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Abstract

This work intends to evaluate the role of many-body long-range hydrodynamics by simulations

of sheared neutrally-buoyant non-Brownian, non-colloidal suspensions. Three-dimensional simu-

lations of sheared suspensions are conducted with and without long-range hydrodynamics, for a

volume fraction range between 0.1 to 0.62 (frictionless) and 0.1 to 0.56 (frictional). Discarding

long-range hydrodynamics has only a moderate effect on viscosity for the range of volume frac-

tions investigated and viscosities diverge with similar scaling laws ; the critical fraction is found to

be approximately 0.64 (frictionless) and 0.58 (frictional). Conversely, many-body hydrodynamics

are found to affect diffusion and particle velocities, which are correlated on a longer range when

long-range interactions are included, even in dense suspensions. This means that long-range hydro-

dynamics may not be significantly screened by crowding. Assuming only short-range lubrication

interactions is therefore suitable for predicting viscosity in non-colloidal suspensions but becomes

questionable when flow details (e.g., diffusion or velocity correlations) are needed.
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I. INTRODUCTION

Dense suspensions are ubiquitous in nature and industry. They exhibit an intricate

physics which is far from being understood completely [1]. Numerical simulations of dense

suspensions have become increasingly popular as a way to disentangle this complex physics.

Particularly, simulations at the particle scale level are instrumental since they rest on funda-

mental principles and therefore require minimal assumptions. They have eventually fostered

significant progress in current understanding, like discontinuous shear-thickening [2] for in-

stance.

Several numerical methods are available in the literature for dilute to moderately dense

suspensions. However for very dense suspensions (i.e., close to jamming), molecular dy-

namics (MD) is the preferred approach [2–6]. It considers particles as a system of mass

points subject to repulsive forces (e.g., contact or electrostatic) and short-range hydrody-

namic forces (lubrication), therefore neglecting long-range many-body hydrodynamic inter-

actions. Other methods like Stokesian dynamics [7], force-coupling method [8] or fictitious

domains [9] do incorporate long-range hydrodynamics by solving Stokes equations but at

the cost of increased algorithmic complexity and computational demand, especially in dense

regimes. This explains the popularity of MD simulations for dense suspensions: they are

fast and simple to develop. As far as we know, there is only one reported simulation on

a suspension close to jamming which includes long-range hydrodynamics using Stokesian

dynamics [10].

Long-range interactions are so exceedingly difficult to model that they are neglected in

most popular simulation algorithms for suspension mechanics; this prompts the study of the

regimes and scenarios in which it is valid or reasonable to make such simplifications. We

are not aware of any reported studies of non-colloidal suspensions proving whether those

interactions could be effectively discarded or not and if so, for which volume fraction range.

This point has only recently been considered in the literature, for Brownian suspensions, to

address the fact that it is generally accepted that long-range hydrodynamics are negligible in

dense sheared suspensions because first, they should be rapidly screened and second, contact

and divergent lubrication forces prevail.

There are very scarce works dedicated to the role of long-range hydrodynamics on rheol-

ogy and, as far as we know, none in non-colloidal non-Brownian regimes. Yet, in colloidal
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suspensions, recent studies have acknowledged a notable influence of long-range hydrody-

namics on the gelation and aggregation of colloids [11, 12]. Also, by studying numerically

how pair mobility decays, Zia et al. [13] have showed that a long-ranged coupling persists

on large distances regardless of particle concentration. This is a clear evidence that—in

colloidal suspensions at least—many-body hydrodynamics are an essential part of concen-

trated suspension dynamics and that it should not be neglected beyond a lubrication range

as usually done in MD simulations. An objective of our work is to verify if this importance

of long-range interactions also persists in non-colloidal regimes.

