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ABSTRACT: When a soft hydrogel sphere is placed on a rigid

hydrophilic substrate, it undergoes arrested spreading by forming
an axisymmetric foot near the contact line, while conserving its
global spherical shape. In contrast, liquid water (that constitutes
greater than 90% of the hydrogel’s volume) spreads into a thin

film on the same surface. We study systematically this
elastowetting of gel spheres on substrates of different surface

energies and find that their contact angle increases as the work of
adhesion between the gel and the substrate decreases, as one

would observe for drops of pure water—albeit being larger than
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in the latter case. This difference in the contact angles of gel and water appears to be due to the elastic shear stresses that develop
in the gel and oppose its spreading. Indeed, by increasing the elastic modulus of the gel spheres, we find that their contact angle
also increases. In addition, the length of the contact foot increases with the work of adhesion and sphere size, while it decreases
when the elastic modulus of the gel is increased. We discuss those experimental results in light of a minimal analysis based on

energy minimization, volume conservation, and scaling arguments.

INTRODUCTION

Contact mechanics is an important field that involves the study
of how elastic solids deform when they are brought into contact
with each other. While the Hertz model' forms the basis to
characterize infinitesimal deformations of nonadhesive stiff
spheres, Johnson—Kendall-Roberts’ (JKR) theory™® describes
situations in which adhesion becomes important, e.g, for soft
objects such as elastomers® and cells.” However, there is yet
another regime involving much softer materials, such as
hydrogels, where surface tension also contributes to their
mechanics,’ thus implying that their contact behavior should
fundamentally differ from that of stiffer materials. In this
regime, we speculate that a soft elastic particle, when contacted
with a rigid hydrophilic substrate, would undergo a large
deformation with effects of both surface tension and elasticity.
This so called elastowetting of soft hydrogel spheres on rigid
substrates can be considered to be an elastic perturbation to the
classical Young—Dupré wetting of drops of liquid.” The contact
mechanism of soft particles is expected to depend on hysteresis,
phase separation,” and specific material properties."’ By
studying the wetting behavior of such soft materials, we expect
to gain a Dbetter understanding of cell migration,ll_14
nanoparticle adhesion,"> mechanical properties of nanomateri
als,'® and behavior of pressure sensitive adhesives,'” and it may
have important implications in the design of new approaches
for atomic level characterization.'®"”

The specific geometry of a rigid sphere contacting a soft
elastic substrate, in the presence of adhesion and solid—air
surface tension, has been studied in detail recently, both

experimentally and theoretically.”’~>* These works assume
geometrically small elastic deformations, which is only valid for
a sufficiently low work of adhesion. Finite element simulations
allowed to extend this framework to larger deformations
through a neo Hookean approach.30 In contrast, the dual
geometry of a very soft elastic sphere placed atop a flat rigid
substrate has only been scarcely addressed, despite its obvious
similarity with the natural configuration of liquid droplet
wetting and cell adhesion. On the experimental side, the
spreading of latex particles on rigid substrates was studied using
atomic force microscopy (AFM).>' However, there are two
limitations in this preliminary work. First, due to the very small
particle size (~0.1 pum), it was only possible to image them in
plan view. Therefore, instead of directly measuring the vertical
deformation, the contact radius of the particles was used to
estimate it—based on an assumed spherical cap shape. Second,
latex is a glassy material that can flow if the contact stresses
exceed its yield point. On the theoretical side, there are
currently only global scalings to describe the elastowetting of
soft spheres,””® which again assume a spherical cap shape.
What we expect in reality is a scenario where the adhesion
driven wetting of the elastic sphere gives rise to a gradient of
shear deformation, from the highest value closest to the contact
region and decaying with the distance from the substrate.
Finally, we note that the problem ot spreading ot a
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Figure 1. (a) Comparison between equilibrium profiles of water drops (top) and gel spheres (shear modulus ¢ = 61 Pa) (bottom) on silanized
silicon wafers, for various works of adhesion W (decreasing from left to right). (b) Equilibrium profiles of gel spheres on cleaned untreated silicon
wafers, for various shear moduli y# (increasing from left to right). (c) Equilibrium profiles of gel spheres (1 = 93 Pa) on silicon wafers where water
contact angle is 60°, for various sphere radii R (increasing from left to right). Scale bars of 1 mm depict calibrations for each row.

