
HAL Id: hal-01802720
https://hal.science/hal-01802720

Submitted on 17 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

JACPoL: A Simple but Expressive JSON-based Access
Control Policy Language
Hao Jiang, Ahmed Bouabdallah

To cite this version:
Hao Jiang, Ahmed Bouabdallah. JACPoL: A Simple but Expressive JSON-based Access Control
Policy Language. WISTP 2017 : 11th IFIP International Conference on Information Security Theory
and Practice, Sep 2017, Heraklion, Crete, Greece. pp.56-72, �10.1007/978-3-319-93524-9_4�. �hal-
01802720�

https://hal.science/hal-01802720
https://hal.archives-ouvertes.fr


JACPoL: A Simple but Expressive JSON-based
Access Control Policy Language

Hao Jiang and Ahmed Bouabdallah

IMT Atlantique, Site of Rennes, 35510 Cesson-Sevigne, France
{hao.jiang, ahmed.bouabdallah}@imt-atlantique.fr

Abstract. Along with the rapid development of ICT technologies, new
areas like Industry 4.0, IoT and 5G have emerged and brought out the
need for protecting shared resources and services under time-critical and
energy-constrained scenarios with real-time policy-based access control.
The process of policy evaluation under these circumstances must be exe-
cuted within an unobservable delay and strictly comply with security ob-
jectives. To achieve this, the policy language needs to be very expressive
but lightweight and efficient. Many existing implementations are using
XML (Extensible Markup Language) to encode policies, which is verbose,
inefficient to parse, and not readable by humans. On the contrary, JSON
(JavaScript Object Notation) is a lightweight, text-based and language-
independent data-interchange format that is simple for humans to read
and write and easy for machines to parse and generate. Several attempts
have emerged to convert existing XML policies and requests into JSON,
however, there are very few policy specification proposals that are based
on JSON with well-defined syntax and semantics. This paper investigates
these challenges, and identifies a set of key requirements for a policy lan-
guage to optimize the policy evaluation performance. According to these
performance requirements, we introduce JACPoL, a descriptive, scalable
and expressive policy language in JSON. JACPoL by design provides a
flexible and fine-grained ABAC (Attribute-based Access Control), and
meanwhile it can be easily tailored to express a broad range of other ac-
cess control models. This paper systematically illustrates the design and
implementation of JACPoL and evaluates it in comparison with other
existing policy languages. The result shows that JACPoL can be as ex-
pressive as existing ones but more simple, scalable and efficient.

Keywords: real-time access control, lightweight policy language, JSON,
fast policy evaluation

1 Introduction

Access control is an important security mechanism involving user specified poli-
cies to determine the actions that a principal can perform on resources. Typically,
the access requests are intercepted and analyzed by a PEP (Policy Enforcement
Point), which then transfers the request details to a PDP (Policy Decision Point)
for evaluation and authorization decision [1]. In most implementations, the state-
less nature of PEP enables its ease of scale. However, the PDP has to consult the



2

right policy set and apply the rules therein to reach a decision for each request
and thus is often the performance bottleneck of policy-based access control sys-
tems. Therefore, a policy language determining how policies are expressed and
evaluated is important and has a direct influence on the performance of the PDP.

Especially, in nowadays, protecting private resources in real-time has evolved
into a rigid demand in domains such as home automation, smart cities, health
care services and intelligent transportation systems, etc., where the environments
are characterized by heterogeneous, distributed computing systems exchanging
enormous volumes of time-critical data with varying levels of access control in a
dynamic network. An access control policy language for these environments needs
to be very well-structured, expressive but lightweight and easily extensible [2].

In this paper, we investigate the relationship between the performance of the
PDP, the language that is used to encode the policies and the access requests
that it decides upon, and identify a set of key requirements for a policy lan-
guage to guarantee the performance of the PDP. We argue that JSON would be
more efficient and suitable than other alternatives (XML, etc.) as a policy data
format in critical environments. According to these observations, we proposed a
simple but expressive access control policy language (JACPoL) based on JSON.
A PoC (Proof of Concept) has been conducted through the implementation of
JACPoL in a policy engine operated in reTHINK testbed [3]. At last we carefully
positioned JACPoL in comparison with existing policy languages.

The main contribution of this work is therefore the definition of JACPoL,
which utilizes JSON to encode a novel access control policy specification lan-
guage with well-defined syntax and semantics. We identify key requirements
and technical trends for future policy languages. We incidentally propose the
new notion of Implicit Logic Operators (ILO), which can greatly reduce the size
and complexity of a policy set while providing fine-grained access control. We
also elaborate on the applicability of JACPoL on ABAC model, RBAC model
and their combinations or their by-products. Last but not least, our implemen-
tation leads to a novel and performant policy engine adopting the PDP/PEP
architecture [1] and JACPoL policy language based on Node.js 1 and Redis 2.

