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Abstract 

Urbanisation introduces deep changes in habitats, eventually creating new urban ecosystems 

where ecological functions are driven by human activities. The higher frequency of some 

phenotypes in urban vs. rural/wild areas has led to the assumption that directional selection in 

urban habitats occurs, which may thereby favour some behavioural and physiological traits in 

urban animal populations compared to rural ones. However, empirical evidence of directional 

selection on phenotypic traits in urban areas remains scarce. In this study we tested whether  

eumelanin-based colouration could be linked to survival in two urban populations of the feral 

pigeon, Columba livia. A number of studies in different cities pointed out a higher frequency 

of darker individuals in more urbanised areas compared to rural ones. To investigate whether 

directional selection through survival on this highly heritable trait could explain such patterns, 

we conducted mark-recapture studies on two populations of feral pigeons in highly urbanized 

areas. We predicted that darker coloured individuals would exhibit higher survival and/or 

philopatry (integrated into 'local survival') than paler coloured ones. No difference in local 

survival was found between adults of different colouration intensities. However, on one site, 

we found that darker juveniles had a higher local survival probability than light ones. Juvenile 

local survival on that site was also negatively correlated with the number of chicks born. This 

suggests the existence of colour- and/or density-dependent selection processes acting on 

juvenile feral pigeons in urban environments, acting through differential mortality and/or 

dispersal.  
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Introduction 

 

The generalized urban sprawl in the 20th century is responsible for the replacement of rural or 

natural habitats by new urban ecosystems (Berry 1990), which are highly dependent on 

human-driven processes (Pickett et al. 1997, Grimm et al. 2000, Shochat et al. 2006). As a 

consequence, many species have declined in urban habitats, whereas others now successfully 

exploit these ecosystems (Kark et al. 2007). Consequently, species richness and assemblages 

are highly variable along urbanisation gradients (Clergeau et al. 1998, Germaine et al. 1998, 

Blair 2004). Moreover, animal communities exploiting urban habitats exhibit different 

characteristics compared to their rural counterparts, both at the species (Møller 2009) and at 

the population level (Luniak 2004, Evans 2009). For instance, urban populations usually have 

a longer reproductive season (Blair 2004, Partecke et al. 2004) and higher immune capacity 

(French et al. 2008, Fokidis et al. 2008), but lower anti-predatory defences (Blair 2004, 

Møller 2009) compared to rural populations of the same species (reviewed in Evans 2009). In 

addition, urban and rural populations show strong divergence in behavioural traits. For 

instance, individuals living in urban areas are more tolerant to human presence (Møller 2010), 

have higher innovation capacity or live in higher density populations compared to rural ones 

(Erz 1964, Luniak 2004, Møller 2009). Luniak et al. (2004) suggested that directional 

selection in urban areas could explain such phenotypic divergence on several physiological, 

morphological and behavioural traits between rural and urban individuals, resulting in a so-

called “urbanization syndrome” and in local adaptation to urban areas (Evans 2009). 

However, empirical studies investigating the evolutionary processes underpinning phenotypic 

divergence between urban and rural animal populations are still scarce (Shochat et al. 2006, 

Evans 2009). 

Melanin-based colouration is a good candidate trait to investigate urbanization 



 

 

syndrome, as it has a strong genetic basis (Roulin 2004), and a number of studies have 

reported differences in animal melanin-based colouration between urban and rural areas 

(Obukhova 2001, Yeh 2004). The degree of melanin-based colouration in vertebrates has 

been frequently reported to co-vary with other phenotypic traits such as immunity, behaviour 

or reproduction (reviewed in Ducrest et al. 2008), suggesting that melanin-based colouration 

reflects adaptations to different environmental conditions (Roulin 2004). For instance, a 

darker eumelanic colouration is often associated with higher aggressiveness (Reyer et al. 

1998, Quesada and Senar 2007), a lower response to stress (Johnston and Janiga 1995, Almasi 

et al. 2010), a higher parasite resistance (Roulin et al. 2000; Jacquin et al. 2011), and a higher 

reproductive rate under food limitation compared to paler ones (Roulin et al. 2008, Jacquin et 

al. 2012). Such patterns have been suggested to be due to pleiotropic effects of genes coding 

for melanocortin ligands or receptors (Ducrest et al. 2008). As traits associated with a darker 

colouration match those found in individuals exploiting urban and/or stressful areas, melanin-

based colouration might reflect an adaptation to the urban environment (Johnston and Janiga 

1995, Jacquin 2011). As a consequence, one could expect directional selection to act on this 

trait and fitness of dark individuals should be higher than that of pale individuals in urban 

areas, a difference that could stem from differences in survival, reproductive success and 

habitat choice. Such differences in survival and/or dispersal according to colouration have 

already been described in birds (Roulin and Altwegg 2007, Roulin et al. 2010, Van den Brink 

et al. 2012, Saino et al. 2013). 