This study therefore intends to evaluate the role of long-range hydrodynamic interac-

tions in sheared dense non-Brownian, non-colloidal suspensions. For a wide range of volume

fractions—from dilute to close-jamming—the suspension flow is computed first by solving

Stokes equations (referred to as full-Stokes (FS) solution) and second, by Molecular Dynam-

ics (MD). The comparison between FS and MD solutions will help estimate the possible role

of long-range interactions. Both simulations are performed in exactly the same way (same

contact or lubrication models, flow conditions, numerical parameters, etc.) so that the only

difference remaining is the long-range hydrodynamics. Note that this paper only focuses on

non-Brownian, non-colloidal suspensions: Brownian/colloidal interactions may result in a

different physics and results obtained in this study may not be transposed straightforwardly

to such regimes.

II. METHOD

The suspensions considered in this work are non-Brownian and composed of bidisperse

spheres of radius a1 and a2 with a2/a1=1.4 and same volume fraction (φ1=φ2) in order to

avoid crystallization at high fractions. The average radius ā is here defined as ā=(a2+a1)/2.

A slight polydispersity could also have been considered but bidispersity is easier to imple-

ment and this choice of parameters is widely used in the literature and reported to be quite

efficient. However, this bidispersity is expected to affect rheology through a modification

of the critical fraction φm at which viscosity diverges. Shauly et al. [14] have proposed an

expression for the critical fraction φm in bidisperse suspensions and based on their work, we

have computed the critical fraction to differ only by 2 % from its monodisperse counterpart,

so that limited effects of bidispersity on rheology are expected. Fluid and particle inertia
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are neglected. Full-Stokes (FS) simulations are based on a fictitious domain method which

solves the Stokes flow at the particle scale and explicitly accounts for long-range many-body

hydrodynamic interactions between particles [15]. A correction procedure is considered for

lubrication interactions similarly to Stokesian Dynamics [7] and is more detailed in Ref. [9].

It explicitly accounts for all motions (squeezing, shearing, pumping, twisting). Let X be

a generic resistance function, the FS strategy then uses the correction X theo − Xr to be

added as an external force/torque where X theo is the theoretical lubrication interaction and

Xr is that part of hydrodynamic interaction already explicitly resolved by the Stokes solver

(estimated a priori). Theoretical resistance functions X theo depend on particle size ratio,

pair orientation and normalized gap distance ξ. They have divergent terms (in ξ−1 or ln ξ)

and constant O(1) terms. The MD simulations closely follow the approach used by [2] for

lubrication and consider only the most divergent terms of X theo without any O(1) terms.

In addition, a one-body Stokes drag is included in the lubrication system for all the parti-

cles [2]. Consequently, particles not interacting through short-range lubrication have Stokes

drag, torque, and stresslet S∞=10/3πa3γ̇ with γ̇ the shear rate. This is the most widely

used approach to handle lubrication although some slight variations can be found in the

literature [6, 16]. For both MD and FS, a lubrication grand resistance matrix is built in a

pairwise fashion.

We consider rough particles having a reduced roughness size hr/ā = 5.10−3, which is

a typical experimental value [17]. Particle roughness involves actual contacts—despite

lubrication—that are modeled by a normal contact force F c given by a Hertz law F c =

kn|δ|3/2 · n where n is the normal vector n=r/‖r‖ with r the branch vector joining the

sphere centers and δ = ‖r‖−a1−a2−hr. The stiffness kn is chosen large so as to mimic rigid

particles (i.e., |δ| � ā) and is controlled by the non-dimensional number Γ̇ = 6πηā2γ̇/knh
3/2
r

(where γ̇ is the shear rate and η the fluid viscosity) which is a measure of hydrodynamic

forces relative to contact forces. A small value of Γ̇=10−3 is prescribed in this work to obtain

rigid particles. With this choice, it has been a posteriori checked that the maximum overlap

δ never exceeds hr, i.e. max |δ|/ā . 5.10−3, for all the simulations presented. Friction is

accounted for by a tangential contact force F c
t modeled by a linear spring (with tangential

stiffness kt/kn = 2|δ|1/2/7) and bounded by a Coulomb-Amontons friction law with constant

dynamic friction coefficient µd, i.e. Fc
t = µd|Fc

n|.Fc
t/|Fc

t |. Once all forces are computed (con-

tact, short-range lubrication, long-range hydrodynamics), particle positions are advanced
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using a second-order Adams-Bashforth scheme.