semicylindrical polymer gel placed on a flat rigid substrate was
studied theoretically,”* in which an equilibrium shape was
envisioned with a foot due to a positive spreading parameter S.
The foot length / was further predicted to be independent of
the cylinder radius and to scale only with the ratio of the
spreading parameter and the shear modulus y, as / ~ S/u. We
note that a similar footlike feature was also observed in the dual
geometry of a rigid sphere in contact with a soft substrate.”*®

In view of the above state of art, we chose cross linked
polyacrylamide hydrogel as the material with which to study the
elastowetting phenomenon. One could easily modulate the
associated shear modulus by varying the monomer concen
tration, while the gel—air surface tension y; always remained
close to that of water in air.”® We explored the arrested wetting
behavior of soft hydrogel spheres when placed upon smooth
silanized silicon wafers of varying surface energies, as
characterized through the work of adhesion W. In all cases,
the elastocapillary length y5/p and the elastoadhesive length
W/u were in the submillimeter range, so that solid capillary and
adhesion effects could be directly visualized through optical
microscopy techniques. Moreover, the radii of the gel spheres
were chosen to be smaller than their capillary length to avoid
the effect of gravity. Our main objective was to measure the
equilibrium contact angle 9% of the soft elastic spheres on the
various substrates, as a function of the gel shear modulus g,
sphere radius R, and work of adhesion W, in order to quantify
how they deviate from the pure wetting case. During our
investigations, we found the presence of a localized contact foot

of length / in the arrested wetting configuration of these gel
spheres. This is in essence the scenario envisioned by Joanny et
al.** but with different geometry and material. To rationalize
our experimental observations, we develop a minimal analysis
involving energy minimization, volume conservation, and
scaling arguments.

EXPERIMENTS

In order to synthesize spherical hydrogel beads of different shear
moduli)*® we first prepared pregel solutions by diluting varying
concentrations (<10%) of the monomer N (hydroxymethyl)

acrylamide (48% solution in water, Sigma Aldrich) in deionized
water. Upon degassing the monomer solutions by purging them with
bubbles of pure nitrogen gas, we dissolved potassium persulfate
(99.99% trace metals basis, Sigma Aldrich; 0.25% weight basis) and
N,N,N',N’ tetramethylethylenediamine (TEMED, >99.5%, purified by
redistillation, Sigma Aldrich; 0.3% weight basis) into the solution that
would initiate the polymerization of the polyacrylamide hydrogel
roughly 10 min after mixing the TEMED. The hydrogel spheres were
prepared by suspending drops of the pregel solution in a beaker
containing a vertical liquid density gradient created by introducing a
heavy silicone oil (poly[dimethylsiloxane co methylphenylsiloxane],
Sigma Aldrich, density p = 1.05 g/cm?) at the bottom of the beaker
and a lighter n octane (99% pure, Acros Organics, p = 0.71 g/cm®) at
the top gently using a pipet. The interface between these two oils was
allowed to be well diffused by waiting for about 30 min to attain a
uniform composition in the mixed zone. The ratio of the volumes of
silicone oil to octane used in these experiments was around 2:1. Drops
of pregel solution of different volumes were released gently into the
octane layer. They sank to the diffused interface of octane/silicone oil
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Figure 2. (a) Snapshot of the equilibrium profile of a gel sphere (i = 61 Pa) on a rigid substrate (W = 144 mN/m). The highlighted region at the
three phase contact line is magnified on the right to show the measured contact angle 6* that is obtained from a spline fitting of the entire gel—air
interface.”” (b) Contact angle 6* as a function of work of adhesion W between the gel and the silanized silicon wafer in ambient air, for different
shear moduli y of the gel as indicated. Inset: contact angle as a function of shear modulus y of the gel, for a substrate characterized by the work of
adhesion W = 144 mN/m. For comparison, on this substrate the contact angle of pure water is close to 0°. (c) Same data as depicted in (b), but
plotted according to the Young—Dupré law, where the contact angle 6* is used and where y; & 72 mN/m in ambient air. The classical liquid

reference is represented by the y = x solid black line.

