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Abstract. Despite growing interest in smart-homes, semantically an-
notated large voice command corpora for Natural Language develop-
ment (NLU) are scarce, especially for languages other than English. In
this paper, we present an approach to generate customizable synthetic
corpora of semantically-annotated French commands for a smart-home.
This corpus was used to train three NLU models – a triangular CRF, an
attention-based RNN and the Rasa framework – evaluated using a small
corpus of real users interacting with a smart home. While the attention
model performs best on another large French dataset, on the small smart
home corpus the models vary performance across to intent, slot and slot
value classification. To the best of our knowledge, no other French corpus
of semantically annotated voice commands is currently publicly available

Keywords: natural language understanding, Corpora and Language
Resources, Ambient Intelligence, Voice-user interface

1 Introduction

Smart-homes with integrated voice-user interfaces (VUI) can provide in-home
assistance to aging individuals, allowing them to retain autonomy [1]. However,
speech can only be effectively used to interact with a home automation system if
its semantics are properly understood. Since users tend to deviate from a prede-
fined set of voice commands [2,3,4], placing restrictions on their vocabulary and
syntax is unrealistic and prohibitive. Instead, we must train a robust Natural
Language Understanding (NLU) model on a well-balanced voice command cor-
pus with user intent, slot label and slot value annotations. But, the removal of
such constraints is a huge bottleneck for NLU and would necessitate a massive
dataset.

In this paper, we present a customizable domain-specific corpus generator as
an alternative to a large manually annotated data set. It can be developed quickly
without the cost of manual semantic annotations, and is easily adaptable to new
smart-home settings. For performance evaluation, a real smart-home corpus has
been acquired from a limited set of users. This part is presented in Section 4.
To validate the approach, three state-of-the-art NLU models were trained on
the synthetic dataset and evaluated on the real smart-home dataset to show
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how the trained models perform in realistic conditions. This part is presented in
Section 5. The paper ends with a conclusion and an outlook on future work.

2 Related Work

While early slot-filling systems were rule-based [5], modern methods are data-
driven. Conditional random fields [6], have recently been replaced by deep neural
networks, including basic RNNs [7], Bi-directional LSTM RNN encoder-decoders
[8], Attention-based RNNs [9] and Attention based CNNs [10]. Most approaches
treat slot-filling as sequence labeling, attaching a slot to each word in the in-
put utterance. However, other approaches are possible, such as treating it as
a dependency parsing task [10], template matching, used by the Sweet-Home
system [11], or string matching as in [12]. Another approach is the extension of
limited domain-specific corpora with synonyms and syntactic replacement [13].
[12] focuses on statistical decision-making using contextual information. While
intent detection has traditionally been seen as a separate task from slot-filling
[14], since both tasks are highly correlated, much recent work performs slot-
filling (sequence labeling) and intent detection (sequence classification) simulta-
neously. Such work includes Tri-CRF [6], which extends linear sequence labeling
CRF with a node to represent the dialogue act, and Att-RNN [9], which extends
the slot-filling encoder-decoder RNN with an extra intent decoder. The Cassan-
dra system [15] performs NLU via neural networks, using an LSTM for intent
prediction and deep networks to identify slot locations and slot types. These
simultaneous approaches are the most relevant to the work described here.

Since slots and intents are typically domain-dependent, new domains can-
not benefit from models trained on massive, well-studied corpora. In response,
some work has targeted cross-domain prediction [16,17], including the Tri-CRF
model [16] mentioned above. In this work, we take a third approach: without a
large domotic corpus as a starting point, we develop an artificial, automatically
generated corpus to bootstrap our models as outlined in the following sections.

3 Method

3.1 Task, Intent and Slot Definition

Two main challenges for NLU in the smart-home environment are syntactic and
linguistic variability; and underspecified commands. For the ambiguous com-
mand “turn on the fan”, the NLU must identify the correct fan in the home
based on the user’s current location and activity. The NLU must also identify
the same intent from a more syntactically complex utterance such as “can you
turn on the fan”. Similarly, “a bit more” following the command “raise the blinds
a bit” must be inferred to be a request to repeat the previous action. This syntac-
tic variability and underspecified commands make NLU development a daunting
task. For the current version of our artificial corpus, we focused on understand-
ing commands without context with one intent per utterance, while still tackling
the issue of syntactic and linguistic variability.
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Table 1. Examples of NLU annotated voice commands.

