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Abstract—In Intelligent Environments, prediction and decision
must take the context of interaction into account to adapt
themselves to the evolving environment. If most of the approaches
to deal with this problem have used a formal representation
of context, we present in this paper a direct extraction of the
context from raw sensor data using deep neural network and
reinforcement learning. Experiments undertaken in a voice con-
trolled smart home showed which elements are useful to perform
context-aware decision-making in the home and the adequacy of
reinforcement learning to tackle an evolving environment.

Index Terms—smart home, context-aware computing, Ambient
Intelligence, reinforcement learning

I. INTRODUCTION

Intelligent Environments, such as smart homes, are fit
with numerous sensors and actuators to provide services that
enhance users’ experience and control over their environment
[1]. To make this enriched control possible, these systems
perceive their environment and decide which actions to apply
to the environment. This decision can be made after some
specific events such as a user’s request, a scheduled event (e.g.,
programmed task) or a detected risky situation. This perception
is not only useful to trigger a decision but also to adapt the
decision making to the current circumstances in which such
decision must be performed. These circumstances are called
the context and systems that explicitly take the context into
account, are said context-aware. However, defining explicitly
what pieces of information is playing an important role in the
context of a decision is a difficult and tedious task. Indeed, if
a general definition of context exists in the field [2], the large
amount of existing models [3], [4] demonstrates not only the
importance of this notion for research but also the lack of a
unified way of modelling context in intelligent environments.

In this paper, we present an approach to perform context-
aware decision for voice command in a smart home that
does not use an explicitly defined context. Rather, the context
information is directly learned from data using deep neural
network [5], [6]. Indeed, one of the main advantages of
Deep Learning (DL) is to learn attributes from raw data at
the same time as the classification model is trained. This
ability of DL has been demonstrated in numerous classification
tasks reaching superhuman accuracy in the case of image
classification [6]. Apart from the identification of necessary
elements of the context, another aspect of context awareness

is to be able to capture a changing context over time. Indeed,
sensors, activity places, dwellers, etc. can change and any
system that targets a lifelong support must be able to take these
changes into account. To adapt continuously to a changing
environment, the decision model we present in this paper uses
reinforcement learning to update its decision policy.

The paper is structured as follows. Section II presents the
method to represent sensor data for neural network and the
reinforced adaptation loop with the decision model acquired
using deep learning. A smart home is fit with many hetero-
geneous sensors that are highly different in term of semantic
and dynamic (e.g., temperature, contact-door, speech), thus,
this section describes the method used to project this raw
information into a unique representation: an image. Moreover,
two decision models using different abstraction levels of
contextual information are detailed. In Section III, the methods
are experimented and compared using a real smart home
corpus. The results give an insight of the capability of DL to
make decision based on raw data and shed light on the most
important contextual information used by the decision model.
The approach is then positioned with respect to related work
in Section IV before the paper ends with a short conclusion.

II. METHODS

This section presents the adopted data representation (II-A)
and the reinforced adaptation loop with the decision model
acquired using deep learning (II-B).

A. A common representation for heterogeneous information:
a raw image approach

In smart-homes, data are multi-modal: from continuous time
series, such as the overall water consumption to event based
semantic information such as voice commands or the state
change of a device. Hence, finding a representation accommo-
dating low-level continuous values (e.g. water consumption)
and high-level categorical events (user current activity) is
a problem that has not found a consensual solution in the
community. We propose to use a graphical representation,
projecting data on a two-dimensional map of the smart-
home any time the environment state changes. Then, relevant
features from this raw representation are extracted by Con-
volutional Neural Networks (CNN). This approach provides
some advantages:



Fig. 1. Example of generated image from annotations

1) Image generated can be used by the user to monitor what
the system sees or understands;

2) Resulting image size is only loosely linked to the num-
ber or type of sensors (adding, removing, or changing
some sensors will not change the size of the image),
hence images accommodate a variable number of data
sources (sensors can come and go) a property that
classical input vector machine learning approaches do
not naturally handle;

3) Image naturally convey spatial information (here an a
priory information about the home room organisation);

4) High redundancy of sensor values can be efficiently used
by deep learning.