In MD simulations, only contact and short-range lubrication are considered to update

particle positions. Long-range interactions are therefore the only difference between FS and

MD simulations since all numerical parameters/algorithms/models are kept identical other-

wise. An important remark however is that since MD does only have short-range lubrication

interactions to model the fluid, those interactions must be truncated at some point (because

theoretical lubrication functions used are only valid for very close particles). Said differently,

lubrication forces are computed pairwise only among nearest neighboring particles, up to a

particle gap distance hmax. This therefore involves a free parameter, usually in the range

hmax/ā=0.05∼0.1. For gaps h > hmax, particles are supposed to behave as isolated particles

with Stokes law, as mentioned previously. Note that this hmax cut-off only exists for molec-

ular dynamics (MD) and not Stokes simulations. This hmax is different from another cut-off

in Stokes solvers below which lubrication corrections are activated (lubrication correction

cut-off distance). Beyond this lubrication correction distance, the flow is satisfactorily re-

solved by the direct computation, and the hydrodynamic interactions correctly computed

without the need of corrections.

Simulations are performed in a wall-bounded linear shear flow with a domain size Lx=30ā

in velocity direction (x), Ly=40ā in velocity-gradient (y) direction and Lz=20ā in vortic-

ity (z) direction. The total number of particles is approximately 4,000 at volume fraction

φ=0.6. Upper and lower walls are prescribed with opposite velocities ±Uwall to produce a

linear flow of imposed shear rate γ̇imp=2Uwall/Ly. The flow is periodic in velocity (x) and

vorticity (z) directions. Computations are conducted during at least 100γ̇−1 for the lowest

volume fractions and typically 20∼30γ̇−1 for the highest volume fractions. The time step

can be as low as 10−5γ̇−1 for the dense frictional cases. In the following results, we consider

bulk φ, γ̇, and viscosity η measured in the core of the suspension to avoid any bias due to

a small amount of wall slip or wall layering.
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III. RESULTS

A. Three-sphere configuration

Before moving to many-sphere simulations, we consider a much simpler configuration.

The case of three spheres is interesting since it is the simplest case having no analytical

solutions. We consider three equally-sized particles (radius a) in a shear flow and aligned in

the direction of compression (θ=3π/4 oriented from the flow direction), see inset in Fig. 1.

This can be thought as the most probable configuration for a triplet in a shear flow. The

distance between particles is set to ξa. Both FS and MD simulations are conducted on this

configuration for different non-dimensional gap ξ and the relative L1-error E is computed

between FS and MD for translational particle velocity Eu=
1
3

∑
|uFS − uMD|/|uFS| and for

particle stresslet S (xy component), i.e. ES=1
3

∑
|SFS − SMD|/|SFS|, where the sum runs

over the three particles. Velocities are scaled by γ̇a and stresslets by 10/3πγ̇a3. Figure 1

presents the obtained errors and carries two main salient points. First, errors on velocity are

vanishing for small gaps and is at most 2 % at ξ=10−2 meaning that FS and MD give similar

outcomes. This confirms that short-range lubrication is the predominant hydrodynamic

contribution for small gaps typical of dense suspensions. There is a significant error only for

larger gaps (e.g., ξ=10−1). The discrepancy between FS and MD is larger for the stresslet,

FIG. 1. Error between FS and MD on particle velocity and stresslet against non-dimensional gap

distance ξ. Inset: sketch of the three-particle configuration.

in the range 5–10 %, even for small gaps. Most of the error actually comes from the two

outer particles whose stresslets are slightly underestimated by MD compared to FS. To go

further, we have additionally computed this simple configuration by direct simulation, i.e.

