). Under the assumptions (H0) to (H3), and if M(a) >
D + s/2 + 1/4, then Ca,n is asymptotically normal. More precisely, we have

Ca,n − C√
Var(Ca,n)

D−→ N (0, 1). (25)

By the definition (24) of Ca,n and Proposition 3.1, Var(Ca,n) = (Const)n−1(1 + o(1)).

Proof. We use the definition of Ca,n and the following decomposition:

Ca,n − C√
Var(Ca,n)

=
Ca,n − E[Ca,n]√

Var(Ca,n)
+

E[Ca,n]− C√
Var(Ca,n)

=
Va,n − E[Va,n]√

Var(Va,n)
+

E[Ca,n]− C√
Var(Ca,n)

.

Following the proof of Proposition 3.1, the second term is proportional to

√
n∆−sR(0,∆, 2D, r, a2∗) = −

√
n∆−s

∑
i

a2∗i i
2D

∫ 1

0

(1− η)2D−1

(2D − 1)!
r(iη∆)dη

which converges to 0 as n goes to infinity by assumption (H3). Then Slutsky lemma and Theorem 3.5
lead straightforwardly to the required result.

Corollary 3.9. Under the assumptions of Theorem 3.8, consider k sequences a(1), . . . , a(k) so that, for i =
1, . . . , k,M(a(i)) > D+s/2+1/4. Assume furthermore that the covariance matrix of (Ca(i),n/Var(Ca(i),n)1/2)i=1,...,k

converges to an invertible matrix Γ∞ as n → ∞. Then, ([Ca(i),n − C]/Var(Ca(i),n)1/2)i=1,...,k converges
in distribution to the N (0,Γ∞) distribution.
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3.4 Adding a drift
In this section, we do not assume anymore that the process X is centered and we set for t > 0,

f(t) = E[X(t)].

We write X(t) = f(t) + X(t). As it is always the case in Kriging applications, we assume that f is
smooth.

Corollary 3.10. Under the assumptions of Theorem 3.8. Define

Kα
M,n = sup

t∈[0,n1−α]

|f (M)(t)|.

In addition, if

Kα
M,n = o(n−1/4∆D−M+s/2), (26)

then (25) still holds for X.

Note that in the infill situation (α = 1), K1
M,n does not depend on n. Obviously, (26) is met if f is a

polynomial up to an appropriate choice of the sequence a (and M). In the infill situation, a sufficient
condition for (26) is M > D + s/2 + 1/4 which is always true.

Proof. Obviously, one has
V Xa,n = ‖∆a(X)‖2 = ‖∆a(f) + ∆a(X)‖2.

Using the triangular inequality ‖A + B‖2 − ‖A‖2 6 ‖B‖2 + 2‖A‖‖B‖, it suffices to have ‖∆a(f)‖2 =
o(Var(Va,n(X)1/2) = o(n1/2∆2D+s) to deduce the central limit theorem for X from that for X. By
application of the Taylor-Lagrange formula, one gets

∆a,i(f) = (Const)×∆M × f (M)(ξ),

with ξ ∈ [0, n1−α]. Then ‖∆a(f)‖2 6 n(Kα
M,n)2∆2M and a sufficient condition is (26).

3.5 Aggregation of estimators
Now we suggest a procedure to aggregate several quadratic a-variations estimators. We consider k
sequences a(1), ..., a(k), with corresponding estimators Ca(1),n, . . . , Ca(k),n defined by (24). We assume
that for j = 1, ..., k, the conditions of Corollary 3.9 are met. Let R be the k × k asymptotic variance-
covariance matrix of the vector of length k whose elements are given by (n1/2/C)Ca(j),n, j = 1, . . . , k.
Let 1k be the "all one" column vector of size k and define

λ∗ =
R−11k

1TkR
−11k

.

Elementary algebra shows that
∑k
j=1 λ

∗
j = 1 and among all the possible linear combinations of the

elements (n1/2/C)Ca(j),n for j = 1, . . . , k,

(n1/2/C)

k∑
j=1

λ∗jCa(j),n

is optimal in the sense that it has the smallest asymptotic variance (see e.g. [16] or [4]). Furthermore, it is
a direct consequence of Corollary 3.7 that (n1/2/C)(

∑k
j=1 λ

∗
jCa(j),n−C) converges to a N (0, λ∗TRλ∗) dis-

tribution as n→∞. Thus, the estimator
∑k
j=1 λ

∗
jCa(j),n is the optimal aggregation of Ca(1),n, ..., Ca(k),n.