until they were neutrally buoyant. Each pregel drop assumed a
spherical shape at the interface, and care was taken to allow enough
space in between each drop to avoid coalescence. Even though the two
liquids used in creating the density gradient had slightly different
surface tensions with water, the broad thickness of the diffused zone
ensured uniform curvature of the spheres. The drops of pregel solution
cured into spherical elastic beads in about 2 h at room temperature. As
was reported earlier,*® when these hydrogel spheres are placed atop a
rigid substrate subjected to random vibration in the vertical direction,
they exhibit surface harmonic modes which marginally differ from
those of pure water drops. For liquids, surface modes are related to the
surface tension and mass of the drops. For the surface modes of gels,
the same scaling with surface tension and mass was observed, while the
slight deviation of the values could be accounted for by the effect of
elasticity. It was concluded that the surface tension of hydrogels with
air is similar to that of water with air. The elastic shear modulus of
these gels was measured (u ranging from 61 to 789 Pa) using an
oscillatory shear rheology technique that is described in more detail in
the same previous study.’® While preparing a batch of gel spheres of a
particular monomer concentration, we cured a small amount of the
same pregel solution into a rectangular slab of gel confined between
two rigid plates, which was then set to horizontal vibration and the
shear modulus was estimated from the slab’s resonant mode.

For preparing the rigid substrates, silicon wafers were cut into small
pieces of about 2 cm® each and were flame treated to remove all
organic contaminants, rendering them hydrophilic. After cooling, they
were placed in a chamber underneath a horizontal silane source, which
rested upon spacers that were 13 mm tall. The silane source was
prepared by attaching a flat sheet of filter paper to a glass slide with
double sided tape and depositing few drops of dodecyltrichlorosilane
(Gelest Inc.) uniformly on the filter paper, wiping off any excess with
tissue paper. The wafers were treated by the diffusing silane vapor in
the chamber, at room temperature of 20 °C and relative humidity of
35% for different times. An exposure time of about 2 min in our
system led to surfaces with ~60° contact angle for water, while an
exposure time of about 12 min led to complete grafting of the surfaces,
giving ~106° contact angle for water—the untreated surfaces being
the most hydrophilic, where water spread as thin films. This resulted in
the work of adhesion W, estimated from the Young—Dupré equation
for the different hydrogel—substrate systems, ranging from ~S0 to

~144 mN/m, corresponding to water contact angles of ~106° to ~0°,
respectively (Figure la, top).

After curing, each hydrogel sphere was gently taken out from the
liquid environment where they were prepared, using a plastic pipet
with a smooth hydrophobic tip, and rinsed in pure n heptane (Fisher
Chemicals) repeatedly followed by moderate drying in air. The inner
walls of the glass containers, which were used to house the heptane for
cleaning, were also hydrophobized with vapors of dodecyl
trichlorosilane to prevent the gel spheres from sticking to the walls,
thereby avoiding any possible damage to their surfaces. A treated
silicon wafer was then placed on a weighing balance, and the cleaned
gel sphere was deposited upon it. This was the most critical step in our
protocole as the pipet tip holding the gel sphere had to be held just
above the wafer while slowly releasing the sphere on the latter to allow
for uniform radial spreading. From the measured weight on the
balance, the initial radius R of the droplet was estimated (ranging from
1.2 to 3.8 mm) assuming a spherical shape. The gel drop on substrate
system was immediately photographed with a CCD camera (Sony XC
75). Each experimental measurement was completed in a few minutes,
within which there was no observable loss in volume of the gel due to
evaporation. On removing gel drops from hydrophilic substrates after a
few minutes, we observed very thin and annular patches of liquid
concentrated at the edge of the former contact region. However, the
thickness of these annular films was always much smaller than the
height of the foot region, thus ensuring that the measured macroscopic
deformation of the gel—air interface, which gave us the modified
contact angle 8% and the foot length /, was not due to the traces of
exuded liquid. These experiments being very sensitive to the
smoothness of the gel surface, utmost care was taken while handling
the spheres by pipet aspiration such that only a very small fraction was
inside its tip. Furthermore, each gel sphere was used for the
corresponding measurement only once as its surface got slightly
damaged upon removing it from contact.