Examples of generated images for the smart-home consid-
ered in the study are provided in Figures 1 and 2 which
represent the same situation: the user asks to turn off the radio
while she is eating in the kitchen. Black lines represent the
walls of the home so that spatial information is provided to the
system. To capture context, two representations were chosen.
The annotated one, represented Figure 1, uses icons to display
humanly annotated contextual information such as location of
the user, activity and voice command. In the raw one (Fig. 2),
only raw sensor data are represented. For instance usage of
light is represented by a black lamp on white background while
a turned off lamp is a white lamp on dark background. The
highest part presents some gauges for electricity and water
consumption while the icon at the bottom left is the uttered
command. Images and icons were chosen to maximize the
contrast and redundancy for the CNN, to be understandable
by human and to be easy to generate on the fly.

B. Decision adaptation through reinforcement learning

The method to continuously adapt the decision model to the
situation and the user follows a Reinforcement Learning (RL)
strategy. In a RL problem, two components are interacting with
each other: the environment and the agent. At each interaction,
the agent (here the decision-making system) is fed with the
current environment state st ∈ S . From st and the past, it
chooses an action at ∈ A to be applied to the environment.
The environment (here the house and the user) state is modified
by the action (from st to st+1) and reacts by providing a
reward to the agent. This reward R(st) = rt can be positive if

Fig. 2. Example of generated image from raw data

the action is appropriate, negative if the action is not adequate,
or null. Based on this reward, the agent adapts its decision
policy.

While dynamic programming [7] can solve the problem of
finding the optimal policy, it cannot be used in real settings
due to missing information about the environment model and
the reward function. Instead, the Q-Learning method [8], can
be used to compute and update a policy which will converge
toward the optimal one. In Q-Learning, a function, named Q-
function, associates a value, named Q-value, to each possible
pair of state-action, named Q-state: Q : S × A → R,
where S is the set of possible states of the environment,
and A is the set of possible actions to perform. Beginning
with an initial Q-function (Q0), it can be updated after each
interaction 〈st, at, rt, st+1〉, following Equation 1 (where γ
is the discounting factor of the reward function and α is a
learning rate). This updating rule has been proved to converge
toward the actual Q-value of each Q-state, making it possible
to compute the optimal policy.

Qk+1(st, at) = α
(
rt+γmaxaQk(st+1, a)

)
+(1−α)Qk(st, at)

(1)
The learning method is highly dependent on the way the Q-
function is actually represented. For instance, classical imple-
mentations choose a tabular representation: a two-dimensional
array of Q-values, indexed by states (rows) and by actions
(columns). However, this approach does not scale to big or
continuous sets of states or actions and does not make it
possible to use redundancy in the learning.

Instead of a tabular representation, a deep neural network
can be used to approximate the Q-function. In [9], a new ap-
proach, Deep Q-Network (DQN), has been developed to model
the Q-function and applied to a game decision problem given
a sequence of video game image frames. Although the work in
[9] is not the first attempt to use neural network to model the
Q-function [10], it is the first which succeeded to implement
an efficient learning. Thanks to different optimisation tech-
niques such as the use of a target network, experience replay
[11], mini-batch learning or RMSProp gradient optimisation
[12], the learning can converge in reasonable time and is able
to scale to large images1. This is the approach we adopted and

1Due to space constraint the reader is refereed to Mnih et al. [9] for details.



adapted to context aware smart-home decision-making and that
is succinctly exposed in the remaining of this section.

The decision model is based on a Convolutional Neural
Network (CNN) to process the images followed by a fully
connected neural network to compute the Q-value for each
action. Figure 3 presents the architecture of our model, the
Q-network. The neural network is composed of four convo-
lutional layers, reducing a 256× 256 input image to features
maps of sizes: 16 × 64 × 64, 32 × 21 × 21, 64 × 10 × 10,
and 64 × 8 × 8. The features maps of the last layer are then
rearranged in a vector of dimension 64× 8× 8 = 4096. This
vector passes through fully connected linear layers of width
512 and 33 which is the number of possible actions. A rectified
linear unit follow each layer except the last one.

Thus, this model provides a way to process the generated
images presented in II-A. After preprocessing (scaling and
reducing the depth of the image), the image is passed forward
in the Q-network. The network builds and extracts relevant
features used to compute the Q-value of each possible action.
Thus the network can be seen as a the function Q−network :
[0, 255]256×256 → R33, where 33 is the number of actions
and 256 the size of one side of the image. Then, Equation 1
detailed earlier can be used as a loss function to update
the weights of the Q-network, as in typical deep learning
approaches.