By construction, its asymptotic variance is not larger than any of the asymptotic variances of Ca(j),n
denoted by ṽa(j),s, for j = 1, . . . , k. We call ṽa,s the normalized asymptotic variance. Then Theorem 3.8
implies that (n1/2/C)(Ca(i),n − C) converges to a N (0, ṽa(i),s) distribution as n → ∞ (see (30) for the
explicit expression of ṽa(j),s later on in the paper). As will be shown with simulations in Section 5, the
aggregated estimator considerably improves each of the original estimators Ca(1),n, ..., Ca(k),n.

11



4 Cramér-Rao bound

In this section, we evaluate the quality of the proposed estimators. In that view, we compare their
asymptotic variance with the theoretical Cramér-Rao bound in some ideal situations. More precisely,
we consider a family YC (C ∈ R+) of centered Gaussian processes. Let RC be the (n − 1) × (n − 1)
variance-covariance matrix defined by

(RC)i,j = Cov (YC (i∆)− YC ((i− 1)∆) , YC (i∆)− YC ((i− 1)∆)) .

Assume that C 7→ RC is twice differentiable and RC is invertible for all C ∈ R+. Then, let

IC =
1

2
Tr

(
R−1C

(
∂

∂C
RC

)
R−1C

(
∂

∂C
RC

))
(27)

be the Fisher information. The quantity 1/IC is the Cramér-Rao lower bound for estimating C based on{
YC(i∆)− YC((i− 1)∆)

}
i=2,...,n

(see for instance [3, 8]). Now we give two examples of families of processes for which we can compute the
Cramér-Rao lower bound explicitly. The first example is obtained from the IFBM defined in Section 2.2.

Lemma 4.1. Let 0 < s < 2 and let X be equal to
√
CB

(−D)
s where B(−D)

s is the IFBM. Then YC = X(D)

is a FBM whose variogram VC is given by

VC(h) =
1

2
E
[
(YC(t+ h)− YC(t))

2
]

= C|h|s. (28)

Hence in this case, we have 1
IC

= 2C2

n−1 .

Proof. (28) implies that ∂RC/∂C = R1 then (27) gives the result.

Now we consider a second example given by the generalized Slepian process defined in Section 2.2.
Let s 6 1 and YC with stationary covariance function ρC defined by

ρC(h) = (1− (C/2)|h|s)+, for any h ∈ R. (29)

This function is convex on R and it follows from Pólya’s theorem [20] that ρC is a valid covariance
function. We thus easily obtain the following lemma.

Lemma 4.2. Let X be the integration D times of YC defined by (29). Then we have, in the infill situation
(α = 1) and for C < 2, (28) and by consequence 1/IC = 2C2/(n− 1).

5 Numerical results

In this section, we first study to which extent the asymptotic results of Proposition 3.1 and Theorem 3.8
are representative of the finite sample behaviour of quadratic a-variations estimators. Then, we study
the asymptotic variances of these estimators provided by Proposition 3.1 and that of the aggregated
a-variations estimators of Section 3.5.

5.1 Simulation study of the convergence to the asymptotic distribution

We carry out a Monte Carlo study of the quadratic a-variations estimators in three different cases. In
each of the three cases, we simulate N = 10, 000 realizations of a Gaussian process on [0, 1] with zero
mean function and stationary covariance function ρ. In the case D = 0, we let ρ(h) = exp(−C|h|). Hence
(H1) holds with D = 0 and s = 1. In the case D = 1, we use the Matérn 3/2 covariance [22] :

ρ(h) =

(
1 +
√

3
|h|
θ

)
e−
√
3
|h|
θ .
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One can show, by developing ρ into power series, that (H1) holds with D = 1, s = 1 and C = 6
√

3/θ3.
Finally, in the case D = 2, we use the Matérn 5/2 covariance function:

ρ(h) =

(
1 +
√

5
|h|
θ

+
5|h|2

3θ2

)
e−
√
5
|h|
θ .

Also (H1) holds true with D = 2, s = 1 and C = 200
√

5/3θ5.

In each of the three cases, we set C = 3. For n = 50, n = 100 and n = 200, we observe each generated
process at n equispaced observation points on [0, 1] and compute the quadratic a-variations estimator
Ca,n of Section 3.3. When D = i, i = 0, 1, 2, we choose a to be the elementary sequence of order i+ 1.