by solving Stokes equations everywhere in the fluid—even in the lubrication layer between
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particles—using the commercial software Comsol R©. In that case, there are no assumptions

on lubrication or pairwise approximations. This approach can be conducted on this simple

system but would not be tractable for large-scale simulations of many particles because

of extremely small grid elements in the lubrication layer between particles. Although not

theoretical nor analytical, we will refer this solution as “exact” in the following Table I,

which presents results on the computed stresslets for two distances ξ=10−1 and ξ=10−3.

Stresslets for the central and the two outer particles are respectively noted Sc and Sout and

scaled by S∞=10/3πa3γ̇. The FS simulations match perfectly well the reference solution,

meaning that our lubrication correction strategy is sound and gives accurate predictions. As

mentioned previously, MD slightly underestimates stresslets, especially for outer particles.

TABLE I. Computed stresslets for central (Sc) and outer (Sout) particles in the three-sphere con-

figuration for two gaps.

Sc Sout

MD 2.79 1.90

ξ=10−3 FS 2.88 2.14

Exact 2.88 2.15

MD 2.28 1.64

ξ=10−1 FS 2.19 1.73

Exact 2.20 1.74

B. Suspension viscosity

We now move to an actual many-sphere suspension computed both with MD and FS.

The case of frictionless (µd=0) and frictional particles (µd=0.5) is considered. Figure 2

presents the relative viscosity ηr predicted by FS and MD for the frictionless and frictional

case. For MD simulations, we have prescribed hmax/ā=0.05. The results encompass a wide

range of volume fraction from φ=0.1 up to φ=0.62 (frictionless) or φ=0.56 (frictional).

As a general trend, viscosity curves show very similar results. There are only limited
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discrepancies—especially for the frictionless case at moderate φ—but for high fractions, MD

and FS results are very close. Fundamental studies on dense suspensions generally consider

viscosity divergence, so that we have fitted our results against a divergent law of the form

(1 − φ/φm)α. Solid lines in Fig. 2 are the obtained best fits with parameters provided in

Tab. II. It can be seen that friction has a strong impact on jamming fraction φm with

φm ≈ 0.64 for frictionless and φm ≈ 0.58 for frictional particles. Those values are in good

accordance with available numerical [2, 18] and experimental results [19, 20]. A result is

that long-range hydrodynamics do not seem to play a strong role close to jamming since

jamming fraction φm and critical exponent α are relatively unchanged. This confirms a

previous numerical work arguing that viscosity divergence weakly depends on the exact

dissipation mechanism [5]. Viscosity diverges irrespective of long-range hydrodynamics. In

Fig. 2(a), we have also added other MD data taken from Mari et al. [2] in order to confirm

our predictions. Note that the models are not exactly similar (e.g., contact repulsion force),

which can easily explain the small discrepancies noted, but the agreement is good overall.

FIG. 2. Predicted relative viscosity for FS and MD against volume fraction for frictionless (a) and

frictional (b) particles. Solid lines are a fit against (1 − φ/φm)α (Tab. II). MD simulation results

from [2] are also presented in (a).

The relative viscosity ηr can be split into a solvent contribution, contact contribution, and

hydrodynamic contribution: ηr=1+ηcr+ηhr . We can therefore study the relative contribution

of contacts and hydrodynamics by considering the following ratios χh=ηhr /(ηr − 1) and

χc=ηcr/(ηr − 1). Such quantities are plotted in Fig. 3 in the frictionless case (µd=0) and

Fig. 4 in the frictional case (µd=0.5). If we first consider the frictionless case (Fig. 3), we

note that χh strongly decreases (and χc grows accordingly) for high fractions, showing that

viscosity of dense systems is mostly due to contacts. The hydrodynamic contribution χh
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TABLE II. Best fit parameters (1− φ/φm)α