The overall learning of the decision-making module (the
agent) is decomposed into two phases: a pre-training phase
(i.e., initialisation of the agent), during which the model is
learned from scratch and an adaptation phase during which
the model is tuned toward the environment. In practice, the
pre-training phase is performed off-line and is mostly devoted
to the learning of the CNN and the subsequent neural network.
It is well-known that CNN needs a high amount of data ; that
is why, in our work, we used artificially generated data to
feed the CNN with raw input to learn the CNN weights. In
the adaptation phase, the CNN is not supposed to evolve but
the last part of the neural network (i.e., the decision part) is
biased towards the adaptation data. These data can be either
acquired on-line or performed on corpus if available.

In any of these phases, reinforcement learning method is
the same. Starting from an initial agent, the system makes
maxSteps interactions, in which the observable state of the
environment is passed to the agent, before it chooses an action
applied back to the environment which releases a reward. All
these interactions are recorded by the agent which uses them
during a learning procedure. This training epoch (interactions
plus training) is realised a number maxEpoch of times.

Since during the pre-training phase the agent explores artifi-
cially created data, the environment is not able to evolve con-
sequently to a wrong action. Thus, to multiply the number of
situations and explore wrong decisions, up to triesThreshold
actions can be successively tried to simulate the patience
of the user, repeating the same command until the system
finally behaves correctly. For the pre-training phase, the agent
executes a near greedy policy named ε-greedy policy [13].
Given ε ∈ [0; 1], this policy returns a random action with

probability ε for the action with the highest Q-value given the
current state.

To compute the Q-value of each action, the agent uses
its approximated Q-function, modelled by the deep neural
network Q-Network. However, to ensure a stable learning,
the method does not use the latest interaction to compute
the error but a set of past interactions from which a (mini-)
batch is randomly drawn to train the network. Using this batch,
an updated Q-value named target-value is computed and the
difference between current Q-values (immediates) and target-
values (from a set of past interactions) is used as a loss and
propagated through the Q-Network [9].

III. EXPERIMENTS

The models were trained in two phases: the pre-training
phase, where the agent is trained on artificial data and the
validation phase which performs a cross-validation on a real
corpus. Then, the approach learned from raw sensor data
is analysed to explore the kind of sensors and contextual
information that are used to make decision. Before entering
into the details of the experiment, the input data are presented
in the following section.

A. Input data

1) Smart-home Corpus: The dataset used for the validation
phase is part of the publicly available Sweet-Home corpus
[14]. It was recorded in the DOMUS smart-home designed by
the Laboratoire d’Informatique de Grenoble (LIG) [15]. This
30m2 home includes a bathroom, a kitchen, a bedroom, and a
study as shown in Figure 4. All these rooms are equipped with
sensors and actuators such as infrared motion sensors, touch
sensors, video cameras (only used for annotation purposes),
etc. In addition, seven microphones in the ceiling capture
the audio. More than 150 sensors are managed in the flat to
provide different services (e.g. light, opening/closing shutters,
media management, etc.).

In this study, 15 naı̈ve participants (9 women, 6 men) were
recruited to play scenarios of the daily life in the flat. To make
the data more natural, the participants were asked to enact the
following situations:

• to clean up the flat;
• to prepare and eat a meal;
• to converse via video conference;
• to do leisure activities (reading);
• to take a nap.

In each situation, participants were asked to issue a number
of voice commands to activate the actuators in the smart
home. The objective of this experiment was to test a smart
controller in real situations corresponding to voice commands
pronounced by the user.

2) State and action sets: A total 11 hours of data of
every sensor and actuator were recorded. The smart-home
corpus was synchronized and annotated [16]. The annotations
consisted in a set of situations, composed of the user’s
uttered command, the user’s location and the user’s current
activity. This input state is associated to the expected output
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Fig. 4. The Domus smart-home

decomposed in command type and a location about where to
execute the command. For instances, the following excerpt
from the dataset shows that a voice command to open the
blinds in the kitchen should be followed by the opening of all
the blinds of the kitchen. On the second line, when the light
is asked to be turned on while cooking in the kitchen, the
only possible action is to light on the lamp above the sink.
blind - open kitchen none -> blind - open kitchen

light - on kitchen cook -> light - on kitchen - sink

This results in a state space of size 324 = 12 voice
commands ×3 locations ×9 activities.

The raw states can take more different possible values. 81
sensors were recorded in the smart home:

• 49 binary sensors;
• 32 continuous sensors which can take values in different

ranges (from [0; 100] up to [0; 232 − 1 = 4294967295]).
This leads to more than 1012 possible states.

