
HAL Id: hal-01802821
https://hal.science/hal-01802821

Submitted on 29 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Linear-Time Tree Containment in Phylogenetic
Networks

Mathias Weller

To cite this version:
Mathias Weller. Linear-Time Tree Containment in Phylogenetic Networks. RECOMB-CG 2018,
Oct 2018, Magog-Orford (Sherbrooke), Canada. pp.309-322, �10.1007/978-3-030-00834-5_18�. �hal-
01802821�

https://hal.science/hal-01802821
https://hal.archives-ouvertes.fr

Linear-Time Tree Containment in
Phylogenetic Networks

Mathias Weller1

1LIRMM, IBC, Montpellier, France

April 17, 2018

Abstract

We consider the NP-hard Tree Containment problem that has important applications
in phylogenetics. The problem asks if a given single-rooted leaf-labeled network (“phylogenetic
network”) N contains a subdivision of a given leaf-labeled tree (“phylogenetic tree”) T . We
develop a fast algorithm for the case that N is a phylogenetic tree in which multiple leaves
might share a label. Generalizing a previously known decomposition scheme lets us leverage
this algorithm, yielding linear-time algorithms for so-called “reticulation visible” networks and
“nearly stable” networks. While these are special classes of networks, they rank among the most
general of the previously considered cases. We also present a dynamic programming algorithm
that solves the general problem in O(3t · |N | · |T |) time, where the parameter t is the maximum
number of tree components with unstable roots in any block of the input network. Notably, t
is stronger (that is, smaller on all networks) than the previously considered parameter “number
of reticulations” and even the popular parameter “level” of the input network.

1

1 Introduction

The quest to find the infamous “tree of life” has been popular in live sciences since the widespread
adoption of evolution as the source of biodiversity on earth. With the discovery of DNA, the task
of constructing a history of the evolution of a set of species has become both a blessing and a
curse. A blessing because we no longer rely on phenotypical characteristics to distinguish between
species and a curse because we are being overwhelmed with data that has to be cleaned, interpreted
and visualized in order to draw conclusions. The use of DNA also gave strong support to the
realization that trees are not always suited to display ancestral relations, as they fail to model
recombination events such as hybridization (occurring frequently in plants) and horizontal gene
transfer (a dominating factor in bacterial evolution) [5, 21]. Thus, researchers are more and more
interested in evolutionary networks and algorithms dealing with them (see the monographs by
Gusfield [16] and Huson et al. [17]).

The particular task that we consider in this work is to tell whether a given evolutionary network
“displays” an evolutionary tree, that is, whether the tree-like information that we might have come
to believe in the past is consistent with a proposed recombinant evolution. This problem is known as
Tree Containment and it has been studied extensively. As it is NP-hard for general networks [18,
22], research focuses on moderately exponential time algorithms [13] and biologically relevant special
cases of networks [3, 11, 12, 14, 18, 22]. Prominent among these special classes are the following:

• nearly-stable networks for which an O(n2)-time algorithm is known [12]
• reticulation-visible networks for which O(n3)-time [3, 14] and O(n2)-time algorithms are

known [14]. Early this year, a preprint claiming a linear-time algorithm for this type of
networks was published [15].

Generalizing the decomposition of Gunawan et al. [14] for reticulation-visible networks to general
networks, we show that Tree Containment can be solved in O(|N | · ←−∆2

N ·
−→
∆

2
T) time1 if each tree

vertex with a reticulation parent is stable2 on some leaf. This running time degenerates to linear time
for binary N in which the length of a longest “reticulation chain” (directed path consisting only of
reticulations) is constant. This latter class of networks comprises both reticulation visible and nearly
stable networks and, therefore, subsumes previous work mentioned above. We culminate the ideas
that lead to the linear-time algorithms to develop an O((−→∆T + 1)t

∗ ·(−→∆N + −→
∆

2.5
T)·|V (N)|·|V (T)|)-time

algorithm, where t∗ is the maximum number of unstable tree components (see Definition 1) in any
biconnected component3 of N For bifurcating N , this degenerates to O(3t

∗ · |V (N)| · |V (T)|) time.

Preliminaries. Let N be a weakly connected, directed acyclic graph (DAG) with a single source
ρ (N) called the root and each of the sinks L(N) (called leaves) carries a label (its “taxon”). Then,
we call N an evolutionary (or phylogenetic) network (or “network” for short). We call the vertices
of in-degree at least two in N reticulations and all other vertices tree vertices and we demand that
all reticulations have out-degree one. If N has no reticulations, then it is called a tree. We denote
the number of arcs in N by |N |.

We denote the maximum in- and out-degree in N by ←−∆N and −→∆N , respectively. Then, we call
N forward-binary (or bifurcating) if −→∆N ≤ 2 and binary if also ←−∆N ≤ 2. If each label occurs ≤ k
times in N , we call N k-labeled or, if k is unknown or inconsequential, multi-labeled. We define the

1Herein, −→∆T is the maximum out-degree in T and ←−∆N is the maximum out-degree in the result of contracting all
arcs between reticulations in N .

2u is stable on ` if all root-`-paths contain u. The notion of stability is equivalent to the notion of “dominators”
in directed graphs [19].

3A biconnected component (or “block”) of a network is a subdigraph induced by the vertices of a biconnected
component of its underlying undirected graph, that is, a connected component in the result of removing all bridges.