In Figure 1, we display the histograms of the 10, 000 estimated values of C for the nine configurations of
D and n. We also display the corresponding asymptotic Gaussian probability density functions provided
by Proposition 3.1 and Theorem 3.8. We observe that there are few differences between the histograms
and limit probability density functions between the cases (D = 0, 1, 2). In these three cases, the limiting
Gaussian distribution is already a reasonable approximation when n = 50. This approximation then
improves for n = 100 and becomes very accurate when n = 200. Naturally, we can also see the estimators’
variances decrease as n increases. Finally, the figures suggest that the discrepancies between the finite
sample and asymptotic distributions are slightly more pronounced with respect to the difference in mean
values than to the difference in variances. As already pointed out, these discrepancies are mild in all the
configurations.

5.2 Analysis of the asymptotic distributions

Now we consider the normalized asymptotic variance of Ca,n obtained from (13) in Proposition 3.1. We
let ∆ = 1/n and

ṽa,s =
2
∑
i∈ZR

2(i, 1, 2D, |·|s , a2∗)
R2(0, 1, 2D, |·|s , a2∗

, (30)

so that (n1/2/C)(Ca,n − C) converges to a N (0, ṽa,s) distribution as n→∞, where ṽa,s already defined
in Section 3.5 does not depend on C (nor on n).

First, we consider the case D = 0 and we plot ṽa,s as a function of s for various sequences a in Figure 2.
The conridered sequences are the following:

• the elementary sequence of order 1: a(1) given by (-1,1);

• the elementary sequence of order 2: a(2) given by (1,-2,1);

• the elementary sequence of order 3: a(3) given by (-1, 3, -3, 1);

• the elementary sequence of order 4, a(4) given by (1,-4, 6,-4,1);

• a sequence of order 1 and with length 3: a(5) given by (-1,-2,3);

• a Daubechies wavelet sequence withM = 2 [9] as in [13]: a(6) given by (-0.1830127,-0.3169873,1.1830127,-
0.6830127);

• a second Daubechies wavelet sequence withM = 3: a(7) given by (0.0498175,0.12083221,-0.19093442,-
0.650365,1.14111692,-0.47046721).

From Figure 2, we can draw several conclusions. First, the results of Section 4 suggest that 2 is a
plausible lower bound for ṽa,s. We shall call the value 2 the Cramér-Rao lower bound. Indeed, we
observe numerically that ṽa,s > 2 for all the s and a considered here. Then we observe that, for any
value of s, there is one of the ṽa,s which is close to 2 (below 2.5). This suggests that quadratic variations
can be approximately as efficient as maximum likelihood, for appropriate choices of the sequence a. We
observe that, for s = 1, the elementary sequence of order 1 (a0 = −1, a1 = 1) satisfies ṽa,s = 2. This
is natural since for s = 1, this quadratic a-variations estimator coincides with the maximum likelihood
estimator, when the observations stem from the standard Brownian motion. Except from this case s = 1,
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Figure 1: Comparison of the finite sample distribution of Ca,n (histograms) with the asymptotic Gaussian
distribution provided by Proposition 3.1 and Theorem 3.5 (probability density function in blue line). The
vertical red line denotes the true value of C = 3. From left to right, n = 50, 100, 200. From top to bottom,
D = 0, 1, 2.
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Figure 2: Case D = 0. Plot of the normalized asymptotic variance ṽa,s of the quadratic a-variations
estimator, as a function of s, for various sequences a. The legend shows the values a0, ..., al of these
sequences (rounded to two digits). From top to bottom in the legend, the sequences are the elementary
sequence of order 1, the sequence (−1,−2, 3) which has order 1, the d Daubechies sequences of order 2
and 3 and the elementary sequences of orders 2 and 3. The horizontal line corresponds to the Cramér-Rao
lower bound 2.

we could not find other quadratic a-variations estimators reaching exactly the Cramér-Rao lower bound
2 for other values of s.

Second, we observe that the normalized asymptotic variance ṽa,s blows up for the two sequences a
satisfying M = 1 when s reaches 1.5. This comes from Remark 3.4: the variance of the quadratic a-
variations estimators with M = 1 is of order larger than 1/n when s > 1.5. Consequently, we plot ṽa,s
for 0.1 6 s 6 1.4 for these two sequences. For the other sequences satisfying M > 2, we plot ṽa,s for
0.1 6 s 6 1.9.

