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Geometric phase optical elements based on structured
anisotropy are widely used for phase shaping via their orienta-
tional degree of freedom. To date, amplitude shaping via
space-variant retardance is much less investigated, a practical
reason being that the spin-orbit interaction of light couples
retardance with the dynamic part of the optical phase.
Inspired by the complementary diffractive elements associated
with Babinet’s principle, a bilayered subwavelength grating
design is proposed in order to cancel out the spatial
modulation of the dynamic phase usually associated with
space-variant birefringent phase retardation. This concept is
illustrated in the framework of single-mode Laguerre Gauss
–beam shaping.

OCIS codes: (050.6624) Subwavelength structures; (140.3300) Laser

beam shaping.

Structuring matter at the subwavelength scale is known to allow
the design and manufacture of artificial materials with wave
properties that are not possessed by the constituting bulk media
taken apart. These materials are usually called metamaterials, a
name derived from the Greek “meta” (beyond) emphasizing the
access to novel properties and phenomena that seems limited so
far only by our imagination. In electromagnetism, metamate
rials evolved from radio frequencies to optics with substantial
conceptual and engineering advances during the last two dec
ades [1]. This concept went beyond electromagnetism, and has
been addressed when thermodynamics, acoustics, elasticity, or
quantum mechanics are at play [2]. Quite naturally, the process
of progress has led to the development of dynamic versions of
static metamaterials toward the creation of enhanced or novel
functionalities [3,4] and now embarks the richness and
subtleties of nonlinear physics as well [5,6].

Of course, advanced designs continue to be developed even
in the linear case. For instance, in the context of spin controlled
asymmetric orbital angular momentum states, it has been pro
posed recently to encode independent dynamic and geometric
phase profiles into single metallic [7] or dielectric [8] metasur
faces. In practice, this is made by controlling locally the orien
tation and aspect ratio of equally spaced subwavelength
anisotropic nanostructures. Besides phase control, amplitude

shaping is also accessible to metasurfaces by exploiting their
vectorial nature. This requires the combination of the local con
trol of the birefringent phase retardation with post polarization
filtering, which has been exploited recently in the context of
modal beam shaping [9]. In short, the optical characteristics
of a passive metasurface are determined by the spatial distribu
tion of three quantities: (i) the dynamic phase, Φdyn, which is
associated with the average optical path length; (ii) the geomet
ric phase, Φgeom, which uniquely depends on the structure of
the medium; and (iii) the birefringent phase retardation, Δ,
which arises from anisotropic phase delay between the ordinary
and extraordinary waves. From a general point of view, Φdyn,
Φgeom, and Δ can be independently adjusted by design.
However, this requires a conception step that relies on optimiz
ing these parameters via numerical simulations, which prevents
from an intuitive approach to conceive novel photonic
functionalities.

Here, inspired by the Babinet’s principle, a bilayered design
made of two complementary subwavelength gratings (see
Fig. 1) is proposed with the aim at getting rid of the dynamic
phase spatial modulation usually associated with amplitude
modulation driven by space variant birefringence. This is done
by multiplexing two independent structural degrees of freedom
that independently act on amplitude and phase. Namely, we

Fig. 1. (a) Slab of an isotropic dielectric with thickness L.
(b) Proposed Babinet bilayered design that consists of two comple
mentary subwavelength gratings made by splitting the slab shown
in panel (a). By construction, the two complementary gratings have
identical periods, Λ, and complementary filling factors, F and
F � 1 F .
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address the design of metasurfaces having a uniform Φdyn while
(i) the grating period and its filling factor define Δ, and (ii) the
orientation angle, ψ , of the grating wavevector defines
Φgeom � 2σψ , where σ � �1 is the helicity of the incident
light. In order to gain insight, it is worth recalling that the
behavior of a transparent optical metasurface in the paraxial
regime can be grasped simply and analytically. Indeed, by con
sidering an incident circularly polarized field described by the
unit vector cσ � �x � iσy�∕ 2

p
, where �x, y� is the plane of

the metasurface, the output light field can be expressed as [10]

Eout ∝ eiΦdyn �cos�Δ∕2�cσ � i sin�Δ∕2�eiΦgeomc−σ �: (1)

The sought after Babinet metasurface is ideally character
ized by an effective σ dependent contra circular complex
transmittance,

τeff ∝ sin�Δ∕2� exp�2iσψ�: (2)