In sharp contrast with classical wetting of liquid droplets, the
hydrogel spheres spread to their equilibrium configurations on the
hydrophilic substrates by protruding a localized axisymmetric foot at
the edge of the contact region, while maintaining their undeformed
spherical shape far away from contact (Figure 1a). Note that there was
no such foot observed on the hydrophobic substrates. We estimated
the length / of the foot from the 2D side view in the following way



(Figure Sa). A circle with the radius R of the undeformed sphere was
fitted to the upper periphery of the deformed gel sphere. A horizontal
line along the reflection plane at the rigid substrate was drawn by
joining the left and right triple phase contact points (2D projection of
the triple phase contact line). The distance between one of these two
triple phase contact points and the nearest intersection of the fitted
circle with the horizontal line defines the foot length /, and we used
the averaged value from both the left and right sides. To measure the
contact angle, the entire deformed gel—air interface was fitted with a
spline curve in Image] via the DropSnake®” plugin. An automatic
algorithm then determined the contact angle 6* at the triple phase
contact points (Figure 2a), and we used the average value from both
the left and right sides.

The contact angle 8% of the hydrogel droplets on the silanized
wafers decreases with increasing work of adhesion W (Figures la and
2b), as for pure water, with a general trend reminiscent of the Young—
Dupré law (Figure 2c). However, interestingly, 8% increases with the
shear modulus p of the gel (Figures 1b and 2b, inset), while being
mostly independent of the droplet radius R within our experimental
range which was rather narrow by design in order to stay below the
capillary length. Besides, as u increases, the deformation and thus the
foot length / decrease (Figure 1b). The observation of a localized
contact foot is the first verification of the prediction by Joanny et al.**
Nevertheless, our systematic study with gels involving different elastic
moduli and radii, as well as substrates with varying wetting properties,
reveals an even richer scenario. The latter will become more obvious
below, as we attempt to recast the main experimental features within a
theoretical framework involving energy minimization, volume
conservation, and scaling arguments.

DISCUSSION

The equilibrium profiles of hydrogel spheres placed on
hydrophilic substrates suggest that elasticity, surface tension,
and adhesion are intimately coupled and that there are two
essential observables: the modified contact angle 6* and the
foot length /. In the following, we discuss those two quantities
successively with minimal arguments. Specifically, for the
contact angle, we consider an energy functional minimization
and focus on the boundary term, while for the foot length, we
avoid the detailed analysis of the resulting Euler—Lagrange
equation and instead resort to simple scaling arguments.

Contact Angle. The system and notations are defined in
Figure 3. Removing the constant bare substrate surface energy,
and including volume conservation, we consider the following
energy functional:

Figure 3. Schematics of the system. A gel sphere with initial radius R
undergoes an axisymmetric deformation when placed on a rigid
hydrophilic substrate (z = 0), and r(z) describes the radial distance of
the gel—air interface in that deformed state as a function of z. As a
reference, we introduce the radial distance ry(z) of the gel—air
interface in the undeformed spherical shape (dashed circle). The entire
contact radius (including the foot) is denoted by (0) and the vertical
indentation depth by 6.
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where the prime indicates the derivative with respect to z. The
first term describes the energy of the gel—substrate interface,
where ygg and ygsy denote the substrate—gel and substrate—
vapor interfacial tensions, respectively. The second term
describes the energy of the gel—vapor interface. The third
term ensures volume conservation through a Lagrange
multiplier 4 with the dimension of a stress. The last two
terms are ad hoc approximations for the elongational and shear
elastic contributions, respectively, that assume incompressibility
and enforce the strain to be localized in the foot region.
Minimizing the energy functional with respect to the function
#(z), one obtains a Euler—Lagrange equation as well as two
boundary conditions: one at z = 2R — § and one at z = 0. We
only consider the latter, which reads
- 2 2
cos 0 = 1V T Isa L’(O)—_“[r/o(o) —7(0)]
% 2, r(0)