The remainder of this paper is structured as follows. In Section 2, we refine
our problematic by delimiting precisely its perimeter. In Section 3 we illustrate
in depth with representative policy examples the design of our policy language
in terms of the constructs, semantics and other important features like Implicit
Logic Operators, combining algorithms and implementation. Section 4 further
evaluates JACPoL and compares it with other existing access control policy spec-
ification languages. The ABAC-native nature of JACPoL is detailed in section 5
along with a comprehensive discussion on other possible application of JACPoL
to ARBAC (Attribute-centric RBAC) and RABAC (Role-centric ABAC) secu-
rity models. In Section 6 we summarize our work and discuss future research
directions.

1 nodejs.org
2 redis.io



3

2 Problem Statement

In the past decades, a lot of policy languages have been proposed for the speci-
fication of access control policies using XML, such as EPAL [6], X-GTRBAC [7]
and the standardized XACML [8]. Nevertheless, it is generally acknowledged that
XACML suffers from providing poorly defined and counterintuitive semantics [9],
which makes it not good in simplicity and flexibility. On the other hand, XML
performs well in expressiveness and adaptability but sacrifices its efficiency and
scalability, compared to which JSON is considered to be more well-proportioned
with respect to these requirements, and even simpler, easier, more efficient and
thus favored by more and more nowadays’ policy designers [10][11][12][13].

To address the aforementioned inefficiency issues of the XML format, the
XACML Technical Committee recently designed the JSON profile [18] to be used
in the exchange of XACML request and response messages between the PEP and
PDP. However, the profile does not define the specification of XACML policies,
which means, after the PDP parses the JSON-formatted XACML requests, it
still needs to evaluate the parsed attributes with respect to the policies expressed
in XML. Leigh Griffin and his colleagues [12] have proposed JSONPL, a policy
vocabulary encoded in JSON that semantically was identical to the original
XML policy but stripped away the redundant meta data and cleaned up the
array translation process. Their performance experiments showed that JSON
could provide very similar expressiveness as XML but with much less verbosity.
On the other hand, as much as we understand, JSONPL is merely aimed at
implementing XACML policies in JSON and thus lacks its own formal schema
and full specification as a policy specification language [19].

Major service providers such as Amazon Web Services (AWS) [20] have a
tendency to implement their own security languages in JSON, but such kind of
approaches are normally for proprietary usage thus provide only self-sufficient
features and support limited use cases, which are not suitable to be a common
policy language. To the best of our knowledge, there are very few proposals that
combine a rich set of language features with well-defined syntax and semantics,
and such kind of access control policy language based on JSON has not even
been attempted before and as such JACPoL can be considered to be an original
and innovative contribution.

3 JACPoL Detailed Design

This section presents JACPoL in depth. We first recall the foundations of JACPoL,
and then introduce its structures with an overview of how an access request is
evaluated with respect to JACPoL policies. After that, we describe the syntax
and semantics in detail along with policy examples.

3.1 Fundamental Design Choices
The goal is to design a simple but expressive access control policy language. To
achieve this, we beforehand introduce the important design decisions for JACPoL
as below.



4

First, JACPoL is JSON-formatted [21].
Second, JACPoL is attribute-based by design but meanwhile supports RBAC

[14]. When integrating RBAC, user roles are considered as an attribute (AR-
BAC) [26], or attributes are used to constrain user permissions (RABAC) [27],
which obtains the advantages of RBAC while maintaining ABAC’s flexibility
and expressiveness.

Third, JACPoL adopts hierarchically nested structures similar to XACML.
The layered architecture as shown in Fig. 1 not only enables scalable and fine-
grained access control, but also eases the work of policy definition and manage-
ment for policy designers.

Forth, JACPoL supports Implicit Logic Operators which make use of JSON
built-in data structures (Object and Array) to implicitly denote logic operations.
This allows a policy designer to express complex operations without explicitly
using logical operators, and makes JACPoL policies greatly reduced in size and
easier to read and write by humans.

Fifth, JACPoL supports Obligations to offer a rich set of security and network
management features.

3.2 Policy Structure

JACPoL uses hierarchical structures very similar to the XACML standard [22].
As shown in Fig. 1, JACPoL policies are structured as Policy Sets that consist
of one or more child policy sets or policies, and a Policy is composed of a set
of Rules.

Because not all Rules, Policies, or Policy Sets are relevant to a given re-
quest, JACPoL includes the notion of a Target. A Target determines whether
a Rule/Policy/Policy Set is applicable to a request by setting constraints on at-
tributes using simple Boolean expressions. A Policy Set is said to be Applicable
if the access request satisfies the Target, and if so, then its child Policies are eval-
uated and the results returned by those child policies are combined using the
policy-combining algorithm; otherwise, the Policy Set is skipped without fur-
ther examining its child policies and returns a Not Applicable decision. Likewise,
the Target of a Policy or a Rule has similar semantics.

The Rule is the fundamental unit that is evaluated eventually and can gener-
ate a conclusive decision (Permit or Deny specified in its Effect field). The Con-
dition field in a rule is a simple or complex Boolean expression that refines the
applicability of the rule beyond the predicates specified by its target, and is
optional. If a request satisfies both the Target and Condition of a rule, then
the rule is applicable to the request and its Effect is returned as its decision;
otherwise, Not Applicable is returned.