Qualitatively, the proposed Babinet bilayered design shown
in Fig. 1 in the one dimensional case of a square waveform with
subwavelength spatial period Λ can be understood from the fol
lowing reasoning. Obviously, a slab of an isotropic dielectric is
associated with a uniform dynamic phase. In contrast, once peri
odically structured, it behaves as a uniaxial dielectric slab [11]
with a dynamic phase that depends on the amount of the re
moved material that is characterized by the filling factor F.
The idea comes from the following intuition: the sequence of
two complementary subwavelength gratings obtained by split
ting an isotropic dielectric slab is thought as an effective subwave
length structured slab without matter removal overall. As such,
one could expect a constant dynamic phase independently of F ,
while the form birefringence remains strongly dependent on F .

The above reasoning is investigated quantitatively in the
framework of the second order effective theory [12], by con
sidering diamond material in air as a case study, whose refractive
indices are, respectively, taken as N � 2.425 and 1 at λ �
532 nm wavelength. More precisely, a subwavelength grating
illuminated at normal incidence and characterized with a
filling factor F and a period Λ behaves as a uniaxial medium
with refractive indices along a direction parallel (∥) and
perpendicular (⊥) to the grating wavevector that are given by
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where λ is the wavelength, F̄ � 1 F , n⊥,0 � �N 2F � F̄�1∕2,
and n∥,0 � N �F � N 2F̄ �−1∕2.

Noting that the dynamic phase of the bilayer is
Φdyn � 2kLñ, where k � 2π∕λ and L is the thickness of each
layer and ñ � �n� n̄�∕2 with n and n̄ being the average re
fractive index of the first subwavelength grating and its comple
ment, the dynamic phase behavior as a function of the
structural characteristics is assessed via the study of ñ. This
is reported in Fig. 2(a) where ñ is plotted in the plane of param
eters �Λ, F�. Here, the chosen range 0 < NΛ∕λ < 1 refers to
the absence of diffraction orders other than the zeroth order
one, which practically defines a subwavelength grating.
Clearly, there is an optimal value for the grating period value
that ensures a minimal dependence of ñ on F , as illustrated in
Fig. 2(b). Namely, as shown in the inset of that figure,
NΛ∕λ � 0.789 minimizes the standard deviation of ñ�F �,
which is the value used further in this work. The optical proper
ties of the individual subwavelength gratings constituting the
optimized bilayered element are summarized in Fig. 3, where
the effective extraordinary (n∥ and n̄∥), ordinary (n⊥ and n̄⊥),
and average refractive (n and n̄) indices are plotted as a function
of F . These two plots emphasize the compensation mechanism
leading to an effective average refractive index of the bilayered
optical element that varies much less with F than the average
refractive index of any of the two gratings taken separately.
On the other hand, the birefringence of the complementary
gratings have similar behavior, hence adding up.

Said differently, the filling factor can be used to modulate
the birefringent phase retardation of the bilayer, Δ � 4πd ñL∕λ
with d ñ � ñ∥ ñ⊥ and ñ∥,⊥ � �n∥,⊥ � n̄∥,⊥�∕2, without
much variation of the dynamic phase. This is summarized
in Fig. 4 where the effective average refractive index and bire
fringence are plotted as a function of F . As shown in Fig. 4(a), ñ
exhibits slight modulations near F → 0 and F → 1, which
implies that the optical element suffers from residual modula
tion of the dynamic phase if one exploits the full range for F.
Nevertheless, considering a situation that corresponds to a

Fig. 2. (a) Effective average refractive index ñ of the Babinet bilay
ered subwavelength grating versus the reduced spatial period NΛ∕λ
and the filling factor F. (b) Maximal (ñmax � max�ñ�F ��), minimal
(ñmin � min�ñ�F ��), and average (hñiF ) effective refractive indices ver
sus NΛ∕λ. Inset: standard deviation of ñ�F � as a function of the
reduced period whose value NΛ∕λ � 0.789 (see arrow) defines the
condition ensuring a minimal dependence of ñ on F .