From the neural network point of view, a state is an image
of size 256 × 256 × 3 pixels, each taking a value between 0
to 255. The resulting state set have a size of 256256×256×3 =
21572864 ≈ 1.75e473479. From which one out of 33 possible
actions must be chosen.

3) Generated corpus: Unfortunately, the smart-home cor-
pus does not contain enough relevant samples of voice com-
mands to perform deep-learning from it. As a workaround,
a data generation system was developed based on a few
generation rules. Two types of corpus were generated: the
annotated corpus and the raw corpus. The raw corpus was
generated to use the ability of deep learning to build its own
features from raw data. The generation consisted in generating
annotations for the voice commands and the expected actions

as well as simulating values for the raw sensor data. This
was performed by producing a random annotated state which
is then converted using a set of rules. For example, if the
annotated location is the kitchen, then the presence detector
sensors of the kitchen are constrained to be active. In the
meantime, the bedroom being the room next to the kitchen, its
presence detector sensors are constrained to be active with a
defined probability. This mechanism is applied for all relevant
sensors, while random values are applied to irrelevant ones.

B. Learning results
The two network architectures and image inputs have been

trained on artificial data and evaluated on the real Sweet-home
corpus. For the DQN with annotated data, the pre-training
phase used annotated simulated data composed of annotations
about the user’s command, location and activity resulting in
images with only three icons (Figure 1).

For the DQN with raw sensor data (Figure 2), images
were generated during the pre-training phase using a syn-
thetic corpus where all data streams were perfectly synchro-
nized. However, the real smart-home corpus does not provide
this quality of synchronization between heterogeneous data
streams. To overcome this problem, we chose to provide to
the Q-network a wider window of the last 3 seconds of the
state of the environment. As a consequence, many samples
where no action was required by the agent were introduced (2
samples of no action for any of the 32 other actions), leading
to an unbalance dataset biased towards the no action class.
To compensate for this learning bias, the reward function was
updated so that instead of receiving a reward of (−1), a reward
of (−192) is provided if the agent select the no action class
when an action is expected.

Once a model is learned from scratch, the evaluation
phase adapts it to new data. The Leave One Subject Out
Cross-Validation (LOSOCV) method is adopted. This cross
validation method keeps one subject file for testing and uses
the remaining one for learning, each file in turn. Each fold of
the LOSOCV method runs the system for 300, 000 interactions
on the real annotated data. Test of the model happens every
6, 000 interactions, running 5, 000 monitored interactions.

A baseline system using a classical tabular Q-learning has
been learned and tested by LOSOCV. However, since the
classical approach uses a matrix to represent the state, this



approach would not be tractable if it was applied directly to
the large amount of sensors values (cf. sec II-B). Hence, the
baseline was trained on the humanly annotated location and
activity labels, which favour the baseline performances.

Table I summarises the result of the learning step. Even
though the reinforcement learning objective is to maximise the
reward, in this paper, standard classification measures such an
F-Measure have been chosen. Indeed, the task can be seen as a
classification one, classifying a sample (the environment state)
between 33 classes (the actions). In our experiment, a correct
classification is considered only when the chosen action is
composed of the right action (e.g., turn on) on the right device
(e.g., light) at the right place (e.g., study). Any other choice
is a wrong classification.

TABLE I
F-MEASURE OF THE LEARNING AND EVALUATION PHASE FOR THE

DECISION MAKING TASK.

Testing F-M (%) Validation F-M (%)
synthetic data real corpus

baseline* NC 46.0
DQN & annot.* 100 79.0
DQN & raw 100 67.5

* learned and evaluated on humanly annotated data.

While the baseline only deal with humanly annotated data,
it presents a low F-Measure of 46%. Regarding the DQN on
annotated data the adaptation of the model lead to an average
reward of 0.52 and an F-M of 79%. When a DQN is trained
and validated on raw sensor data, the score reaches more
than 65% of F-Measure. Both DQN approaches demonstrated
results far better than the baseline system [16]. The DQN
on annotated data exhibits the highest performances but was
trained on perfectly humanly annotated high level contextual
data (i.e., activity and location) which is not consistent with
real usage in which contextual information is inferred and
infected with errors. Although, the DQN on raw sensor data
does not lead to the best performances, it demonstrates that a
context aware decision-making model without an explicit rep-
resentation of context is possible and lead to a very promising
result of 67.5% of F-Measure. An interesting question is to
know what kind of information this DQN extracts to make a
decision.