)
with the notation a = ry(0) (Figure Sa), and where we
introduced the contact angle 8% (Figure Sb) geometrically

defined by cos % = —'(0)/4/1 + #'(0)>. In the absence of

elasticity (u = 0), this condition reduces to the Young—Dupré
law:

v ~ %sg

I (3)
where 0% = 0 is the classical contact angle of the liquid case. In
contrast, when p # 0, * is impacted by elasticity and thus

different from 6, and the boundary condition can be
approximated by

cos O =

)
cos 6 — cos O* =~ 'u—(cot 0* + cot )
I (4)

at first order in //a, with the foot length defined as/ = r(0) — a
(Figure Sa) and where we introduced the inner angle a of the
foot region (Figure Sb).

Figure 4 shows that the general trend of the experimental
data is consistent with eq 4. The observed ~1/10 prefactor
might result from the fact that the experimental measurements
provide only macroscopic angles instead of the actual
microscopic ones, while the scattering of the data possibly
indicates that a more realistic shear energy integral is needed.
Nevertheless, an important outcome of the above analysis is
that the contact angle 6* depends on elasticity only through the
shear deformation of the gel, but not through its elongational
deformation.

Foot Length. The superposition of the image of the gel in
the undeformed spherical state and that resulting from the
wetting induced deformation (Figure Sa) shows that the upper
portion of the gel remains essentially undeformed, whereas the
lower region undergoes a footlike deformation. Such an
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Figure 4. Experimentally measured difference between the cosines of
the contact angle (0) of water and the contact angle (6*) of hydrogel,
plotted according to eq 4. The shear moduli are indicated in the
legend.

observation deviates from classical contact mechanics of elastic
objects, in which the elastic sphere essentially maintains a
spherical cap shape (Figure 6b).”” The base radius Apfaugis Of the
latter was analyzed by Maugis®® within the framework of JKR
theory™” and found to scale as Anaugs ~ R[W/ (uR)]™, with m
being close to 1/4 at geometrically large deformations.”
Volume conservation due to the incompressibility of the elastic
material also imposes that ayy,,y; is geometrically related to the
inner contact radius a of the (shifted) undeformed sphere

(Figure 6¢), as

3
e ]
R h 2\2
3[1 +41 - (E) ] o

We now focus on the situation where 0 < a/R < 0.9, which
corresponds to the range of our experiments and which already
contains geometrically large deformations. In that situation, the
error one makes by replacing the right hand side of eq 5 by a/R
is inferior to 20%, which is acceptable given the wide range of
parameters studied in the experiments. Therefore, combining
the above ingredients, one gets the following reasonable
approximation:

w 1/4
a = R(—)
UR (6)

While we do not expect the real contact radius r(0) of our
experiments to be given by ayg,.y, as already explained above,
that approximation for the inner contact radius a is valid, as
shown in Figure Sc, with the missing prefactor being close to
unity.

As a consequence of the previous analysis, we are led to
propose the following elastowetting scenario with a schematic
decomposition in two steps: first, the sphere undergoes a
Maugis like elastic deformation (Figure 6b) inducing a
spherical cap shape characterized by its contact radius aygg
and the inner contact radius a (or equivalently the indentation
depth 5); second, from that intermediate reference stage, the
local capillary action near the triple phase contact line extracts a
foot, but at constant volume and inner contact radius (or
equivalently indentation depth &), leading to a reorganization of
the shape near contact (Figure 6¢c). To further characterize the
foot length /, we balance the volume 7#5*(3R — 6)/3 of the
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Figure 5. (a) Two equilibrium profiles of gel spheres on hydrophilic substrates: one (top: y = 61 Pa, W = 0.144 N/m) with larger foot length / and
the other (bottom: y = 93 Pa, W = 0.11 N/m) with smaller foot length. The undeformed spherical shapes (radius R) are depicted by the white
dashed circles. The horizontal lines represent the reflection plane at the silicon wafer. The foot length / is measured from the intersection of the
dashed circle with the horizontal line to the triple contact line, while 5 denotes the indentation depth (i.e., the depth of the dashed circle underneath
the horizontal line), and a denotes the inner contact radius (i.e., half the length of the horizontal line that is inside the dashed circle). (b) 3D
schematic highlighting the volume conservation (gray) during the deformation of the incompressible gel: the volume of the fictive spherical cap
below the substrate, with depth ¢ and base radius g, is redistributed in the axisymmetric triangular like foot, with base /, height h, outer contact angle
0% and inner angle a. (c) Experimentally measured inner contact radius a (a) as a function of a combination of the relevant physical parameters,