For each Rule, Policy, or Policy Set, an id field is used to be uniquely iden-
tified, and an Obligation field is used to specify the operations which should
be performed (typically by a PEP) before or after granting or denying an ac-
cess request, while a Priority is specified for conflict resolution between differ-
ent Rules, Policies, or Policy Sets.



5

target

Policy Set

id

policiespolicy sets/policies

policy combining algorithm

obligation

target

id

policiesrules

rule combining algorithm

obligation

target

id

condition

effect

obligation

priority priority priority

Policy Rule

Fig. 1: JACPoL’s hierarchical nested structure

3.3 Syntax and Conventions

JACPoL uses JSON syntax to construct and validate its policies. A policy must
follow correct JSON syntax to take effect. In this subsection, we do not provide
a complete description of what constitutes valid JSON [21]. However, below is a
list of fundamental characteristics of JSON:

• JSON is built on two universal data structures: object and array.
• An object is denoted by braces ({}) that can hold multiple name-value pairs.

For each name-value pair, a colon (:) is used to separate the name and the
value, whilst multiple name-value pairs are separated by comma (,) as in the
following example: {"id": 1, "effect": "permit"}.

• An array is denoted by brackets ([ ]) that can hold multiple values separated
by commas (,) as in the following example: ["Monday", "Friday", "Sunday"].

• A value can be a string in double quotes, or a number, or a Boolean value
(true or false), or null, or an object or an array.

• Whitespace can be inserted between any pair of JSON tokens ({ } [ ] " , :).

In the subsequent subsections, we will elaborate on the syntax and semantics for
each policy element. To illustrate better, the following conventions are used:

• The following characters are special characters used in the description of the
grammar and are not included in the policy syntax: < > ... ( ) |.

• If an element allows multiple values, it is indicated using the repeated values,
commas, and an ellipsis (...). Example: [<rule_block>, <rule_block>, ...].

• A question mark (?) following an element indicates that element is optional.
Example: {"condition"?: <boolean_expression>}.

• A vertical line (|) between elements indicates alternatives. Parentheses define
the scope of the alternatives. The default value is underlined if the field is
optional. Example: {"algorithm"?: ("permitOverrides" | "firstApplicable")}.

• Elements that must be literal strings are enclosed in double quotation marks.



6

3.4 Policy Sets, Policies and Rules

This subsection describes the grammar of the Policy Set, the Policy and the Rule.
In JACPoL, a policy set, a policy, or a rule always starts and ends with a brace,
which denotes a policy set block, a policy block, or a rule block.

Policy set block. Fig. 2 describes the grammar of the policy set block, which
is composed of six name-value pairs that exactly correspond to the six elements
of a policy set. As shown in the figure, the "id" field is a string which can be either
numeric or descriptive to uniquely identify a policy set. The "target" specifies a
Boolean expression indicating the resources, subjects, actions or the environment
attributes to which the policy set is applied. The "policies" stores a list of policy
blocks with each one corresponding to a policy. The "algorithm" field specifies the
name of a decision-combining algorithm to compute the final decision according
to the results returned by its child policies. The "obligation" specifies actions to
take in case a particular conclusive decision (Permit or Deny) is reached. The
"priority" provides a numeric value indicating the weight of the policy set when
its decision conflicts with other policy sets under the highestPriority algorithm.
{

 
  
 

  "id":     
 "target"?:   
 "policies":   
 "algorithm"?:     
 "obligation"?:   
 "priority"?: 

<string>,
<boolean_expression>,
[<policy_block>, <policy_block>, ...],   
(   "permitOverrides"|"denyOverrides"|"firstApplicable"|"highestPriority"), 
<obligation_statement>,   
<number>

}

Fig. 2: Grammar of the policy set block

Note that elements like target, algorithm, obligation and priority are optional
and, if omitted, the predefined default values would be taken (e.g., target: true,
algorithm: firstApplicable, obligation: null, priority: 0.5).

Policy block. As shown in Fig. 3, a policy block contains an id, a target, an
algorithm, an obligation and a priority similar to a policy set. The difference is,
it has a "rules" list that holds one or more rule blocks instead of policy blocks.
{
  "id":  <string>,
 "target"?:  <boolean_expression>,

  "rules":       [<rule_block>, <rule_block>, ...],
 "algorithm"?:  ("permitOverrides"|"denyOverrides"|"firstApplicable"|"highestPriority"), 
 "obligation"?: <obligation_statement>,
 "priority"?:  <number>

}

Fig. 3: Grammar of the policy block

Rule block. Fig. 4 describes the grammar of the rule block. Unlike a policy
set block or a policy block, a rule block does not contain any leaf nodes like child
policies or child rules and thus a decision-combining algorithm field is not needed
either. Instead, it possesses a "condition" element that specifies the condition for
applying the rule, and an "effect" element that, if the rule is applied, would be
the returned decision of the rule as either Permit or Deny. In comparison to a