2

relation ≤N such that u ≤N v ⇐⇒ u is a descendant of v (that is, v is an ancestor of u) in N .
Note that u ≤N ρ (N) for all u ∈ V (N). For each vertex v of N , we define Nv to be the subnetwork
rooted at v, that is, the subnetwork of N that contains exactly the vertices u with u ≤N v and all
arcs of N between those vertices. The subnetwork N |U of N restricted to a set U of vertices is
the result of first removing all vertices v with ∀u∈Uu �N v and then contracting all arcs that are
outgoing of vertices w with in-degree and out-degree at most one, unless w ∈ U . Note that the least
common ancestor (LCA) of any two vertices of U is also in N |U .

We call any vertex v of N stable on another vertex u if all ρ (N)-u-paths contain v and we call
v stable if v is stable on a leaf of N . Then, N is called reticulation visible if each reticulation r
is stable. Further, N is called nearly stable if, for each vertex v, either v or its parents are stable.
For all k, a k-labeled network N is said to contain a tree T if T is a subgraph of N (respecting the
leaf-labeling). Further, N is said to display T if N contains a subdivision of T (that is, the result
of a series of arc-subdivisions in T). In this work, we consider the Tree Containment problem
defined below.

Input: a network N , a tree T
Question: Does N display T?

Tree Containment (TC)We assume that each reticulation path in N is initially
contracted to a single reticulation with possibly large in-
degree. Clearly, this has no influence on whether or not N
displays T .

Assumption 1. The children and parents of all reticulations are tree vertices.

2 Multi-Labeled Tree Containment

The following is a simple dynamic programming deciding if a k-labeled tree T̂ displays a tree T .
To this end, we define a table with entries [u, v] where u ∈ V (T̂) and v ∈ V (T) such that, for all
computed entries [u, v], we have

[u, v] = 1 ⇐⇒ u ∈ min
≤T̂

{w | T̂w displays Tv}. (1)

While the table [u, v] might have |T | · |T̂ | cells, we will not compute all of them, but only those with
[u, v] = 1 which we show to be at most |T̂ | · k. We represent the table as a sparse set, allowing
efficient enumeration, setting, and querying [4].

Assumption 2. Given v, we can get U := {u | [u, v] = 1} in O(|U |) time.

Note that, if Tv is displayed by subtrees T̂u and T̂w of T̂ and u and w are incomparable wrt. ≤T̂ ,
then for each leaf-label λ in Tv, each of T̂u and T̂w contains a different leaf labeled λ. Thus, there
cannot be more than k such subtrees.

Observation 1. For all v, we have |{u | [u, v] = 1}| ≤ k.

We compute the table in a bottom-up manner. If v is a leaf, then we find the ≤ k leaves of T̂ with
the same label as v and set [u, v] = 1 for them. If v has children v1, v2, . . . , vd, then we first compute
U :=

⋃
i{w | [w, vi] = 1} and then compute the subtree T̂ |U of T̂ that is restricted to U . Finally,

we find the lowest vertices u of T̂ |U such that there is a matching M between the children of v in
T and the children of u in T̂ |U such that each M(vi) has a descendant zi in T̂ |U with [zi, vi] = 1.
For all these u, we set [u, v] = 1.

Lemma 1. The computation is correct, that is, (1) holds for all entries [u, v].

3

Proof. The proof is by induction on the height of v in T . If v is a leaf, then (1) clearly holds.
Otherwise, let v1, v2, . . . , vd be the children of v in T and let U :=

⋃
{w | [w, vi] = 1}.

“⇐”: Let u be a lowest vertex in T̂ such that T̂u contains a subdivision S of Tv. Then, T̂u contains
lowest z1, z2, . . . , zd such that Szi displays Tvi . Suppose that S is chosen such as to maximize the
sum of the distances between u and zi. By minimality of u, we know that u is the LCA of the zi in
T̂ . Then, by induction hypothesis, [zi, vi] = 1 for all i, implying that zi ∈ U and, thus, zi ∈ V (T̂ |U).
Since u is the LCA of the zi in T̂ , we also have u ∈ V (T̂ |U). Moreover, u has children w1, w2, . . . , wd
in T̂ such that zi ≤T̂ wi for all i and, thus, u also has children w′1, w′2, . . . , w′d in T̂ |U with zi ≤T̂ |U w′i
for all i. Hence, mapping vi to w′i for each i constitutes a matching M as demanded by the above
construction, implying [u, v] = 1.

“⇒”: Suppose that [u, v] = 1. By construction, u is a lowest vertex of T̂ |U for which there is a
matching M between the children of v in T and the children of u in T̂ |U such that each M(vi) has
a descendant zi in T̂ |U with [zi, vi] = 1. By induction hypothesis, each zi is a minimum wrt. ≤T̂ of
{w | T̂w displays Tvi}. Thus, each Tvi has a subdivision Si in T̂zi and, since M is a matching, each
zi descends from a different child ui of u in T̂ . Thus, the Si together with the unique u-zi-paths in
T̂ can be merged to form a subdivision of Tv contained in T̂u. Towards a contradiction, assume that
u is not minimal wrt. ≤T̂ among such vertices, that is, there is a different lowest u′ <T̂ u such that
T̂u′ contains a subdivision S′ of Tv. By the argument in the “⇐”-direction, there is a matching M ′

between the children of v in T and the children of u′ in T̂ |U such that each M ′(vi) has a descendant
z′i in T̂ |U with [z′i, vi] = 1. But then, u is not minimal among such vertices in T̂ |U , and we would
not have constructed [u, v] = 1.