according to eq 6. The shear moduli are indicated in the legend.
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Figure 6. (a) The gel sphere, with radius R, just before contact with the flat rigid substrate below. (b) In the first step of the decomposed
elastowetting process, the gel undergoes a pure Maugis elastic deformation, i.e., a geometrically large strain JKR like deformation,™” thus essentially
creating a spherical cap with a base radius dyg,uge- (c) In the second step, the local capillary action near the triple phase contact line further extracts an
axisymmetric triangular like foot, at constant volume and inner contact radius (or equivalently indentation depth &).

fictive spherical cap below the substrate (Figure Sb) and the
volume ~ malh of the axisymmetric foot at lowest order in //a.
Indeed, to a fair approximation, the cross section of the latter
can be considered to be triangular, with base / and height F,
such that / = h (cot 0* + cot @). Combining those ingredients,
we obtain

!~ \/52(3R — 6)(cot 0* + cot a)
~ 3a (7)

This relation agrees well with experiments, as shown in Figure
7, with the missing prefactor being close to unity.
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Figure 7. Experimentally measured foot length / as a function of a
combination of the relevant geometrical parameters, according to eq 7.
The shear moduli are indicated in the legend.

As a final remark, while two central relations (eqs 4 and 7)
have been obtained and checked, they in fact involve five
constitutive variables: 6*, I, a, a, and 6. Thus, three other
independent relations are needed to relate each of these
variables only to the physical parameters of the problem: the
initial radius R of the sphere, the shear modulus y of the gel, the
work of adhesion W between the gel and the substrate in air,
and the gel—air surface tension y. Those three other relations

are eq 6 (Figure 5¢), 6 = R — R* - a’ (Figure Sa), and cot

a = (R — 8)/a (Figure Sb), thus bringing closure to the
problem.

CONCLUSION

We presented novel experimental results on how soft hydrogel
spheres deform when in contact with rigid substrates of varying
surface energies. On hydrophilic surfaces, these spheres
protrude an axisymmetric foot in the contact region, while
maintaining a global undeformed spherical shape. Furthermore,
while the contact angle of these gel spheres decreases with
increasing substrate’s wettability, as expected, it is found to
increase with the elastic modulus of the gel. We rationalized
these observations with a minimal analysis based on energy
minimization, volume conservation, and scaling arguments. In
future work, nonlinearities ensuing from both materially and
geometrically large deformations of the gel should be
incorporated within the framework of the Euler—Lagrangian
equation introduced here. Along with this possible theoretical
refinement, more precise experiments, with e.g. confocal
microscopic techniques,” would as well be of paramount
importance.

Among possible applications, one could use the finite contact
angle of soft gel spheres on hydrophilic substrates to estimate
the surface energies of those substrates, when liquids usually
spread as thin films debarring them as suitable candidates for
that task. Additionally, our results on elasticity dependent
contact angles of gels could be applied to characterize the
viscoelastic foot that is observed in the peeling of pressure
sensitive adhesives from a substrate. While the role of the shear
stress in the contact angle and length of such viscoelastic foots
was implied in previous studies,’”” it is our hope that the
current work will bring more attention to such a matter. Last
but not least, the associated dynamic processes, involving
friction and the possible slippage of those viscoelastic foots,
represent important extensions of the present problem.
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