7

target, a condition is typically more complex and often includes functions (e.g.,
"greater-than") for the comparison of attribute values, and logic operations (e.g.,
"and", "or") for the combination of multiple conditions. If either the target or the
condition is not satisfied, a Not Applicable would be taken as the result instead
of the specified effect. Note that the Condition is by default true if omitted.
{
  "id":     
 "target"?:   
 "effect":   
  "condition"?:   
 "obligation"?:  
 "priority"?: 

<string>,
<boolean_expression>,
("permit"|"deny"),   
<boolean_expression>,
  <obligation_statement>,
<number>

}
Fig. 4: Grammar of the rule block

3.5 Targets and Conditions
As aforementioned, a Target or a Condition is a Boolean expression specifying
constraints on attributes such as the subject, the resource, the environment, and
the action of requests. The Boolean expression of a Target is often simple and
very likely to be just a test of string equality, but that of a condition can be some-
times complex with constraints on multiple attributes (attribute conditions).

Attribute Condition is a simple Boolean expression that consists of a key-
value pair as shown below:
{"<attribute_expression>": <condition_expression>}

The key is an attribute expression in string format that specifies an attribute
or a particular computation between a set of attributes; the value is a condition
expression, which is a JSON block composed of one or more operator-parameter
pairs specifying specifically the requirements that the attribute expression needs
to meet. The simplest format of an attribute condition is to verify the equality
/inequality between the attribute (e.g., time) and the parameter (e.g., 10:00:00)
using comparative operators (e.g., greater-than, less-than, equal-to, etc.):
{"<attribute>": {"<comparative_operator>": <parameter>}}

However, there are also cases where we have multiple constraints (operator-
parameter pairs) on the same attribute, connected by logical relations like AND,
OR, NOT, which are respectively denoted by the keywords allOf , anyOf and not.

Logical Operators. JACPoL uses logical operators in a form of constructing
key-value pairs. The logical operator is the key and, depending on the number
of arguments, allOf and anyOf operators are to be followed by an array ([ ])
of multiple constraints, while the not operator is to be followed by an object
({ }). An allOf operation would be evaluated to true only if all subsequently
included constraints are evaluated to true, but an anyOf operation would be
true as long as there is at least one of the constraints which is true. An not
operation would be true if the followed constraint is evaluated to false. Logical
operators can be nested to construct logical relations such as not any of, not
all of. For example, an attribute condition containing multiple constraints with
nested logical operators as below:



8

{"sumOf x y": {"not": {"anyOf": [
{"between": "j k"},
{"equals": "z"}]}}}

in which the string "sumOf x y" is an attribute expression. The keyword sumOf
defines a function to compute the sum of attributes x and y, which is to be evalu-
ated by the subsequent condition expression. Please note that a parameter like j,
k or z can also possibly be another attribute instead of an explicit value.

In addition, logical operators can also be used to combine multiple attribute
conditions in order to express complex constraints on more than one attribute
easily and flexibly. As an example, the condition below expresses constraints on
two attributes and would be evaluated to true only when both (allOf the two)
constraints are met:

{"allOf": [<attribute_condition>, <attribute_condition>]}

Less is More: Implicit Logical Operators. A complex condition might
contain many logical operators which make the policy wordy and hard to read. To
overcome this, we make use of JSON’s built-in data structures, object and array,
and define following implicit logical operators as alternatives to allOf and anyOf :

• An object is implicitly an allOf operator which would be evaluated to true
only if all the included key-value pairs are evaluated to true.

• An array is implicitly an anyOf operator which would be evaluated to true
as long as at least one of its elements is evaluated to true.

For example, below is a condition statement using implicit logical operators to
verify if it is working hour.

{
"time":{"between": ["09:00 12:00", "14:00 18:00"]},
"weekday": {"not": {"equals": ["saturday", "sunday"]}}

}

As a comparison, below is for the same verification with explicit logical operators.

{
"allOf": [{

"time": {"anyOf": [
{"between": "09:00 12:00"},
{"between": "13:00 18:00"}]}

},{
"weekday": {"not": {"anyOf": [

{"equals": "saturday"},
{"equals": "sunday"}]}}}]

}

Apparently, implicit operators save a lot size and make policies more readable,
which has later turned out to be very useful in our policy engine implementation.



9

3.6 Combining Algorithms

In JACPoL, policies or rules may conflict and produce totally different decisions
for the same request. JACPoL resolves this by adopting four kinds of decision-
combining algorithms: Permit-Overrides, Deny-Overrides, First-Applicable, and
Highest-Priority. Each algorithm represents a different way for combining mul-
tiple local decisions into a single global decision:

• Permit-Overrides returns Permit if any decision evaluates to Permit; and
returns Deny if all decisions evaluate to Deny.

• Deny-Overrides returns Deny if any decision evaluates to Deny; returns Per-
mit if all decisions evaluate to Permit.

• First-Applicable returns the first decision that evaluates to either of Permit
or Deny. This is very useful to shortcut policy evaluation.

• Highest-Priority returns the highest priority decision that evaluates to either
of Permit or Deny. If there are multiple equally highest priority decisions
that conflict, then deny-overrides algorithm would be applied among those
highest priority decisions.