Third, it is difficult to extract clear conclusions about the choice of the sequence: for s smaller than, say,
1.2 the two sequences with orderM = 1 have the smallest asymptotic variance. Similarly, the elementary
sequence of order 2 has a smaller normalized variance than that of order 3 for all values of s. Also, the
Daubechies sequence of order 2 has a smaller normalized variance than that of order 3 for all values of s.
Hence, a conclusion of the study in Figure 2 is the following. When there is a sequence of a certain order
for which the corresponding estimator reaches the rate 1/n for the variance, there is usually no benefit in
using a sequence of larger order. Finally, the Daubechies sequences appear to yield smaller asymptotic
variances than the elementary sequences (the orders being equal). The sequence of order 1 given by
(a0, a1, a2) = (−1,−2, 3) can yield a smaller or larger asymptotic variance than the elementary sequence
of order 1, depending on the value of s. For two sequences of the same order M , it seems nevertheless
challenging to explain why one of the two provides a smaller asymptotic variance.

Now, we consider aggregated estimators, as presented in Section 3.5. A clear motivation for considering
aggregation is that, in Figure 2, the smallest asymptotic variance ṽa,s corresponds to different sequences
a, depending on the values of s.
In Figure 3 left, we consider the case D = 0 and we use four sequences: a(1), a(5) a(2) and a(6). We
plot their corresponding asymptotic variances ṽa(i),s as a function of s, for 0.1 6 s 6 1.4 as well as
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Figure 3: Case D = 0. Plot of the normalized asymptotic variance ṽa,s of the quadratic a-variations
estimator, as a function of s, for various sequences a and for their aggregation. On the left, including the
order one elementary sequence, on the right without. The horizontal line corresponds to the Cramér-Rao
lower bound 2.

the variance of their aggregation. It is then clear that aggregation drastically improves each of the four
original estimators. The asymptotic variance of the aggregated estimator is very close to the Cramér-Rao
lower bound 2 for all the values of s. In Figure 3 right, we perform the same analysis but with sequences
of order larger than 1. The four considered sequences are now a(6), a(2) a(3) and a(4). The value of s
varies from 0.1 to 1.9 Again, the aggregation is clearly the best.

Eventually, Figures 4 and 5 explore the case D = 1. Conclusions are similar.

6 Appendix and technical results

Lemma 6.1. Let Z = (X,Y ) be a centred Gaussian vector of dimension 2 then

Cov
(
X2, Y 2

)
= 2Cov2 (X,Y ) .

Proof. This Lemma is a consequence of the so called Mehler formula [2]. Let Hm(x) be the Hermite
polynomial of order m, i.e.,

Hm(x) = (−1)mex
2/2 d

m

dxm
e−x

2/2.

Mehler formula states that if Z has for a variance-covariance matrix given by
(

1 ρ
ρ 1

)
then

E [Hk(X)Hm(Y )] = δk,mρ
kk!.

We apply this formula with k = m = 2 (in that case Hk(X) = X2 − 1) to get

2Cov2(X,Y ) = E [H2(X)H2(Y )] = E
[
(X2 − 1)(Y 2 − 1)

]
= Cov(X2, Y 2).

Eventually, we remark that this result can be generalized by homogeneity to the case of non-unit variance
variables.

Proof of Lemma 2.5. For m = 0, we have

Var
(
B(−0)
s (u)−B(−0)

s (v)
)

= 2|u− v|s
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are the elementary sequences of order 2, 3 and 4 and the Daubechies sequences of order 2 and 3.
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Figure 5: Same setting as in Figure 3 but for D = 1. On the left, from top to bottom in the legend, the
sequences are the elementary sequence of order 2, the Daubechies sequence of order 2 and the elementary
sequence of order 3. On the right, from top to bottom in the legend, the sequences are the elementary
sequences of orders 3 and 4 and the Daubechies sequence of order 3.
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so that the lemma holds with the convention (s+ 1) . . . (s+ 0) = 1. Thus we prove it by induction on m
and assume that it holds for m ∈ N. We have, with K(−r)(u, v) = E

[
B

(−r)
s (u)B

(−r)
s (v)

]
, for r ∈ N,

K(−m)(u, v) =
1

2

(
Var
(
B(−m)
s (u)−B(−m)

s (0)
)