C. Analysis of information used by the deep-model

While an associative table can be interpreted for a tabular
Q-learning problem, it is more complex to analyse a neural
network. This is a recurrent grief addressed to neuronal mod-
els, and thus methods have been developed to better understand
how they work [17]. We present two complementary analyses.
The first one consists in removing some sensor sources in
the learning to test their usefulness and the capability of the
learning process to overcome the sudden lack of information.
The second analysis investigates which features the neural
network builds, and if they match the ones usually found in
the literature.
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Fig. 5. Learning with a missing information: in blue kitchen motion sensors
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command information (from the ASR — Automatic Speech Recognition—
system).

1) Sensors usage by the deep model: Four experiments
were performed, based on a pre-trained (with synthetic raw
data) model, in which different kinds of sources of information
were removed. As shown on Figure 5, in case of removal of
the kitchen motion sensors and during the adaptation phase,
the performances are impacted but the system quickly adapts
its behaviour to reach back its initial performances. Thus,
although this location source is important, the network uses
the other available sources to counterbalance this loss of infor-
mation. Rather, when the speech source is removed, a dramatic
fall of the performances appears. However, the same Figure 5
shows that the system still acts with an higher F-Measure
(around 20 +−10%) than randomly (a random choice would
get about 3% of F-M). This behaviour could be explained by
the fact that the system still gets images 2 seconds before an
action is expected. This historical information seems to have
been used during the pre-training to know when an action
is expected. However, the oscillations of the score indicate
that the system is not able to infer the user intention only
from the sensor values (i.e. from contextual information). The
speech signal is thus highly necessary to get user’s intention.
Two others sensors were removed in the kitchen: the sound
detectors and the door switches for kitchen cupboard and
fridge. The former are particularly active when the user tidies
the home, and one would expect a drop in the performances.
But, no impact in the F-Measure performances were noticed
while this information is of particular importance for activity
recognition.

2) State features: During its forward pass through the
network, the input image is transformed to extract relevant
features, resulting in high-dimensional vectors. One way to
study these vectors is to project them in a two-dimensional
space while preserving some inter-vectors relations such as the
euclidean distance. One of the most used projection methods
is the t-SNE (t-distributed Stochastic Neighbour Embedding)
projection [18] which performs very well to project vectors
issued by a convolutional neural network.



Fig. 6. Post-convolution t-SNE projections: User location

Fig. 7. Post-convolution t-SNE projections: User activity

In the following experiment, we provide some states (im-
ages) to a pre-trained model, while recording vectors after the
last convolutional layer, and the one before the last fully con-
nected layer. These vectors are also linked to the information
characterising the input state (location, activity, uttered com-
mand, expected action, sensors activity). Projecting the vectors
provide a bi-dimensional coordinate (0, 0) ≤ (x, y) ≤ (1, 1)
able to represent any of the linked information.

Results presented in Figures 6 and 8 show that some
information is identified and extracted by the convolutional
part of the network. For example, the network projects input
data into blobs that are coherent both with respect to the users’
location (colored area in Fig. 6) and with respect to uttered
commands (colored area in Fig. 8). By contrast, no group are
spotted for human activities (Figure 7). On the zoomed zone
very different activities such as do nothing (the cross),
eating (crossed knife and spoon) and cooking (oven) are
projected in the same area. These results confirm the interest
of user location as a contextual information but user activity

Fig. 8. Post-convolution t-SNE projections: Uttered command

Fig. 9. Pre-classification t-SNE projection representing the expected action

does not seem to be a relevant feature for the neural network
to estimate decision. However, if semantic labelling of the
activity is not exploited by the network, more low-level activity
measures, such as agitation level, could be studied.

The last projection, presented in 9, provides information
about the way the neural network transforms the space to
make each class linearly separable. While there is a majority of
Do Nothing action, we can identify some groups of common
action type (icon type) and action place (icon colour), proving
that images of state contain enough information to decide
which decision to make.

IV. RELATED WORKS

Typical smart-homes considered in the study are the ones
that permit voice based interaction. This kind of smart homes
is particularly suitable to people in loss of autonomy [19], [20].
Although it recently gained interest in the speech processing
community [21]–[26] none of these work formalises the voice
command recognition as a context-aware decision problem. In
that case, identifying what contextual information is needed



to understand the intention of the user for it utterance is of
particular importance.