Please note that for all of these combining algorithms, Not Applicable is returned
if not any of the child rules (or policies) is applicable. Hence, the set of possible
decisions is 3-valued.

3.7 Obligations

JACPoL includes the notion of obligation. An Obligation optionally specified in
a Rule, a Policy or a PolicySet is an operation that should be performed by the
PEP in conjunction with the enforcement of an authorization decision. It can be
triggered on either Permit or Deny. We employ the format as below to express
obligations in JACPoL:
{"<decision>": {"<operation>": [<parameter>, <parameter>, ...]}}

For example, the obligation below is for the access control of a document.
{
"permit": {"watermark": ["DRAFT"]},
"deny": {
"feedback": ["ACCESS DENIED"],
"notify": ["admin@gmail.com", "hr@gmail.com"]

}
}

It specifies that if an access request is denied, the user would be informed with an
access denied message and the administrator and HR would also be notified; if an
access request is approved, watermark the document "DRAFT" before delivery.
It worths to be mentioned that the referred obligations have an eminently locale
nature in the sense that their execution is the exclusive prerogative of the PEP
which can possibly rely on the information available in the PIP [1]. More general
and distributed obligations deserve a dedicated investigation.



10

3.8 Implementation
We implemented JACPoL in a Javascript/Node.js/Redis based policy engine [24]
which is avaiable on Github. As shown in Fig. 5, the policy engine employs the
classical PDP/PEP architecture [1]. The PDP retrieves policies from the PRP
(Policy Retrieval Point), and evaluates authorization requests from the PEP by
examining the finite relevant attributes against the policies. If more attributes
are required to reach a decision, the PDP will request the PIP(Policy Information
Point) as an external information source. The latter may also be requested in
the case of obligations.

PEP

PDP

Protected 
Resource

PRP

PIP

Fig. 5: Policy engine architecture

The non-blocking nature of Node.js allows the system to provide an efficient
and scalable access control, and a Redis server was employed to enable flexible
and high-performance data persistence and caching. In order to validate its func-
tionality, we have deployed this policy engine on a messaging node of reTHINK
project [23]. This reTHINK policy engine [24] adopted the ABAC model and
customized the vocabulary of JACPoL for the requirements of reTHINK frame-
work. With JACPoL based lightweight policies, Node.js based non-blocking I/O,
and Redis based fast caching, it provided a highly performant access control ac-
cording to various tailored attributes in an expressive and flexible way [25]. In
reTHINK, in addition to comparative operators greaterThan, lessThan, equal-
sTo, JACPoL is extended to support more operators as listed in Fig. 6 with a
rule example:

Other Operators

x in [a, b, c]

x between “a b”

x contains “c”

x like “/resources/*”

x exists

{
"id": "dpt-01-ac-01",
"target": {"type": {"equalsTo": "create"}},
"condition”: {

"weekday": {"in": ["saturday", "sunday"]},
"time": {"between": "18:00 07:00"},
"url": {"like": "*/core/*/contactlist"}

},
"effect": "deny"

}

Fig. 6: Other supported operators (left) and a rule example (right)



11

4 Comparative Analysis

This section evaluates JACPoL with a comprehensive comparison to other pre-
and post-XACML policy languages, which respectively are JSONPL [19], AWS
IAM [20], XACML [8], Ponder [5], Rei [29], XACL [30], KAoS [31], EPAL [6], and
ASL [32], followed by a simple quantitative comparison with XACML in terms
of processing delay. To begin with, we have identified the following requirements
for an access control policy language to meet the increasing needs of security
management for today’s ICT systems:

• Expressiveness to support wide range of policy needs and be able to specify
various complex, advanced policies that a policy maker intend to express [4].

• Extensibility to cater for new features or concepts of policy in the future [5].
• Simplicity to ease the policy definition and management tasks for the policy
makers with different levels of expertise. This includes both conciseness and
readability to avoid long learning curve and complex training.

• Efficiency to ensure the speed for machines to parse the policies defined by
humans. This can be affected by policy structure, syntax, and data format.

• Scalability to ensure the performance as the network grows in size and com-
plexity. This is important especially in large-scale or multi-domain networks.

• Adaptability to be compatible with any access control tasks derived from an
ICT system. Any user could directly tailor the enforcement code and related
tool set provided by the policy language to their authorization systems.

Table 1 shows the complete evaluation of these policy languages. In the ta-
ble, ‘!’ and ‘"’ respectively indicate ‘support’ and ‘strongly support’, while ‘+’,
‘++’, ‘+++’ and ‘++++’ mean ‘poor’, ‘good’, ‘very good’ and ‘excellent’. The
comparison mainly focuses on their design and implementation choices regard-
ing authorization, obligation, index, syntax and scheme, and their performance
with respect to the six previously defined criteria. Among these features, index
refers to whether there exists a special item for policy engine to retrieve the
required policies more efficiently.