+ Var
(
B(−m)
s (v)−B(−m)

s (0)
)
−Var

(
B(−m)
s (u)−B(−m)

s (v)
))

=ψ(u) + ψ(v)− 1

2

Nm∑
i=1

Pm,i(v)hm,i(u)− 1

2

Nm∑
i=1

Pm,i(u)hm,i(v)− 1

2
(−1)m

2|u− v|s+2m

(s+ 1) . . . (s+ 2m)
,

where ψ is some function. Since we have K(−(m+1))(u, v) =
∫ u
0

∫ v
0
K(−m)(x, y)dxdy,

K(−(m+1))(u, v) =

Ñm+1∑
i=1

P̃m+1,i(v)h̃m+1,i(u) +

Ñm+1∑
i=1

P̃m+1,i(u)h̃m+1,i(v)

+ (−1)m+1 1

(s+ 1) . . . (s+ 2m)

∫ v

0

(∫ u

0

|x− y|s+2mdx

)
dy, (31)

where Ñm+1 ∈ N, where for i = 1, ..., Ñm+1, P̃m+1,i is a polynomial of degree less or equal to m+ 1 and
h̃m+1,i is some function. For v 6 u, we have∫ v

0

(∫ u

0

|y − x|s+2mdx

)
dy =

∫ v

0

(∫ y

0

(y − x)s+2mdx+

∫ u

y

(x− y)s+2mdx

)
dy

=

∫ v

0

(
ys+2m+1

2m+ 1
+

(u− y)s+2m+1

2m+ 1

)
dy

=
vs+2m+2

(2m+ 1)(2m+ 2)
− (u− v)s+2m+2

(2m+ 1)(2m+ 2)
+

us+2m+2

(2m+ 1)(2m+ 2)
.

By symmetry, we obtain, for u, v ∈ N,∫ u

0

(∫ v

0

|x− y|s+2mdx

)
dy =

us+2m+2

(2m+ 1)(2m+ 2)
+

vs+2m+2

(2m+ 1)(2m+ 2)
− |u− v|s+2m+2

(2m+ 1)(2m+ 2)
. (32)

Hence, from the relation

Var
(
B(−(m+1))
s (u)−B(−(m+1))

s (v)
)

= K(−(m+1))(v, v) +K(−(m+1))(u, u)− 2K(−(m+1))(v, u),

(31), and (32), we conclude the proof of the lemma.

Lemma 6.2. Assume that V satisfies (H0), (H1), and (H2). One has, when M > D + s+ 1/4,

max
i=1,...,n′

 ∑
i′=1,...,n′

|Σa(i, i′)|

 = o
(
Var(Va,n)1/2

)
.

Proof. Using the stationarity of the increments of the process, one has

max
i=1,...,n′

 ∑
i′=1,...,n′

|Σa(i, i′)|

 6 2

n′−1∑
i=0

|Σa(1, 1 + i)| . (33)

Recall that

Σa(1, 1 + i) = Cov (∆a,1(X),∆a,1+i(X)) = −∆a2∗,i(V ) = ∆2DR(i,∆, 2D,V (2D), a2∗).

We have seen in the proof of Proposition 3.1 ((17) and (18)) that for i sufficiently large

R(i,∆, 2D,V (2D), a2∗) 6 (Const)
(
∆sis−2(M−D) + ∆d+βiβ

)
.

Thus the sum in (33) is bounded by

(Const)∆2D+s(ns−2(M−D)+1 + 1) + (Const)∆2D+d+β(n1+β + 1).
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On the other hand, we have proved also in the proof of Proposition 3.1 that

Var(Va,n)1/2 = (Const)n1/2∆2D+s(1 + o(1))

giving the result. Thus, one has to check that

∆2D+sns−2(M−D)+1, ∆2D+s, ∆2D+d+βn1+β , and ∆2D+d+β

are o(n1/2∆2D+s) which is true by the assumptions made. We skip the details.

Acknowledgements This work has been partially supported by the French National Research Agency
(ANR) through project PEPITO (no ANR-14-CE23-0011).

References
[1] Robert J. Adler and Ron Pyke. Uniform quadratic variation for Gaussian processes. Stochastic

Process. Appl., 48(2):191–209, 1993.

[2] Jean-Marc Azaïs and Mario Wschebor. Level sets and extrema of random processes and fields. John
Wiley & Sons, Inc., Hoboken, NJ, 2009.