Sentence Intent and slots

“are the lights up-
stairs on?”

CHECK DEVICE GROUP(DEVICE=light=”lights”, LOCATION-
FLOOR=1=”upstairs”, device-setting=on=”on”)

“call the doctor” CONTACT(PERSON-OCCUPATION=doctor=”doctor”)

“what time is it?” GET WORLD PROPERTY(WORLD PROPERTY=time=”time”)

“hey, can you hit the
light?”

SET DEVICE(ACTION=change=”hit”, DEVICE=light=”the light”)

The semantics of our artificial corpus were defined and developed around
an existing smart-home Amiqual4Home (https://amiqual4home.inria.fr) as
described in more detail in section 4. The resulting artificial corpus contains
seventeen slot categories and eight intent classes. Intents are divided into four
main categories: contact which allows a user to place a call; set to make changes
to the state of objects in the smart-home; get to query the state of objects as
well as properties of the world at large and check to check the state of an object.

The slot labels are divided into eight categories: the action to perform,
the device to act on, the location of the device or action, the person or
organization to be contacted, a device component, a device setting and the
property of a location, device, or world. Table 1 provides representative ex-
amples of the annotated voice commands, used in a flat slot-filling approach.
Different from previous work slot-label prediction is combined with slot-value
prediction for passing the required information to the decision making unit.

4 Data

The semantics for intents and slots, defined in section 3.1, were used to auto-
matically generate artificial data as well as to annotate a real dataset.

4.1 Artificial Corpus Generation

The core of the corpus generator is a feature-based generative grammar, built
around an open-source NLTK python library. Feature-respecting top-down gram-
mar generation was added. Unification functions limit feature propagation be-
tween rules to only those features which are explicitly specified in order to avoid
conflicting features. The grammar defines intents (section 3.1) as a composi-
tion of their possible constituents, with fine-grained constraints on generation.
For a rule that defines the slots of the intent set device and can generate the
command “open the door”, the Slot action has the feature ACTION whereas
Slot device has the feature ALLOWABLE ACTION. Both those features are set
to the same variable value which makes sure we only generate phrases with an
allowable action to a particular device. Subsequent rules, contain other linguistic
features such as gender and number agreement. Furthermore domain constraints
are defined for object location in the smart-home. Unification of features disal-
lows nonsensical utterances such as “light on the dishwasher in the bedroom”.
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Fig. 1. Instrumented kitchen.
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Fig. 2. Ground floor: kitchen and living
room.

Furthermore, syntactical variation was added to the grammar rules, as for
instance French interrogative constructions with the particle (“est-ce que”). The
resulting vocabulary comprises 207 word types. Counting only lemmas, it con-
tains 23 nouns denoting devices and 23 verbs denoting actions. The grammar
generates about 28,000 phrases, each annotated with an intent and slots.

4.2 VocADom Real Dataset Acquisition

The real dataset was recorded with users interacting in realistic conditions in
Amiqual4Home. This 87m2 smart-home with a kitchen, living room, bedroom
and bathroom, is equipped with home automation systems, multimedia devices,
and microphone arrays (Fig. 1 and 2). A control room centralizes remote moni-
toring, recording of sensors and control of the home devices. Eleven participants
uttered voice commands while performing scripted activities of daily living for
about one hour of recording per participant. In the first half of the experiment,
participants uttered unrestricted voice commands; in the second half, voice com-
mands were restricted by a pre-defined grammar. Using a wizard-of-Oz approach,
out-of-sight experimenters enacted user commands, acting as a ‘perfect’ NLU
system. The VocADom corpus includes about twelve hours of audio signal and
logs from the automation system. Speech was manually transcribed and 1,650
utterances, annotated with intents and slots were used as the validation dataset
for our experiments. Sentences without intent class were excluded.