To show the running time, we assume that T̂ is preprocessed to allow translating labels into leaves
and leaves of T̂ into leaves of T .

Assumption 3. Given a label λ, we can get the list L of all leaves of T̂ with label λ in O(|L|) time.
Given a leaf ` of T̂ , we can get the leaf of T with the same label in O(1) time.

We also assume that we can compute the LCA of two vertices in T or in T̂ in constant time (see,
for example [1]). This helps us compute the restriction of T and T̂ to any ordered (left to right) list
U in O(|U |) time (see, for example [7, Section 8]).

Assumption 4. Given vertices x and y in T or in T̂ , we can find LCAT (xy) and LCAT̂ (xy) in
O(1) time. Given an ordered list U , we can find T |U and T̂ |U in O(|U |) time.

Lemma 2. Let T̂ be k-labeled. Then, we can find the maximal (wrt. ≤T) vertices v such that T̂
displays Tv in O(|T̂ | · k2−→

∆
2
T) time.

Proof. First, we get the set Y of leaves of T whose label occurs in T̂ by scanning all leaves of T̂ and
translating these leaves to T using Assumption 3. This allows us to set [u, v] for all leaves v of T in
O(|T̂ |) time. Furthermore, we can compute T |Y in O(|Y |) time using Assumption 4.

Scanning T |Y in a bottom-up manner, we compute [u, v] for each u and each v with children
v1, v2, . . . , vd as described. To this end, we construct Ui := {w | [w, vi] = 1} in O(k) time by
Assumption 2 and Observation 1 and U :=

⋃
i Ui in O(kd) time since i ≤ d. Then, we construct T̂ |U

in O(|U |) time using Assumption 4. For each x ∈ V (T̂ |U), we then compute the set Lx of indices
i such that there is some w <T̂ |U x with [w, vi] = 1. With a bottom-up dynamic programming in
T̂ |U , this can be done in O(|T̂ |U | · d) time since |Lx| ≤ d for each x. Then, we produce a list C of
all vertices x ∈ V (T̂ |U) with Lx = {1, 2, . . . , d}. Since the subtrees of T̂ rooted at each minimum
wrt. ≤T̂ |U of C are leaf-disjoint, we know that each such minimum has its own private descendant
w with [w, v1] = 1 and, thus, there are at most k such minima, implying |C| ≤ 2k − 1.

4

For each vertex u ∈ C, we then construct a bipartite graph B whose two partitions are the
children of u in T̂ |U and the children of v in T , respectively, and B contains an edge {x, vi} if and
only if i ∈ Lx (that is, x has a descendant w in T̂ |U with [w, vi] = 1). If B has a size-d matching,
we set [u, v] = 1. This can be done in O(

√
d · min{d2, kd}) ⊆ O(kd1.5) time [6] for each u. Note

that no vertex u /∈ C can have such a matching and, thus, we set [u, v] = 1 correctly for all u and v.
Summing up the total time spent and noting that |Y | ≤ |T̂ |, and |U | ≤ kd, and |T̂ |U | ≤ 2|U |−1,

and |C| ≤ 2k − 1, we arrive at a total running time of O(|T̂ | · (k−→∆2
T + k2−→

∆
1.5
T)). Since our algorithm

runs bottom-up in T |Y , we can retain the highest v for which there is some w in T̂ with [w, v] = 1
as claimed in the lemma.

If we are only interested in whether or not T̂ displays T , then we can prepend a size check and
refuse the instance if |T | > |T̂ |. Thus, we can bound all preprocessing in O(|T̂ |) time and Lemma 2
implies the following theorem.

Theorem 1. Let T̂ be a k-labeled tree and let T be a tree with maximum out-degree −→∆T . Then, we
can decide if T̂ displays T in O(|T̂ | · k2−→

∆
2
T) time (O(|T̂ | · k2) time if T is binary).

3 Tree Containment in Special Networks

In this section, we move from multi-labeled trees to single-labeled networks, that is, in what follows,
each label occurs exactly once (the leaf-labelling function is bijective).

Network Decomposition. Gunawan et al. [14] introduced a decomposition for reticulation-
visible networks which we apply to arbitrary networks. To this end, we have to do some initial
cleanup using the following reduction.

Rule 1. Let ab be a cherry (that is, a pair of leaves sharing a common parent) in N . If ab is not
a cherry in T , then reject (N,T) and, otherwise, delete a in both N and T and contract the arc
incoming to b in N and in T .

Definition 1 (See [14]). Let N be reduced wrt. Rule 1 and let F be the forest that results from
removing all reticulations from N . Then, each tree of F is called tree component of N . A tree
component of N is called trivial if it contains only a leaf of N and stable if its root is stable. Let
Γ be the set of roots of the non-trivial tree components of N . The restriction of “≤N ” to Γ forms a
DAG Q and we call it the component DAG of N . More formally, Q := (Γ, (≤N) ∩ (Γ× Γ)).

The goal will be to repeatedly find a leaf γ of Q and the best possible v of T such that Nγ displays
Tv. Then, we shrink both Nγ and Tv to a single leaf and remove γ from Q. We make use of the
special structure of Nγ , implied by the fact that all tree nodes with a reticulation ancestor in Nγ

are leaves of N (otherwise, they are in a tree component below γ, contradicting γ being a leaf).