Fig. 3. (a) Extraordinary (n∥), ordinary (n⊥), and average (n) refrac
tive indices of a subwavelength grating as a function of the filling factor
F . (b) Same as in (a) for the complementary subwavelength grating.
The simulations are made for NΛ∕λ � 0.789, which optimizes the
dynamic phase flatness.
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birefringent phase retardation Δ � π at F � 0.5, there is a
substantial decrease of the magnitude of the dynamic phase
modulation in the case of the Babinet bilayer compared to
the case of a single layer. This is illustrated in Fig. 5, where the
variation of the dynamic phase in the range 0 < F < 0.5 is
shown in both cases, imposing a fixed maximal birefringent
phase retardation at F � 0.5. The dynamic phase profile is flat
tened by a factor of ≃42 when considering the full range
0 < F < 0.5, and this factor increases up to ≃395 by restrict
ing to the range 0.2 < F < 0.5, hence limiting the drawbacks
associated with the resolution capabilities of nanofabrication
tools as F → 0. However, in order to obtain a full modulation
of τeff between 0 and 1, one has to increase L in order to fulfill
the condition Δ � 2π (i.e., τeff � 0) at F � 0.5, which gives a
thickness L ≃ 450 nm and Δ � π (i.e., τeff � 1) at F ≃ 0.17
with the present parameters. Since the condition NΛ∕λ �
0.789 corresponds to Λ ≃ 170 nm, the latter conditions in
volve the fabrication of subwavelength gratings with aspect
ratio L∕�FΛ� up to 15, which is accessible to nanofabrication
techniques [13].

Next, the interest of the proposed concept is illustrated in the
framework of beam shaping by considering the conception of
geometric phase Laguerre Gaussian (LG) modal beam shapers.
LG beams refer to a complete orthogonal basis for the scalar para
xial Helmholtz equation [14], each element of the basis being
univocally associated to an azimuthal index, l , and a radial index,
p. Many strategies have been developed toward the generation of
LG like beams using either extra cavity or intra cavity schemes,
as reviewed in [9]. The use of geometric phase optical elements is
especially interesting in that the helicity dependent geometric
phase offers a route to switch between a mode �l , p� and a mode
� l , p� by flipping the incident helicity of light from σ to σ,
provided that ψ � �σl∕2�ϕ.

Since the first LG like experimental demonstrations in the
case p � 0 in the early 2000s [15] and p ≥ 1 only a few years
ago [16,17], the creation of geometric phase LG modal con
verters as such has not yet been reported. Recently, a single
layer theoretical proposal combining dynamic and geometric
phase modulations at fixed n⊥ has been reported [9].
However, the corresponding design breaks the right/left sym
metry and thus works for only a single value of the helicity. A
quasi modal version recovering the latter broken symmetry has
been discussed on experimental grounds [18], though at the
expense of substantial contra circular transmission losses.

Here, we show that the use of space variant Babinet
bilayered subwavelength gratings allows to create polarization
controlled LG modal beam shapers. This is discussed in the
representative case p � 0; hence, the index p is omitted in what
follows, and we note that the generalization to high order radial
modes poses no particular problem except more cumbersome
calculations. At first, we recall that a LGl field associated with
the waist radius w is expressed in its focal plane as

E �w�
l ∝

�
r
w

�jl j
exp

�
r2

w2 � ilϕ
�
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Then we deduce from Eq. (2), which describes an ideal Babinet
bilayer optical element, that the use of a birefringence phase
retardation radial profile Δl �r� satisfying the condition
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combined with an optical axis orientation angle

ψ l �ϕ� � �l∕2�ϕ, (7)

ensures the generation of a LGσl mode with waist w by placing
the optical element in the focal plane (or, in practice, by using a
collimated beam) of a normally incident circularly polarized
Gaussian beam with waist win, provided that w < win.
The efficiency of the device (i.e., the fraction of the incident
power that is converted into the desired mode power) is
�4∕w2

in�
R
∞
0 sin2�Δl �r�∕2� exp� 2r2∕w2

in�rdr and depends on
w∕win. Its optimal value is reached for wopt �
win�1� jl j�−1∕2. In this case, introducing ρ � r∕win, Eq. (6)
simplifies to

sin�Δopt
l �ρ�∕2� � 2jl j∕2ρjl j exp� jl jρ2 � jl j∕2�: (8)

The modal figure of merit of a space variant Babinet bilayer
design given by Eqs. (7) and (8) is assessed quantitatively by
evaluating the optimal power fraction Cσl of the σ polarized
field component at the output of the element that corresponds
to a LGσl mode. Namely,

Cσl �w� �

			 R∞
0 E �w�	

l �Eout · c	−σ �rdr
			2R

∞
0 jE �w�

l j2rdr R∞
0 j�Eout · c	−σ �j2rdr

, (9)

Fig. 4. (a) Extraordinary (ñ∥), ordinary (ñ⊥), and average (ñ) effective
refractive indices of the optimized Babinet bilayered subwavelength
grating that corresponds to NΛ∕λ � 0.789 according to the inset of
Fig. 2(b). (b) Corresponding effective birefringence, d ñ � ñ∥ ñ⊥.