φm α

FS (µd=0) 0.640 −1.59

MD (µd=0) 0.636 −1.47

FS (µd=0.5) 0.585 −1.90

MD (µd=0.5) 0.581 −1.88

is slightly lower for MD when volume fraction is low, say φ . 0.45. Accordingly, in this

semi-dilute regime, MD overestimates contacts. The conclusion is similar in the frictional

case (Fig. 4) although effects are more amplified by friction. It is much more clear here

that MD predicts an underestimated contribution of hydrodynamics (and overestimated

role of contacts). By and large, long-range interactions do not strongly modify viscosity but

change the repartition between hydrodynamics and contacts ; in particular, a part of the

hydrodynamic contribution is missed by MD in semi-dilute regimes especially for frictional

particles.

Before we end this section on viscosity, let us mention that we have also investigated the

effect of the cut-off distance hmax used in MD simulations. A hmax/ā=0.05 was taken in

previous simulations as a typical value from the literature but we have tested other values

in the range 0.01−0.2. For this latter range, the MD viscosity variation is typically within

20–30 % and viscosity increases with hmax. Therefore the reader must keep in mind this

dependence of MD predictions to an arbitrary parameter and that agreement is correct

because an adequate value of hmax is selected.

FIG. 3. Relative contribution of hydrodynamics χh (a) or contacts χc (b) to viscosity: frictionless

case.
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FIG. 4. Relative contribution of hydrodynamics χh (a) or contacts χc (b) to viscosity: frictional

case.

C. Microstructure and diffusion

We here investigate the effect of long-range interactions on microstructure and diffusion.

Because frictional and frictionless results are qualitatively similar, we here only focus on

the frictionless case. Figure 5 presents the pair-correlation function at contact gc plotted

as a function of the orientation angle θ in the shear plane (x,y) for a dilute case (φ=0.2)

and dense case (φ=0.6). The pair-correlation function g is computed classically in spherical

coordinates g(r,θ,ψ) and gc is such that gc=g(r < rc, θ, π/2). We choose rc=2a2 so that all

possible contacts are considered. For φ=0.2, the major difference between FS and MD lies in

the value of gc, which is related to the number of contacts. Long-range interactions lead to a

reduced number of actual contacts between particles which explains the lower values of gc in

the FS case. It is consistent with our previous result on the smaller contact contribution to

viscosity noted in FS simulations. We note however that the angular distribution of contacts

remains similar in both cases with a high number of contacting particles in the compression

quadrant (0 < θ < 90o) and a depletion in the extensional quadrant (90o < θ < 180o). For

dense conditions (φ=0.6), there are little differences between FS and MD in gc values or

angular distribution. Note that in this case, the microstructure has significantly changed

with a high probability of aligned particles (θ = 0o or 180o).

Diffusion coefficients Dyy and Dzz in the velocity-gradient and vorticity directions,

respectively, are computed in the usual manner by considering the mean-square particle

displacements 〈yy〉 and 〈zz〉 which grow linearly with time t at long times, i.e. 〈yy〉 ∼ 2Dyyt

and 〈zz〉 ∼ 2Dzzt. For frictionless particles, the obtained diffusion coefficients (scaled by

γ̇ā2) are shown in Fig. 6. For all volume fractions, diffusion is predicted to be larger by FS
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FIG. 5. Pair-correlation gc in the plane of shear as a function of orientation angle θ: φ=0.2 (a)

and φ=0.6 (b). Particles are frictionless.

simulations and the MD underprediction is in the range 1.1—2.3, depending on fraction and

direction. Long-range interactions are found to increase diffusion even in dense suspensions

although the maximal discrepancy is for dilute regimes (typically a factor 2). Although it

is well accepted that diffusion arises from contacts [21], simulations show that long-range

hydrodynamics can play a role as well. This role should be included for reliable quantitative

predictions. Yet, discarding long-range interactions nevertheless gives an overall qualita-

tively correct physical picture, confirming that diffusion mostly originates from contacts

and is moderately affected by hydrodynamics [21, 22]. In Fig. 6, we note an inflection

point, mostly on Dyy, for φ ≈ 0.5, which is thought to be related to a slight tendency for

crystallization as attested by the orientational order parameter Q6 which is computed to

increase in the volume fraction range 0.5–0.57. This incipient order disappears for higher

fractions as also noted in [10].