Definition 2. Let γ be a leaf of Q. Then, P := Nγ consists of a tree with root ρ (P) := γ, some
reticulations and some leaves of N . Further, P can be divided into “layers” (see Figure 1) and we
call P a pyramid with a tip P∆ (layer of tree vertices), a base PB (layer of reticulations) and a
foundation PF (layer of leaves below reticulations).

Algorithm. In this section, we show how Lemma 2 can be applied to pyramids. Given a pyra-
mid P in N , our goal is to display as much of T as possible in P and reduce N and T using this
information. To this end, we consider only the tip P∆ of P and replace each arc xy from the tip
to the base by an arc to a copy of the child ` of y. By Definition 2, ` is a leaf of N . Recall that ←−∆P
is the maximum in-degree in P and −→∆T is the maximum out-degree in T .

5

γ = ρ (P)

`4Tip

`1 `2 `3 Foundation

Base

ρ (P ′)

`4

`1 `2 `2 `1 `2 `3

Figure 1: Left: A leaf γ of the component DAG Q of N implies a layering of the pyramid P = Nγ

into its tip P∆ (tree nodes), its base PB (reticulations), and its foundation PF (leaves
below reticulations). Note that leaves may also be in the tip of P . Right: The multi-labeled tree
P ′ computed from the pyramid on the left in the proof of Lemma 3.

Lemma 3. In O(|P | · ←−∆2
P ·

−→
∆

2
T) time, we can find all maximal v (wrt. ≤T) s.t. P displays Tv.

Proof. Let P ′ denote the multi-labeled tree that results from P∆ by, for each arc xy ∈ V (P∆) ×
V (PB), hanging a leaf onto x that is labeled with the same label as the unique child ` of y in P
(see Figure 1). Note that P ′ is indeed ←−∆P -labeled, its size is at most |P |, and it can be constructed
in O(|P |) time. Having constructed P ′, we compute the maximal (wrt. ≤T) vertices v such that P ′

displays Tv. By Lemma 2, this can be done in O(|P ′| · ←−∆2
P ·

−→
∆

2
T) time. It remains to show for all v

of T that P displays Tv if and only if P ′ does (see also [14]).
“⇒”: Let P contain a subdivision S of Tv. Let S′ result from S by contracting all arcs that are

incoming to a vertex of the base PB of P . Since S is a tree, all vertices of PB have indegree one and
outdegree one in S and, thus, S′ is also a subdivision of Tv. To show that P ′ contains S′, assume
that S′ contains an arc xy that is not in P ′. If xy is in S, then neither x nor y is a reticulation in
N , implying that xy is in P∆ and, thus, in P ′. Otherwise, S contains a path (x, r, y), where r ∈ PB
and y is a (copy of a) leaf in the foundation of P . Then, xr is an arc in V (P∆)× V (PB), implying
that P ′ contains a copy of y hanging from x.

“⇐”: Let P ′ contain a subdivision S′ of Tv. Let x` be an arc of S′ that is not in P . Then, ` is a
leaf of P and its parent r is in PB. Let S result from S′ by replacing each such arc x` by the path
(x, r, `). Clearly, S is a subdivision of S′ and, thus, of Tv. To show that P contains S, it suffices to
show that none of the new paths p introduces vertices that were already in S′ or in any previously
added path. For the first claim, note that all newly added vertices are in PB and, thus, not in P ′.
For the second claim, note that each label of P ′ occurs at most once in S′ and each vertex of PB

is parent of a unique leaf in P . Thus, P contains S and, therefore, P displays Tv.

It is noteworthy that Lemma 3 might return many vertices v such that Tv is displayed by P and,
without any more assumptions regarding N , the number of possible combinations grows exponen-
tially. Thus, we restrict the class of networks that we are considering by demanding that each tree
vertex of N that has a reticulation parent is stable. Hence, ρ (P) is stable for all tree components
P∆ which form the tips of the pyramids P that we are seeing in the algorithm. In the following,
let c denote the leaf that ρ (P) is stable on and observe that the set of all vertices v such that P
displays Tv and c ≤T v has a unique maximum wrt. ≤T . Thus, at most one of the maxima obtained
by Lemma 3 is an ancestor of c in T and we can find it in O(|P |) time. We then apply the following
reduction that places Tv into P and removes all arcs that disagree (see Figure 2).

6

`4

`1 `2 `3

λ

`3

Figure 2: An example of an application of Rule 2 to the network N of Figure 1 with a subdivision
of Tv shown in dark gray on the left.

Rule 2. Let ρ (P) be stable on a leaf c and let v be the unique maximum wrt. ≤T such that c ≤T v
and P displays Tv. Then, remove all leaves of N whose label occurs in Tv, remove all vertices in
the tip of P except ρ (P), remove all arcs outgoing of ρ (P), remove all vertices of Tv except v, and
label v and ρ (P) with the same new label λ.

For correctness of Rule 2, see [14, Proposition 5] or our proof in the appendix. To apply Rule 2 in
O(|P |) time, we have to find a leaf c that ρ (P) is stable on, in O(|P |) time. This is easy if P∆

contains a leaf of N . Otherwise, we mark all arcs between the tip and the base of P and check if
any vertex in the base has all its incoming arcs marked. For a vertex r with m incoming marked
arcs, this check can be done in O(m) time. Thus, we can produce c in O(|P |) time.