For comparison purposes, we make use of the Port-Media dataset [18] of
French-language tourist information and ticket reservations for the 2010 Avignon
music festival. It is of the same size as the artificial data and rich in terms of
slot and value labels. The dataset contains natural utterances of 140 speakers
in a simulated telephone booking task with slot and value label annotations.
A comparison between the Port-Media corpus, the synthetic and VocADom
datasets is provided in Table 2.

5 Experiment

To evaluate the synthetic smart-home corpus, we examine performance of state-
of-the-art NLU models trained on the artificial corpus and tested on the real
corpus. We chose a Triangular Conditional Random Field model (Tri-CRF), a
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Table 2. NLU datasets

Dataset # intents # slots # values Avg. # values/slot # utterances

Port-Media* 4 32 450 13.6 ± 21.3 20260
Synthetic data 8 17 57 3.35 ± 4.6 28000
VocADom 7 12 46 3.91 ± 3.7 4610

*4 intent classes were extracted based on the manually labeled slots in Port-Media

neural network with attention (Att-RNN), and one open-source commercial tool,
Rasa, as a baseline. For comparison, we also evaluated performance of the models
on the Port-Media dataset.

5.1 Tri-CRF, Att-RNN and Rasa-NLU Models

The Tri-CRF model from [6,16] is an extension of a linear chain Conditional
Random Field (CRF). Linear CRFs model the conditional probability distribu-
tion of the output label sequence, given the input sequences (sentences): each
observed word xt in a sequence is conditionally dependent on its corresponding
unobserved label yt. The label yt is also conditionally dependent on the previous
label yt−1. The Tri-CRF extends this model by adding an intent z for which
each slot yt (and also potentially each word xt) is dependent on the overall sen-
tence intent z. To reduce training time, we pruned low-probability intents (<
0.1%) and initialized the weights using the pseudo-likelihood (for 30 training
iterations). Training proceeded for 200 iterations.

The Attention RNN (Att-RNN) model from [9], is a recurrent encoder de-
coder architecture for simultaneous intent detection and slot labeling. In our
implementation of Att-RNN, the input words are first passed to a 128-unit em-
bedding layer. The bi-directional LSTM encoder and decoder are each a single
layer of 128 units. Training is performed using stochastic gradient descent (SGD)
with a batch size of 16, using gradient clipping at a norm of 5.0, dropout with
a keep-probability of 0.5 and training was allowed to continue for 10,000 train-
ing steps. We selected the trained model with the highest F1 score on the slot
labeling task on the validation set. For Tri-CRF and Att-RNN, two models are
trained, one to predict intent and slot-labels (Att-RNN-Labels) and one for slot-
values (Att-RNN-Values).

Rasa NLU (https://rasa.ai/products/rasa-nlu/), an open-source tool
for building NLU pipelines, is used as a baseline. Unlike Tri-CRF and the Att-
RNN, Rasa does not predict a sequence of slots for each input word, but rather a
set of slot-labels and slot-values associated with different segments of the input.
The used Rasa configuration is ‘spacy sklearn’ with a linear chain CRF to classify
slot-labels and a lookup table to determine slot-values. Separately, the model
uses a linear SVM based on pre-trained word-embeddings to classify intents. The
embeddings are drawn from the spacy language model ‘fr depvec web lg’, trained
using word2vec on text data from Wikipedia, OpenSubtitles and Wikinews. The
final vocabulary contains 1,184,651 words and the embeddings are vectors of
length 300.
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Table 3. Learning results on Port-Media and VocADom datasets

Model Precision Recall F1
Att-RNN-Intent 97.56 97.56 97.56
Tri-CRF-Intent 96.42 96.43 96.36
Rasa-Intent 92.20 92.52 92.26
Att-RNN-Labels 95.96 96.36 96.11
Tri-CRF-Labels 95.31 95.74 95.39
Rasa-Labels 95.17 94.22 94.16
Att-RNN-Values 94.85 95.73 95.08
Tri-CRF-Values 92.01 93.49 92.32
Rasa-Values 93.94 93.73 93.34
(a) NLU performances on Port-Media

development dataset.