Table 1: Evaluation and comparison between JACPoL and other policy languages
Policy Languages Year Authorization Obligation Index Syntax Scheme Expressiveness Extensibility Simplicity Efficiency Scalability Adaptability

JACPoL 2017 " ! " JSON-based ABAC ++++ ++ +++ +++ +++ +++
JSONPL 2012 " " JSON-based ABAC ++ ++ +++ +++ +++ ++
AWS IAM 2010 " JSON-based RBAC ++ ++ +++ +++ ++ +
XACML 2003 " ! " XML-based ABAC +++ +++ + ++ ++ +++

Rei 2003 " " Logic-based OBAC ++++ +++ + ++ +++ +++
EPAL 2003 " ! " XML-based RBAC +++ +++ + ++ ++ +++
Ponder 2001 " " Specific RBAC +++ + ++ ++ +++ +++
XACL 2000 " XML-based RBAC + + + ++ + +
KAoS 1997 " " OWL-based OBAC ++++ +++ + ++ +++ +++
ASL 1997 " Logic-based RBAC + + + ++ + ++

Like many other languages, JACPoL provides support for authorization and
obligation capabilities as previously introduced. In addition, it includes a concept
of Target within each Policy Set, Policy and Rule to allow efficient policy index.
In terms of expressiveness, JACPoL, Rei and KAoS extensively support the



12

specification of constraints, which can be set on numerous attributes in a flexible
expression [33].

On the other hand, compared to XML-based languages, JSON-based JACPoL
is simpler and more efficient, but meanwhile, we have to admit that JSON is less
sophisticated than XML, which accordingly may make JACPoL less extensible.
JACPoL is scalable and the reasons are twofold: first, its efficient performance
in policy index and evaluation allows it to deal with complex policies under a
large-scale network environment; second, its concise semantics and lightweight
data representation make it easily replicable and transferable for distributed sys-
tems. As for adaptability, compared to other languages, the application specific
nature of AWS IAM makes it relatively harder to be adapted to other systems.

A more comprehensive, quantitative and systematic performance evaluation
(in terms of speed, memory consumption, etc.) of JACPoL is in progress at
the moment and would be detailed in a future paper [34]. However, we present
the results of a preliminary test as below in Fig. 7 and Fig. 8 which hopefully
can provide some insights on the outperformance of JACPoL over XACML. We
assessed respectively how both languages’ policy processing time increases with
the growth of nesting layers (policy depth) and with the growth of sibling rules
(policy scale). First we used the two languages to express the same policy set with
400 recursively nesting child policies, and recorded the delay when each child
policy was evaluated until the deepest one was reached. The result is depicted
in Fig. 7. Then we did the same with a policy set containing 400 sibling child
policies and got the result in Fig. 8. Each experiment was repeated 1000 times
conducted using Python on a Windows 10 PC with 16G memory and a 2.6GHz
Intel core i7-6700HQ processor. From this simple test we can preliminarily see
that JACPoL is more efficient and scalable and processed with less latency than
XACML thanks to its JSON syntax and well-defined semantics.

0 50 100 150 200 250 300 350 400
Depth

0

1

2

3

4

5

6

De
la

y (
10

-4
s)

XACML
JACPoL

Fig. 7: Effect of policy depth
0 50 100 150 200 250 300 350 400

Scale

0

2

4

6

8

10

De
la

y (
10

-4
s)

XACML
JACPoL

Fig. 8: Effect of policy scale

5 Application of JACPoL to Security Models

5.1 RBAC vs ABAC

In policy-based access control systems, a request for access to protected resources
is evaluated with respect to a policy that defines which requests are authorized.
The policy itself conforms to a security model upstream chosen by the system



13

security administrator because it elegantly copes with the constraints associated
with the targeted information system. In the RBAC model, roles are pre-defined
and permission sets for resources are pre-assigned to roles. Users are then granted
one or more roles in order to receive access to resources [16]. ABAC, on the
other hand, relies on user attributes for access decisions. These include: subject
attributes, which are attributes concerning the actor being evaluated; object at-
tributes, which are attributes of the resource being affected; action attributes,
which are attributes about the operation being executed; and environment at-
tributes, which provides other contextual information such as time of the day,
etc. [15]. Generally speaking, RBAC is simple, static and auditable, but is not
expressive nor context-aware, while ABAC, by contrast, provides fine-grained,
flexible and dynamic access control in realtime but is complex and unauditable.
Combining these two models judiciously to integrate their advantages thus be-
comes an essential work in recent research [16] [17] [27] [28].

5.2 Attribute-centric RBAC Application

JACPoL can be implemented to express permission specification policies (PSP)
in an attribute-centric RBAC model. For example, Fig. 9 defines a policy set with
each policy specifying permissions that are associated to the targeted role. When
evaluating a request, the PDP first retrieves all the roles (e.g., from the PIP) that
are pre-assigned to the requester, and then examines the permission policies that
are associated to these roles to reach a decision. Unlike other traditional statically
defined RBAC permissions, JACPoL allows its permissions to be expressed in
a quite dynamic and flexible way similar to ABAC. Please note that the role
attribute is suggested to be placed as the target for the topmost level of policies
in order to allow an easier view of user permissions as shown in Fig. 9.