Observation 2. We can produce a leaf c that ρ (P) is stable on in O(|P |) time.

Further, note that Rule 2 might leave former reticulations as isolated vertices or pending leaves
without label. Clearly, such a vertex is created by the deletion of an incoming or outgoing arc. To
remove them, we mark such vertices as garbage upon removal of this incident arc in O(1) time per
removed arc. Then, we run a cleanup phase after Rule 2 that removes garbage in constant time per
removed vertex, that is O(|N |) overall.

Observation 3. N does not contain isolated vertices or unlabeled leaves.

Each time Rule 2 is applied to a leaf γ of the component DAG Q, it will replace the tip of Nγ by
a single leaf in N . To keep Q up to date we just need to delete γ from Q at that point (since the tree
component of γ is no longer non-trivial), but none of the other tree component roots are affected.

Observation 4. We can produce a leaf of Q in constant time.

The algorithm terminates when Rule 2 has been applied to the last pyramid of N and we return
yes if and only if both ρ (N) and ρ (T) have the same label. By Lemma 3, the overall running time
can be bounded by O(

∑
i |Pi| ·

←−
∆

2
N ·

−→
∆

2
T), where the summation is over all applications of Rule 2.

Since no arc outgoing of P∆ survives an application of Rule 2 to P , we conclude
∑

i |Pi| ≤ |N |.

Theorem 2. Let T be a tree with maximum out-degree −→∆T , let N be a network with maximum
in-degree ←−∆N (after contraction of arcs whose both endpoints are reticulations) and let each tree
vertex of N that has a reticulation parent be stable. Then, we can determine if N displays T in
O(|N | · ←−∆2

N ·
−→
∆

2
T) time.

7

 0

 20

 40

 60

 80

 100

Reti
cu

lat
ion

 V
isi

ble

Nea
rly

 S
tab

le

Reti
. V

is.
 or

 N
ea

rly
 S

tab
le

Stab
le

Com
po

ne
nt

network types (in %)

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25

un
st

ab
le

 ro
ot

s

reticulations

Figure 3: Comparison of 250 networks generated under the coalescent with recombination model (10
taxa, recombination rate 4, see [20]). Left: Percentages of network types. Here “Stable Component”
refers to the condition that every tree component is stable. Right: Comparison of the parameter t
to the number r of reticulations. For the gray area, we have 1.618r > 3t. The refined parameter t∗

relates similarly to the level.

Consider the special case that T and N are binary. If N is reticulation-visible, it already verifies
Assumption 1, implying ←−∆N ≤ 2 and, as each reticulation is stable, each tree vertex with a retic-
ulation parent is also stable. If N is nearly-stable, it cannot have reticulation paths of length 3,
implying ←−∆N ≤ 4 after the contraction operation of Assumption 1 and, as each node is either stable
or has a stable parent, each tree vertex with a reticulation parent is stable.

Corollary 1. Let T be a binary tree and let N be forward-binary and reticulation-visible or nearly
stable. Then, we can decide if N displays T in O(|N |) time.

See also Figure 3 for an estimation of the probability to encounter the three discussed types of
networks when simulating recombinant evolution.

4 Tree Containment in General Networks

In this section, we present an algorithm, based on the ideas of the previous section, that solves
Tree Containment in O((−→∆T + 1)t · (−→∆N + −→

∆
2.5
T) · |V (N)| · |V (T)|), where −→∆N and −→∆T are the re-

spective maximal out-degrees of N and T and t is the number of unstable tree components of N (see
Definition 1). For bifurcating N and T , this simplifies to O(3t · |V (N)| · |V (T)|) time. Remarkably,
as each root of a tree component (except ρ (N)) has a private reticulation parent, we know that
t is always smaller than the number of reticulations in N (plus 1) which has been considered as
parameter [13]. Indeed, we prove that we can check all biconnected components of N independently,
so the parameter can be improved to the maximum number t∗ of unstable tree components in any
biconnected component of N . For large classes of networks, t∗ is arbitrarily small compared to the
number of reticulations or even the level4 of N . Figure 3 shows a preliminary comparison of these
parameters in networks generated by simulating recombinant evolution.

The main difficulty of applying the presented algorithm to general networks is that the roots
of the tree components are not necessarily stable on any leaf in N . Upon finding such a root γ,
we thus have to keep track of all the (maximal) vertices v of T such that Nγ displays Tv. This
brings further difficulties: picture two roots γ1 and γ2 of tree components of N with γ <N γ1, γ2.

4The level of a phylogenetic network is the largest number of reticulations in any biconnected component (of its
underlying undirected graph).

8

When computing the possible vertices v1 and v2 in T whose subtrees are displayed by Nγ1 and Nγ2 ,
respectively, we have to make sure that we are not using Nγ to display subtrees in both Nγ1 and
Nγ2 . In the previous algorithm this was not necessary because, if γ is stable, then Nγ cannot display
a subtree of Tv1 as well as a subtree of Tv2 .