Fig. 5. Normalized variation of the dynamic phase as a function of
the filling factor for a single subwavelength grating (black curve) and
its comparison with the optimized Babinet bilayer (red curve) for a
given maximal retardance at F � 0.5.
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where Eout is given by Eq. (1), and the asterisk denotes complex
conjugation, paying attention to the fact that LG modal decom
position is not unique [19,20]. By considering the retardance
range 0 < Δ < π, we obtain a high degree of modality.
Namely, C�l > 0.998 for l � �1,2, 3�, which is compared to
two other situations. First, the case of single subwavelength gra
tings characterized by the same structural features as the Babinet
bilayers regarding both the optical axis orientation angle [Eq. (7)]
and the birefringence phase retardation [Eq. (8)], to which we refer
as the “non twisted single layer” case. Second, the case discussed in
Ref. [9], to which we refer as the “twisted single layer” case,
according to ψ l �r,ϕ� � �lϕ Φdyn�r��∕2. In that case, the bire
fringence phase retardation is also given by Eq. (8), while the op
tical axis orientation angle is designed to cancel out the dynamic
phase for one of the two helicity states (namely, C�l � 1) at
the expense of doubling it for the other (namely, C−l < 1).
The results are summarized in Fig. 6 and Table 1, both emphasiz
ing the superior modal performances of Babinet bilayers.

In the field of optical information processing, the spin re
versal symmetry of the proposed approach allows considering
the extension of polarization controllled high order Poincaré
spheres to the case of LG modes with given azimuthal and
radial indices, l and p. This solves a serious limitation of present
approaches restricted so far to an infinite superposition of radial
modes at fixed l , based on non modal geometric phase
elements associated with ψ � �l∕2�ϕ and Δ � π [21].

In practice, there is no need for stringent subwavelength
precision relative orientational alignment of the two subwave
length gratings, as we are dealing with effective media. In
addition, a monolithic design consisting of placing the two
structured layers at both sides of a substrate can be considered,
whose feasibility is supported by the previously reported fab
rication of double sided geometric phase lenses [22]. Still,
one should keep in mind that the grating depth and the nature
of the surrounding media play important roles in the effective
properties of the structured material [23]. In addition, Fresnel
reflections may also be taken into account, at least for two main
reasons: (i) the modification of the incident polarization as light
enters into the structures due to optical anisotropy and (ii) cav
ity effects associated with the presence of two structures. These
possible drawbacks are evaluated at F � 0.5. This gives for the
case (i), the spin flipping of ≲10% of the incident photons for
incident circular polarization, and for the case (ii), a typical
Fabry Pérot finesse ≲1. We conclude that although an attempt
to implement such a design is not excluded in principle,
quantitative attention must be kept in mind.

Finally, we note that it is not the first time that Babinet’s prin
ciple has inspired the physics of metasurfaces and metamaterials,
a pioneering example being the introduction of complementary
split ring resonators acting as electric point dipoles with negative
polarizability [24], which was followed by a huge number of de
velopments. Present work therefore illustrates how basic optical
concepts can bring attractive photonic opportunities to a field
that has much progressed during the last two decades [25], in
particular when the orbital angular momentum is at play.
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Fig. 6. Modal coefficients C�l versus the waist w of the sought after
LGσl mode for three modal designs and l � �1,2, 3�.

Table 1. Optimal Modal Coefficients maxw �Cσl �w ��
for Three Different Designs and l ��1,2,3�, which
Corresponds to the Maximal Values Associated with
the Plots Shown in Fig. 6

Grating Type ‘� 1 ‘� 2 ‘� 3

Twisted monolayera (1,0.082) (1,0.274) (1,0.520)
Non twisted monolayerb 0.454 0.555 0.744
Babinet bilayerb 0.999 0.998 0.998

aThis case refers to Ref. [9], and the two values refer to σ �1.
bThese cases are independent on σ.
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