Permit Overrides Target: ARBAC

Permit Overrides Target: role1

Permission Specification Rule1

Permission Specification Rule2

Permit Overrides Target: role2

Permission Specification Rule3

Permission Specification Rule4

Permit Overrides Target: role3

Permission Specification Rule5

Permission Specification Rule6

PSP set

target: ARBAC

permit overrides

PSP 1

target: role1

permit overrides

PSP 2

target: role2

permit overrides

PSP 3

target: role3

permit overrides

Rule1 Rule2 Rule3 Rule4 Rule5 Rule6

roles

true/false true/false true/false true/false true/false true/false

∨

PDP

TRUE?FALSE?

DENY PERMIT

Fig. 9: An example ARBAC permission specification policy and its structure tree



14

5.3 Role-centric ABAC Application

JACPoL can also be used to implement a language for permission filtering poli-
cies (PFP) in a role-centric ABAC model [27]. Similar to the ABAC model in
Fig. 5, but in addition to external attributes, the PDP also relies on the PIP
to get role permission sets which, as defined by NIST RBAC model, specify the
maximum set of available permissions that users can have. These permission sets
can be further constrained by the filtering policies based on JACPoL, as shown
in Fig. 10. Note that this time the target of each PFP maps each object to a
subset of the filtering rules. At the same time, the target and condition of each
rule determine whether or not the rule is applicable. The applicable filtering
rules are invoked one by one against each of the permissions in the permission
set. If any of the rules return FALSE, the permission is then blocked and re-
moved from the available permission set for the current session. At the end of
this process, the final available permission set available to users therefore will be
the intersection of P and R, where P is the set of permissions assigned to the
subject’s active roles and R is the set of permissions specified by the applicable
JACPoL rules [28].

Deny Overrides Target: RABAC

Deny Overrides Target: obj1

Permission Filtering Rule1

Permission Filtering Rule2

Deny Overrides Target: obj2

Permission Filtering Rule3

Permission Filtering Rule4

Deny Overrides Target: obj3

Permission Filtering Rule5

Permission Filtering Rule6

PFP set

target: RABAC

deny overrides

PFP 1

target: object1

deny overrides

PFP 2

target: object2

deny overrides

PFP 3

target: object3

deny overrides

Rule1 Rule2 Rule3 Rule4 Rule5 Rule6

for each permission (operation, object)

true/false true/false true/false true/false true/false true/false

∧

Permission Set

TRUE?FALSE?

REMOVE permission (operation, object)

Fig. 10: An example RABAC permission filtering policy and its structure tree

6 Conclusion

Traditionally, performance has not been a major focus in the design of access
control systems. Applications are emerging, however, that require policies to be
evaluated with a very low latency and high throughput. Under this background,
we designed and implemented JACPoL, a fast JSON-based, attribute-centric and
light-weight access control policy language. JACPoL provides a good solution for
policy specification and evaluation in such applications with low processing delay.
We evaluated our policy language with respect to a set of representative criteria
in comparison with other existing policy languages. The evaluation showed that
JACPoL can be as expressive as XACML but more simple, scalable and efficient.



15

On the other hand, JACPoL leaves room for future improvements in many areas.
For example, obligation capabilities can be further enhanced and delegation
support can be formally introduced. By priority, we are currently conducting a
more comprehensive experimental performance evaluation with extensive policy
sets for various real-world use cases, in which a more systematic and quantitative
evaluation criteria (e.g., speed, memory usage, etc.) would be considered.

7 Acknowledgement

This work has received funding from the European Union′s Horizon 2020 research
and innovation programme under the grant agreement No. 645342, project re-
THINK. We gratefully acknowledge support from our colleagues in this project,
Jamal Boulmal (Apizee), Jean-Michel Crom and Simon Becot (Orange Labs).
This work would hardly be possible without their valuable suggestions and help.

References

1. Yavatkar R, Pendarakis D, Guerin R : "A Framework for Policy-based Admission
Control." IETF, RFC 2753, January 2000.

2. Borders K, Zhao X, Prakash A: "CPOL: High-performance policy evaluation." the
12th ACM conference on Computer and communications security. ACM (2005).

3. reTHINK Project Testbed: "Deliverable D6.1: Testbed Specification(2016)." URL:
https://bscw.rethink-project.eu/pub/bscw.cgi/d35657/D6.1%20Testbed%20specific-
ation.pdf, last accessed 2017/05/17.

4. He L, Qiu X, Wang Y, Gao T: "Design of policy language expression in SIoT." In
Wireless and Optical Communication Conference, pp. 321-326. IEEE (2013).

5. Damianou N, Dulay N, Lupu E, Sloman M: "The ponder policy specification lan-
guage." In Policies for Distributed Systems and Networks, pp. 18-38. Springer Berlin
Heidelberg (2001).

6. Ashley P, Hada S, Karjoth G, Powers C, Schunter M: "Enterprise privacy autho-
rization language (EPAL)." IBM Research. (2003 Mar.)

7. Bhatti R, Ghafoor A, Bertino E, Joshi JB: "X-GTRBAC: an XML-based policy
specification framework and architecture for enterprise-wide access control." ACM
Transactions on Information and System Security (TISSEC) 8.2 (2005): 187-227.