Recall that Γ is the set of roots of non-trivial tree components in N and let Γ∗ be the set of roots
of unstable tree components in N . Furthermore, we call a subnetwork S of N nice if S contains the
root of N , and for each u ∈ V (S) and each leaf ` that u is stable on in N , Su contains `. Note that,
if S is nice and u ∈ V (S), then Su is also nice. For technical reasons, we use a slightly extended
notion of subdivisions that allow adding an arc incoming to the root before subdividing arcs. Then,
all subdivisions of T in N containing the root of N are nice. The dynamic programming table has
an entry for each triple (u, v,R) ∈ V (N)× V (T)× 2Γ∗ with the following semantics:

[u, v,R] := 1 ⇐⇒ Nu contains a nice subdivision S of Tv with V (S) ∩ Γ∗ = R (2)

Note that N displays T if and only if [ρ (N) , ρ (T) , R] = 1 for some R ⊆ Γ∗. We give some special
cases of [u, v,R] for which (2) can be easily verified:
Case 1. If u ∈ Γ∗ \ R, then we set [u, v,R] = 0 since all nice subdivisions of T in Nu contain u,

and, thus, u ∈ V (S) ∩ Γ∗ but u /∈ R.
Case 2. If u is a reticulation with child w, then we set [u, v,R] = [w, v,R] for all v ∈ V (T) and

R ⊆ Γ∗, since Nu cannot display any more of T than Nw.
Case 3. If u is stable on a leaf ` /∈ L(Tv), then we set [u, v,R] = 0 for all R ⊆ Γ∗.
Case 4. If u and v are leaves, then we set [u, v,R] = 1 if and only if u and v have the same label

and R = ∅.
Case 5. If u is a leaf and v is not a leaf, then we set [u, v,R] = 0 for all R ⊆ Γ∗.
Case 6. If u is a tree vertex of N and [w, v,R \ {u}] = 1 for any child w of u in N and Case 3 does

not apply, then we set [u, v,R] = 1.
We call an entry [u, v,R] trivial if it corresponds to any of the above cases. Otherwise, we set
[u, v,R] = 1 if and only if there is a size-d matching M between the children v1, v2, . . . , vd of v in T
to the children of u in N and pairwise disjoint sets R1, R2, . . . , Rd such that ∀i [M(vi), vi, Ri] = 1
and

⋃
iRi = R \ {u}.

Lemma 4. For [u, v,R] computed as above, (2) holds.

Proof. We prove the lemma by induction on the index of u in any fixed DAG-ordering of N . We
suppose that [u, v,R] is non-trivial, as the other cases are evident. This also implies the induction
base (where u is a leaf of N).

“⇐”: Suppose that there is a nice subdivision S of Tv in Nu with V (S)∩Γ∗ = R. First, u is not a
leaf of S, since all leaves of S are labeled. Second, u does not have degree two in S since, otherwise,
[w, v,R] = 1 for the child w of u in S, contradicting the non-triviality of [u, v,R]. Hence, there is a
matchingM between the children v1, v2, . . . , vd of v in T and the children of u in S such that, for each
child vi of v, Si := SM(vi) is a subdivision of Tvi and, by the above observation, niceness of S implies
niceness of Si. Also note that M has size d. Then, by induction hypothesis, [M(vi), vi, Ri] = 1 for
all i, where Ri := V (Si) ∩ Γ∗. Since the Si are pairwise disjoint, the sets Ri are pairwise disjoint
and, since

⋃
i V (Si) = V (S) \ {u}, we have

⋃
iRi =

⋃
i V (Si) ∩ Γ∗ = V (S) ∩ Γ∗ \ {u} = R \ {u}.

Thus, by construction, [u, v,R] = 1.
“⇒”: Suppose [u, v,R] = 1. Then, by construction, there areM and Ri such that Ri are pairwise

disjoint, ∀i [M(vi), vi, Ri] = 1, and
⋃
iRi = R \ {u}. By induction hypothesis, Lemma 4 holds for

each [M(vi), vi, Ri], implying that, for each i, there is a nice subdivision Si of Tvi in NM(vi) and
V (Si) ∩ Γ∗ = Ri. To show that these subdivisions are pairwise vertex-disjoint, assume that Si and

9

Sj intersect for some i 6= j. Let w be the minimum with respect to ≤N among the vertices in
V (Si) ∩ V (Sj). Then, w is neither a reticulation (otherwise its child is smaller wrt. ≤N) nor a leaf
(since Tvi and Tvj cannot share leaves). Hence, w is in a tree-component of N and it has a root
r. Then, both Si and Sj contain r as well, as otherwise, M(vi) = M(vj) contradicting M being a
matching. If r is stable on some leaf ` then, by niceness of Si and Sj , both contain `, contradicting
again that Tvi and Tvj are leaf-disjoint. If r is not stable, then r ∈ V (Si) ∩Ri and r ∈ V (Sj) ∩Rj ,
contradicting that Ri and Rj are disjoint.

To compute all [u, v,R] for fixed u and v where d is the out-degree of v, we enumerate all partitions
of Γ∗ into d+ 1 cells, one for each child vi of v, corresponding to the Ri, plus one cell corresponding
to “ /∈ R”. Then, we construct the bipartite graph B whose vertices are the children of u in N and v
in T , respectively, and the edge set is {ujvi | [uj , vi, Ri] = 1}. Finally, we set [u, v,R] = 1 if B has
a size-d matching for any of the partitions of Γ∗. Since one cell of the bipartition has size d, such a
matching can be computed in O(d2.5) time [6]. Thus, the implied bottom-up dynamic programming
runs in O((−→∆T + 1)|Γ

∗| · (−→∆N + −→
∆

2.5
T) · |V (N)| · |V (T)|) time. If N and T are forward-binary, this

simplifies to O(3|Γ
∗| · |V (N)| · |V (T)|). We can, however, further refine the algorithm by splitting

off biconnected components of N . To this end, we use the following lemma.