[3] François Bachoc. Asymptotic analysis of the role of spatial sampling for covariance parameter
estimation of Gaussian processes. Journal of Multivariate Analysis, 125:1–35, 2014.

[4] John M Bates and Clive WJ Granger. The combination of forecasts. Journal of the Operational
Research Society, 20(4):451–468, 1969.

[5] Glen Baxter. A strong limit theorem for Gaussian processes. Proc. Amer. Math. Soc., 7:522–527,
1956.

[6] Jean-François Coeurjolly. Estimating the parameters of a fractional Brownian motion by discrete
variations of its sample paths. Stat. Inference Stoch. Process., 4(2):199–227, 2001.

[7] Serge Cohen and Jacques Istas. Fractional fields and applications, volume 73 of Mathématiques &
Applications (Berlin) [Mathematics & Applications]. Springer, Heidelberg, 2013. With a foreword
by Stéphane Jaffard.

[8] Rainer Dahlhaus. Efficient parameter estimation for self-similar processes. The annals of Statistics,
pages 1749–1766, 1989.

[9] Ingrid Daubechies. Orthonormal bases of compactly supported wavelets. Communications on pure
and applied mathematics, 41(7):909–996, 1988.

[10] E. G. Gladyšev. A new limit theorem for stochastic processes with Gaussian increments. Teor.
Verojatnost. i Primenen, 6:57–66, 1961.

[11] Ulf Grenander. Abstract inference. John Wiley & Sons, Inc., New York, 1981. Wiley Series in
Probability and Mathematical Statistics.

[12] Xavier Guyon and José León. Convergence en loi des H-variations d’un processus gaussien station-
naire sur R. Ann. Inst. H. Poincaré Probab. Statist., 25(3):265–282, 1989.

[13] Jacques Istas and Gabriel Lang. Quadratic variations and estimation of the local Hölder index of a
Gaussian process. Ann. Inst. H. Poincaré Probab. Statist., 33(4):407–436, 1997.

[14] John T. Kent and Andrew T. A. Wood. Estimating the fractal dimension of a locally self-similar
Gaussian process by using increments. J. Roy. Statist. Soc. Ser. B, 59(3):679–699, 1997.

[15] Gabriel Lang and François Roueff. Semi-parametric estimation of the Hölder exponent of a stationary
Gaussian process with minimax rates. Stat. Inference Stoch. Process., 4(3):283–306, 2001.

[16] Frédéric Lavancier and Paul Rochet. A general procedure to combine estimators. Computational
Statistics & Data Analysis, 94:175–192, 2016.

19



[17] Paul Lévy. Le mouvement brownien plan. Amer. J. Math., 62:487–550, 1940.

[18] D.G. Luenberger. Introduction to Dynamic Systems: Theory, Models, and Applications. Wiley, 1979.

[19] Olivier Perrin. Quadratic variation for Gaussian processes and application to time deformation.
Stochastic Process. Appl., 82(2):293–305, 1999.

[20] G Pólya. Remarks on characteristic functions. In Proceedings of the First Berkeley Symposium
on Mathematical Statistics and Probability. August 13-18, 1945 and January 27-29, 1946. Statistical
Laboratory of the University of California, Berkeley. Berkeley, Calif.: University of California Press,
1949. 501 pp. Editor: Jerzy Neyman, p. 115-123, pages 115–123, 1949.

[21] C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning. The MIT Press,
Cambridge, 2006.

[22] Olivier Roustant, David Ginsbourger, and Yves Deville. DiceKriging, DiceOptim: Two R packages
for the analysis of computer experiments by Kriging-based metamodeling and optimization. Journal
of Statistical Software, 51(1), 2012.

[23] David Slepian. On the zeros of Gaussian noise. In Proc. Sympos. Time Series Analysis (Brown
Univ., 1962), pages 104–115. Wiley, New York, 1963.

[24] M.L. Stein. Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York, 1999.

20


	Introduction
	General setting and assumptions
	Assumptions on the process
	Examples of processes that satisfy our assumptions
	Discrete a-differences

	Quadratic a-variations
	Definition
	Results on quadratic a-variations
	Estimators of C based on the quadratic a-variations
	Adding a drift
	Aggregation of estimators

	Cramér-Rao bound
	Numerical results
	Simulation study of the convergence to the asymptotic distribution
	Analysis of the asymptotic distributions

	Appendix and technical results