Regarding contextual information and context extraction,
research on context aware systems has generated a vast amount
of knowledge representations. The main trend for knowledge
representation in smart environments has become ontology, in
particular those based on Description Logic [27], [28]. This ap-
proach is also popular to model the current context for mobile
applications [29], [30]. However, Description Logic has not
been originally designed to model imprecision in sensors data
or inferences that is why extension with fuzzy representation
had been proposed [31]. Another important contribution to
make ontologies capable of dealing with uncertainty is the
use of probabilistic models in ontology inference. A notable
application of such approach has been presented by [32] and
by [33].

In all of these approaches, the context modelling is con-
sidered from a top-down perspective, where elements of the
context are identified by expertise. In this paper, we propose
a different approach: a data-driven constitution of the con-
text where all the sensor data are unified into a common
representation: an image. The closest work to this approach
is the recent one by [34] which transforms pressure sensor
data into image domain to perform gait identification. In this
work, a pressure sensor matrix is converted into an image to
perform CNN and RNN learning. However, in their work the
data were already sequences of 2-dimensional values while in
our case we dealt with a set of monodimensional sensor data
of variable type (Boolean, categorical, numerical) projected in
the schema of the home. Our approach is thus more adapted
to context-awarness in smart home and provide the user with
an understandable data representation.

Regarding the decision-making process, several logic-based
approaches are presented in the literature using description
logic [35], [36] or fuzzy logic [37]. However, in these pro-
posals the system is set a priori to execute an action given
a specific configuration (the condition) and consequently the
system does not adapt its behaviour to a changing situation.
Some research work on context aware systems have relied
on Bayesian Network [38]–[40] or Markov Logic Network
[41] which brings the advantage of being learned from data.
However, these approaches do not include mechanism to adapt
the decision model to new situations. Furthermore, if part of
the model can be learned from data, the logic part is acquired
by human expertise which has the same drawback as the logic
based knowledge representations in smart-home.

To tackle the problem of adaptation, some researches in
smart-home have designed the decision problem as a rein-
forced decision-making problem. One of the most famous
of these works is The Neural Network House [42] where a
smart home was controlled by the ACHE system [43], which
commanded the lights in order to reduce the overall energy
consumption without impairing the inhabitant comfort based
on the perceived environment. Although this project showed
promising results and gave rise to other research [44], [45],
the RL technique employed poorly scales to large real cases

sets. As demonstrated in [9], a way to solve this issue, is to
change the data structure, relying for example on a deep neural
network [5], [6]. Following the work of [9] who proposed
deep reinforcement learning called Deep Q-Network (DQN),
we adapted this approach for the first time to the smart home
domain and used it to exhibits the kind of context information
that is useful for adaptive decision-making.

V. CONCLUSION

The results of the experiments of a reinforcement learning
method with a deep model for automatic adaptive decision-
making in smart-homes show promises. In particular, the
experiments show that:

• the deep model can learn the relevant contextual infor-
mation from raw data;

• the system can adapt its model to an evolving set of
sensors;

• graphical representation of smart-home multi-modal het-
erogeneous data can be interpreted by the system to make
correct decisions;

• the method can scale from small input spaces (annotated
data) to big input space (raw sensor data).

Despite the model learned from raw data shows a slightly
weaker F-Measure than the one learn from annotated high-
level contextual input, this former model make it possible
to do without specialised external inference models. Indeed,
in typical settings, user’s location, activity and decision are
processed independently to form a processing pipeline. While
this approach has its own virtue by making the information
formally defined and shareable, this processing chain must
deal with the uncertainty propagated along the pipeline and the
difficulty of adapting the whole chain to changes in the smart-
home. With a deep model and reinforcement learning, the
context is automatically learned and tuned toward the decision
task and is thus more robust to change in the home.

However, Deep Learning is very demanding in training data
and computation time. For instance, in the raw data settings,
it took about 8000000 interactions (which correspond to 100
days in real time) before the system acquires a coherent
behaviour. It took more than 4 days and 16 hours to compute
this experiment on the recorded corpus. While the learning is
far too long for a home, we have shown that using artificially
created data, this learning phase can be subsequently adapted
to new data in a time comparable to tabular Q-learning [16].

In conclusion, Deep Learning generates great expectations
given its success in many tasks in data processing and reason-
ing. But, beyond the shift in performance, what is probably
the most interesting from a scientific perspective is its ability
to learn features from raw data to inform us about which
information comes into play when solving a problem such
as context-aware decision-making. Although the model used
in this study (neural network) does not reach the level of
expressiveness of logic based approach, its ability to extract
features from raw data can play a role in defining what
the most important context elements might be in intelligent
environment applications.
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