Lemma 5 (See also [14]). Let u ∈ Γ such that N − u is disconnected, let v := LCAT (L(Nu)), and
let (N ′, T ′) be the result of contracting Nu and Tv, respectively, into a single vertex and giving a
new label λ to both of them. Then, N displays T if and only if Nu displays Tv and N ′ displays T ′.

Proof. First, note that u is stable on all leaves of L(Nu).
“⇒”: Let S be a subdivision of T in N . Since u is stable on all leaves of L(Nu), we know that

Nu displays Tv and cannot display Tw for any w >T v. Thus, the result S′ of contracting Su into a
single vertex and labeling it λ displays T ′ and it is clearly a subdivision of N ′.

“⇐”: Since V (N ′) ∩ V (Nu) = {u}, the result of gluing a subdivision of T ′ in N ′ (which has to
contain u as leaf) and a subdivision of Tv in Nu together at u is contained in N and it is clearly a
subdivision of T .

With Lemma 5, we can check tree containment in all biconnected components of N independently.

Theorem 3. Let T be a tree, let N be a network, and let −→∆N and −→
∆T be their respective maxi-

mum out-degrees. Let t∗ be the maximum number of unstable tree components of any biconnected
component of N (see Definition 1). Then, we can decide whether N displays T in O((−→∆T + 1)t

∗ ·
(−→∆N + −→

∆
2.5
T)·|V (N)|·|V (T)|) time. If N and T are forward-binary, this is O(3t

∗ ·|V (N)|·|V (T)|) time.

We finish this section with a note on polynomial-time preprocessing concerning the number t∗ of un-
stable tree components in any biconnected component. Indeed, to show that Tree Containment
does not admit a polynomial-size kernel (see [8, 9] for more details on “kernelization”) it suffices to
show that instances (Ni, Ti) of Tree Containment can be combined to a single instance (N,T)
such that 1. the number t∗ of unstable tree components in any biconnected component of N is in
O(maxi |Ni|) and 2. N displays T if and only if Ni displays Ti for each i (see [2, 10] or [8, Section
15.1.3] for details on “AND compositions”).

Let Ck be a caterpillar tree with k leaves labeled with {1, 2, . . . , k}. Given k instances (Ni, Ti)
of Tree Containment with disjoint label-sets, let N denote the result of, for each i, replacing
the leaf labeled i in Ck by Ni. Likewise, let T be the result of, for each i, replacing the leaf labeled
i in Ck by Ti. It is then straightforward to verify that N displays T if and only if, for each i, Ni

displays Ti. Note that the argument above is independent of the actual parameter that we take per
block. For example, it holds as well for the “level” of N .

10

Observation 5. Let ϕ∗ map networks to integers such that, for all networks N and all cut-vertices
u in N , we have ϕ∗(N) = max{ϕ∗(Nu), ϕ∗(Nu)} where Nu results from N by contracting Nu into a
single vertex (with new label). Then, Tree Containment does not admit a polynomial-size kernel
with respect to ϕ∗, unless NP ⊆ coNP/ poly.

5 Conclusion

We developed efficient algorithms for the Tree Containment problem in various settings, contin-
uing existing efforts to speed up the process of solving the problem in special types of networks, as
well as developing first parameterized algorithms and preliminary results concerning efficient and
effective preprocessing. We showed that, if each label occurs at most k times in N , the problem can
be solved in O(|N | · −→∆T · k2) time (where −→∆T is the maximum out-degree in T). Together with the
powerful network decomposition of Gunawan et al. [14], this implies an O(|N |)-time algorithm for
binary reticulation visible or nearly stable networks. We further developed an algorithm that solves
the general case in O((−→∆T + 1)t

∗ · (−→∆N + −→
∆

2.5
T) · |N | · |T |) time where t∗ is the maximum number of

unstable tree components in any biconnected component of N . For binary N and T , this simplifies
to O(3t

∗ · |N | · |T |). The discovery of the parameter t (and t∗) is interesting in its own regard, as
previous algorithms used to study phylogenetic networks focus on the “number r of reticulations” or
the “maximum number of reticulations in a biconnected component” (the “level”), but the parameter
t∗ can be arbitrarily small when compared to these parameters. As there is an implementation of
an O(1.618r · |N | · |T |)-time algorithm for Tree Containment [13], I am eager to compare our
algorithm to it on practical data sets. Preliminary comparisons show its potential on data-sets
generated from simulating evolutionary processes (see Figure 3). Finally, I am highly motivated to
research more parameters of phylogenetic networks as we presume that practical networks are likely
to be highly structured (since evolution is not a totally random process). The distance of the input
network to being reticulation visible or nearly stable seems to be the canonical starting point.

Acknoledgement. Big thanks go to Celine Scornavacca for her thorough proof-reading.