FIG. 6. Scaled diffusion coefficients D∗yy=Dyy/γ̇ā
2 (a) and D∗zz=Dzz/γ̇ā

2 (b) (frictionless particles).

This effect of long-range interactions can be investigated further by considering particle
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velocity correlations. We have for instance computed the space autocorrelation function Cv

for particle velocity vp (y-component) in direction y by Cv(y)=〈vp(x).vp(x + yey)〉 where

brackets note an average in space and time. This correlation is plotted in Fig. 7 as a function

of distance y (scaled by a1) in the dilute case (φ=0.2, top panel) and dense case (φ=0.6,

bottom panel). Because the suspension is bidisperse, there are three contact peaks located—

depending on the pair—at y/a1=2 (small-small), y/a1=2ā/a1 (small-large) and y/a1=2a2/a1

(large-large). The results obtained in the dilute case φ=0.2 (Fig. 7(a)) clearly show that

velocity is much more correlated when long-range hydrodynamics is included. Conversely,

MD simulations show a short-ranged velocity correlation, mostly for pairs and triplets (y/a1

between 3 and 5.6, depending on particle size and triplet orientation). Above y/a1 ≈ 8,

velocity is uncorrelated in MD simulations unlike FS results. This supports that short-

range lubrication interactions can not properly describe the long-range correlated dynamics

of suspension in dilute regimes. The contact peaks in Fig. 7(a) are almost invisible in the FS

case but quite marked in MD simulations. It indicates that discarding many-body long-range

interactions implies that velocity is correlated only for particles in contact. In the dense case

φ=0.6 (Fig. 7(b)), the velocity correlation still remains long-ranged in FS simulations and

we have Cv(y) ∝ y−1.6 for both volume fractions. Hydrodynamic interactions extend over

long distances and are not significantly screened, which agrees with results from Zia et

al. [13]. In this dense case, we have a similar behavior between FS and MD simulations

which means that pair-interactions through neighboring particles induce an overall long-

range behavior. Similarly to diffusion, the way hydrodynamic interactions are handled has

a stronger influence in dilute regimes.

FIG. 7. Velocity correlation Cv(y) for φ=0.2 (a) and φ=0.6 (b). Frictionless particles.
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IV. CONCLUSION

We have performed detailed three-dimensional simulations of sheared non-Brownian, non-

colloidal suspensions using two methods with an eye to estimating the role of long-range

many-body hydrodynamics. The first approach solves the Stokes equations with contact and

short-range lubrication while the second is based on molecular dynamics with only contact

and short-range lubrication, thus missing long-range hydrodynamics. Our simulations show

that viscosities are similar in both cases, although molecular dynamics overestimates the

contribution of contacts. Notably, viscosity diverges at the same critical fraction and with

similar exponent. Molecular dynamics underestimates diffusion and misses the long-range

nature of particle velocity correlation, except for very concentrated regimes. Long-range

hydrodynamics are found not to be significantly screened by crowding. The issue of screening

in colloidal suspensions is also of great interest but has not been addressed here because

colloidal motion was not included, which could be part of subsequent studies. As a final

conclusion, molecular dynamics seems well-suited for rheology but if finer flow details (e.g.,

velocity correlation, diffusion) are needed, it might be more suitable to consider Stokes flow

simulations, even in concentrated suspensions. Since shear-induced migration is connected

to diffusion [23], it is expected that the way hydrodynamic interactions are handled in

simulations is likely to have significant effects on the prediction of migration.
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