8. OASIS XACML Technical Committee: "eXtensible access control markup language
(XACML) Version 3.0." Oasis Standard, OASIS (2013). URL: http://docs.oasis-
open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html, last accessed 2017/05/17.

9. Crampton J, Morisset C: "PTaCL: A language for attribute-based access control in
open systems." In International Conference on Principles of Security and Trust, pp.
390-409. Springer Berlin Heidelberg (2012).

10. Crockford D: "JSON — The fat-free alternative to XML (Vol. 2006)." URL:
http://www.json.org/fatfree.html. last accessed 2017/05/17.

11. El-Aziz AA, Kannan A: "JSON encryption." Computer Communication and Infor-
matics (ICCCI), 2014 International Conference on. IEEE (2014).

12. Griffin L, Butler B, de Leastar E, Jennings B, Botvich D: "On the performance of
access control policy evaluation." In Policies for Distributed Systems and Networks
(POLICY), 2012 IEEE International Symposium on, pp. 25-32. IEEE (2012).



16

13. W3schools: "JSON vs XML." URL: www.w3schools.com/js/js_json_xml.asp, last
accessed 2017/05/24.

14. Ferraiolo DF, Kuhn DR. "Role-based Access Controls." arXiv preprint arXiv:
0903.2171. (2009 Mar 12).

15. Hu VC, Ferraiolo D, Kuhn R, et al.: "Guide to attribute based access control
(ABAC) definition and considerations." NIST special publication 800.162 (2013).

16. Empower ID: "Best practices in enterprise authorization: The RBAC/ABAC hy-
brid approach." Empower ID, White paper (2013).

17. Coyne E, Weil TR: "ABAC and RBAC: scalable, flexible, and auditable access
management." IT Professional 15.3 (2013): 0014-16.

18. David Brossard: "JSON Profile of XACML 3.0 Version 1.0." XACML Committee
Specification 01, 11 December 2014. URL: http://docs.oasis-open.org/xacml/xacml-
json-http/v1.0/cs01/xacml-json-http-v1.0-cs01.pdf, last accessed 2017-05-26.

19. Steven D., Bernard B., Leigh G.: "JSON-encoded ABAC (XACML) policies."
FAME project of Waterford Institute of Technology. Presentation to OASIS XACML
TC concerning JSON-encoded XACML policies, 2013-05-30.

20. Amazon Web Services: "AWS Identity and Access Management(IAM) User Guide."
URL: http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html, last
accessed 2017-05-27.

21. ECMA International: "ECMA-404 The JSON Data Interchange Standard." URL:
http://www.json.org/, last accessed 2017-05-27.

22. Ferraiolo David, et al. "Extensible Access Control Markup Language (XACML)
and Next Generation Access Control (NGAC)." Proceedings of the 2016 ACM Inter-
national Workshop on Attribute Based Access Control. ACM (2016).

23. reTHINK Project. URL: github.com/reTHINK-project/, last accessed 2017-05-27
24. reTHINK CSP Policy Engine. URL: github.com/reTHINK-project/dev-msg-node-
nodejs/tree/master/src/main/components/policyEngine, last accessed 2017-05-27

25. reTHINK Deliverable 6.4: "Assessment Report", reTHINK H2020 Project
26. Obrsta L., McCandlessb D., Ferrella D.: "Fast semantic Attribute-Role-Based Ac-
cess Control (ARBAC) in a collaborative environment" 2012 8th International Confer-
ence on Collaborative Computing: Networking, Applications and Worksharing (Col-
laborateCom), Pittsburgh, PA, USA, 14-17 Oct. 2012.

27. Jin X, Sandhu R, Krishnan R: "RABAC: role-centric attribute-based access con-
trol." International Conference on Mathematical Methods, Models, and Architectures
for Computer Network Security. Springer Berlin Heidelberg (2012).

28. Kuhn DR, Coyne EJ, Weil TR: "Adding attributes to role-based access control."
Computer 43.6 (2010): 79-81.

29. Kagal L, Finin T, Joshi A: "A policy language for a pervasive computing environ-
ment." Policies for Distributed Systems and Networks, 2003. Proceedings. POLICY
2003. IEEE 4th International Workshop on. IEEE (2003).

30. Hada S, Kudo M: "XML Access Control Language: provisional authorization for
XML documents." (2000).

31. Uszok A, Bradshaw JM, Jeffers R: "Kaos: A policy and domain services framework
for grid computing and semantic web services." International Conference on Trust
Management. Springer Berlin Heidelberg (2004).

32. Jajodia S, Samarati P, Subrahmanian VS: "A logical language for expressing autho-
rizations." Proceedings of IEEE Symposium on Security and Privacy, IEEE (1997).

33. Neuhaus C, Polze A, Chowdhuryy MM: "Survey on healthcare IT systems: stan-
dards, regulations and security." No. 45. Universitätsverlag Potsdam (2011).

34. Jiang H, Bouabdallah A: "Towards A Json-based Fast Policy Evaluation Frame-
work." Work in progress.