References
[1] M. A. Bender and M. Farach-Colton. The LCA problem revisited. In Proc. 4th LATIN, volume 1776 of LNCS,

pages 88–94. Springer, 2000.
[2] H. L. Bodlaender, B. M. P. Jansen, and S. Kratsch. Kernelization lower bounds by cross-composition. SIAM

J. Discrete Math., 28(1):277–305, 2014.
[3] M. Bordewich and C. Semple. Reticulation-visible networks. Advances in Applied Mathematics, (78):114–141,

2016.
[4] P. Briggs and L. Torczon. An efficient representation for sparse sets. ACM Letters on Programming Languages

and Systems (LOPLAS), 2(1-4):59–69, 1993.
[5] J. M. Chan, G. Carlsson, and R. Rabadan. Topology of viral evolution. Proceedings of the National Academy

of Sciences, 110(46):18566–18571, 2013.
[6] B. G. Chandran and D. S. Hochbaum. Practical and theoretical improvements for bipartite matching using the

pseudoflow algorithm. CoRR, abs/1105.1569, 2011. URL http://arxiv.org/abs/1105.1569.
[7] R. Cole, M. Farach-Colton, R. Hariharan, T. Przytycka, and M. Thorup. An o(n logn) algorithm for the

maximum agreement subtree problem for binary trees. SIAM Journal on Computing, 30(5):1385–1404, 2000.
[8] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh.

Parameterized Algorithms. Springer, 2015.
[9] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Texts in Computer Science.

Springer, 2013.
[10] A. Drucker. New limits to classical and quantum instance compression. SIAM J. Comput., 44(5):1443–1479,

2015.

11

http://arxiv.org/abs/1105.1569

[11] J. Fakcharoenphol, T. Kumpijit, and A. Putwattana. A faster algorithm for the tree containment problem for
binary nearly stable phylogenetic networks. In Proc. 12th JCSSE, pages 337–342. IEEE, 2015.

[12] P. Gambette, A. D. M. Gunawan, A. Labarre, S. Vialette, and L. Zhang. Locating a tree in a phylogenetic
network in quadratic time. In Proc. 19th RECOMB, volume 9029 of LNCS, pages 96–107. Springer, 2015.

[13] A. D. Gunawan, B. Lu, and L. Zhang. A program for verification of phylogenetic network models. Bioinformatics,
32(17):i503–i510, 2016.

[14] A. D. Gunawan, B. DasGupta, and L. Zhang. A decomposition theorem and two algorithms for reticulation-
visible networks. Information and Computation, (252):161–175, 2017.

[15] A. D. M. Gunawan. Solving tree containment problem for reticulation-visible networks with optimal running
time. CoRR, abs/1702.04088, 2017. URL https://arxiv.org/abs/1702.04088.

[16] D. Gusfield. ReCombinatorics: the algorithmics of ancestral recombination graphs and explicit phylogenetic
networks. MIT Press, 2014.

[17] D. H. Huson, R. Rupp, and C. Scornavacca. Phylogenetic networks: concepts, algorithms and applications.
Cambridge University Press, 2010.

[18] I. A. Kanj, L. Nakhleh, C. Than, and G. Xia. Seeing the trees and their branches in the network is hard.
Theoretical Computer Science, 401(1-3):153–164, 2008.

[19] T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in a flowgraph. ACM Trans. Program.
Lang. Syst., 1(1):121–141, Jan. 1979. ISSN 0164-0925.

[20] A. M., V. G., and P. D. Characterization of reticulate networks based on the coalescent with recombination.
Molecular Biology and Evolution, 25(12):2517–2520, 2008.

[21] T. J. Treangen and E. P. Rocha. Horizontal transfer, not duplication, drives the expansion of protein families
in prokaryotes. PLoS Genet, 7(1):e1001284, 2011.

[22] L. Van Iersel, C. Semple, and M. Steel. Locating a tree in a phylogenetic network. Information Processing
Letters, 110(23):1037–1043, 2010.

12

https://arxiv.org/abs/1702.04088

Appendix

Proof of correctness of Rule 2. Let Sv be a subdivision of Tv in P and let (N ′, T ′) be the result of
applying Rule 2 to (N,T).

“⇐”: Let N ′ contain a subdivision S′ of T ′. It suffices to show that the result S of replacing
ρ (P) with Sv in S′ is contained in N since S is clearly a subdivision of T . Since Sv is contained in
P , it suffices to show that S′ and Sv are vertex disjoint (except for ρ (P)). Towards a contradiction,
assume that S′ and Sv both contain a vertex u 6= ρ (P) of P . Since L(S′) and L(Sv) are disjoint,
u is ancestor to at least two different leaves in N . Thus, u is in the tip of P , contradicting that u
is in N ′.

“⇒”: Let N contain a subdivision S of T and let u := LCAS(L(Tv)). Since ρ (P) is stable on c
and c ∈ L(Tv), we have u ≤N ρ (P), implying L(Sρ(P)) ⊇ L(Tv). Further, maximality of v implies
L(Sρ(P)) ⊆ L(Tv). Let S′ result from S by contracting Sρ(P) into a single vertex and labeling this
vertex λ. Since L(Sρ(P)) = L(Tv), we know that S′ is a subdivision of T ′ and it suffices to show
that N ′ contains S′. To do this, we show that all vertices of S′ are in N ′. Assume towards a
contradiction that S′ contains a vertex w that is not in N ′. Then, w is in the tip of P , implying
L(Sw) ⊆ L(Sρ(P)). Thus, w is a vertex of Sρ(P) contradicting w being in S′.

13