Model Precision Recall F1
Att-RNN-Intent 93.77 90.28 91.30
Tri-CRF-Intent 84.11 79.47 76.36
Rasa-Intent 90.48 71.39 76.57
Att-RNN-Labels 69.19 66.24 66.09
Tri-CRF-Labels 77.28 52.65 60.64
Rasa-Labels 85.72 73.54 79.03
Att-RNN-Values 43.02 30.51 35.00
Tri-CRF-Values 51.33 25.52 33.51
Rasa-Values 68.56 56.73 61.95
(b) NLU performances on VocADom

dataset.

5.2 Results

Standard metrics were used for both intent classification and slot-labeling: preci-
sion, recall and F1-score. For slot-label and slot-value classification, metrics are
calculated by comparing labels for words across all examples. The Port-Media
and the artificial datasets are randomly divided into a training set of 90% and
a development set of 10%.

Table 3.a reports results on the Port-Media dataset. The performance is only
reported for the development set. Att-RNN provides the highest performances
for the three tasks, with Tri-CRF competitive in all but the slot-value tasks.
Both outperform Rasa. These results demonstrate the level of performance that
can be achieved on real data, similar to real smart-home data. Accuracies on
the artificial data development set are quasi-perfect, due to the very homoge-
neous nature of the synthetic corpus. Results of the artificial training data on
the real VocADom validation dataset of 1,650 utterances are provided in Ta-
ble 3.b. Overall performances on VocADom are worse than on Port-Media and
particularly bad for slot-label and slot-value prediction. However, the high in-
tent prediction accuracies on Port-Media are biased due to the high frequency
of ’none’ intents in the corpus, the low number of intent classes (4) and overlap
between slots and intents. The results of slot-filling on VocADom are unsatisfac-
tory. Errors are more randomly distributed over several categories and therefore
more difficult to analyze. This is probably due to the significantly higher syntac-
tic and lexical variation in the VocADom real dataset. Repetitions, disfluencies
and interjections (ex.“euh”) result in utterances that are syntactically different
from the artificial dataset. The 3-gram artificial language model perplexity on
the real corpus is of 134 (without the < s > tag). The OOV rate is also high,
with 206 words not occurring in the artificial dataset.

Contrary to TRi-CRF and Att-RNN, Rasa performs well on slot labeling as
it uses a word embedding layer which allows it to deal with the high number
of OOV words indicating that artificial data generation benefits from external
resources. Compared to results on the manually annotated Port-Media corpus,
the poorer slot-filling results indicate that the automatic slot-label generation
algorithm of the synthetic corpus can still be improved. Detailed results for
Att-RNN predictions are given in Table 4.
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Table 4. Detailed results for Att-RNN

Intent F1
check device 76.47
check device group 71.69
set device 97.09
set device group 88.65
set room property 70.59

(a) intents

Slot F1
action 62.03
device 84.06
device-setting 10.42
location-room 66.90
room-property 70.00

(b) slots

Value F1
close 72.81
light 80.83
lower 17.53
open 67.51
turn off 41.51
turn on 68.07

(c) values

As hypothesized by [6] and [9], the joint approaches of the Tri-CRF and
Att-RNN outperform Rasa’s SVM-based intent classification on the VocADom
dataset. This also shows that the synthetic corpus does contain enough informa-
tion to train isolated intent models to be applied on real data.

6 Conclusion

In this paper, we address the lack of smart-home NLU training corpora by build-
ing a customizable automatic corpus generator for the smart-home domain. The
corpus was evaluated by training two state-of-the-art models which were tested
on a small but real smart-home dataset and compared to our baseline. Com-
parison of the models allowed us to pinpoint the artificial corpus or the models
as main source of prediction errors. Both the Tri-CRF and the Att-RNN per-
formed well on the large real Port-Media dataset and on the artificial voice
command dataset. However lower performance on the small real smart-home
dataset demonstrates difficulty handling its increased naturalness, vocabulary
and syntactic variation. Both corpora are intended to be made available to the
community. Future research aims to increase the level of naturalness of the gen-
erated corpus, using a joint approach inserting generic language models into the
task-specific learning phase, taking into account context and history of com-
mands (see [8]) and a simultaneous prediction of intents, slots and values. Such
compound models have, at the time of writing, not been previously explored in
the slot-filling literature and would be a useful and novel contribution to the
field.
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