In this study, we tested whether survival and/or dispersal differed according to 

melanin-based colouration in the urban feral pigeon Columba livia. Feral pigeons, originating 

from domesticated forms of the wild Rock Pigeon, have successfully colonized most cities of 

the world and have become one of the most common urban species (Haag-Wackernagel 1998, 

Kark et al. 2007). Interestingly, part of the colour variation selected for aesthetic purposes 



 

 

during the domestication process is maintained today in feral populations. This variation is 

strongly heritable (Jacquin et al. 2013a). Several explanations have been proposed such as 

differential adaptation to urban conditions (Johnston and Janiga 1995), parasites (Jacquin et 

al. 2011, Jacquin et al. 2013, Jacquin et al. in press) or food availability (Jacquin et al. 2012). 

However the link between colouration and fitness remains elusive (Leiss and Haag-

Wackernagel 1999). A survey conducted at 192 European locations showed a positive 

correlation between the urbanization level and the proportion of dark eumelanic phenotypes 

(Obukhova 2007). The same correlation was found within the urban areas of Moscow 

(Obukhova 2011), Paris (Jacquin 2011, Jacquin et al. 2013b) and Manchester (S. L. Johnson, 

unpublished results). Such results suggest differences in fitness and/or habitat choice between 

dark and pale pigeons in urban areas. They are thus in agreement with our hypothesis that 

melanin-based colouration reflects an adaptation to the urban environment or to stressful 

habitats in general (Roulin et al. 2008). 

Local survival probability, i.e., the probability to stay both alive and present in the 

sampled population, is a proxy of individual survival and/or dispersal. In this paper, we 

estimated local survival of feral pigeons roosting in two managed pigeon houses in urban 

areas near Paris, France, through a mark-recapture survey. We captured differently coloured 

pigeons at different ages (juveniles and adults) and estimated monthly local survival 

probabilities according to age, colour and number of chicks born in the pigeon houses. If a 

darker melanin-based colouration reflects adaptation to the urban environment, we predict 

that local survival would be higher in dark than in pale individuals.  

 

Material and methods 

 

Study sites  



 

 

The study was conducted between 2007 and 2009 in two pigeon houses near Paris, in Pantin 

(Seine-Saint-Denis, France) and Fontenay (Val-de-Marne, France). The pigeon houses were 

built in 2003 and 1999, respectively, and had been freely colonized by feral pigeons within 

one year. Microsatellite data have shown that there is no genetic differentiation between 

pigeon flocks sampled within and around Paris (G. Jacob, A.C.Prévot-Julliard and E. Baudry, 

unpublished data). The sampled populations were about 7 km apart and should thus be 

genetically similar. These locations are both highly urbanized areas, measured as the 

proportion of built surfaces within 1 km of the pigeon houses (92.4% in Fontenay and 85.2% 

in Pantin; Jacquin et al. 2013b). In these public pigeon houses, pigeons were fed and eggs 

were removed in order to control reproduction (Jacquin et al. 2010). The two pigeon houses 

displayed the same density and size of available nest boxes and the same amount of food was 

provided in both pigeon houses (i.e. 50 kg of seeds once a week) during the study period. 

Feral pigeons lay 1 to 6 clutches of two eggs per year (Johnston and Janiga 1995). In Pantin, 

all newly laid eggs were removed in 2007, then one egg per clutch was removed in 2008 and 

2009 (Table 1). In Fontenay, no eggs were removed in 2007 and 2008, then one egg per 

clutch was removed in 2009 (Table 1). These management procedures have been shown to 

cause changes in the reproduction phenology in these populations (Jacquin et al. 2010). In 

addition, they resulted in strong differences in the number of chicks born (Table 1) and 

juveniles fledged (Table 2). We thus included the number of chicks born in our analyses to 

take these differences into account.  

 

Capture and survey procedure 

Adult pigeons, which feed or sleep in the pigeon houses, were captured twice a year with a 

net tunnel placed in front of the entrance of the structure. Between 2007 and 2009, 

reproduction in both pigeon houses was monitored every week and juveniles born in the 



 

 

pigeon houses were ringed when 15-day old, about two weeks before leaving the nest. All 

individuals were equipped with a transponder included in one of the plastic rings. Individuals 

were detected by a receptor placed at the entrance of the pigeon house. Recording was 

conducted from August 2007 to December 2009 in Pantin (269 individuals surveyed) and 

from February 2007 to December 2009 in Fontenay (288 individuals surveyed). These 

recordings were then pooled to obtain monthly presence data. Due to the failure of receptors, 

no data were available for some months, at different times in the two sites (Table 1). We 

therefore analysed the data from the two sites separately. We let every individual’s capture-

recapture history start with the first transponder record of the individual. Therefore, juveniles 

were only surveyed from the first time that they left the pigeon house (i.e. when 

approximately one-month old), and survival during their first month was therefore not 

modelled. 

 

Colouration measurement 

Melanin-based colourations in feral pigeons are due to two types of pigment: pheomelanic 

pigments which are responsible for red colouration and eumelanic pigments, which are 

responsible for black and grey colouration (Haase et al. 1992). In this study we focused on 

eumelanin-based colouration, which is the most widespread colouration in feral pigeon 

populations, and thus excluded reddish and white individuals from the analyses (N = 22 and N 

= 6 respectively). Eumelanin deposition in feathers can vary in intensity, from total absence of 

pigmentation to fully dark melanic colouration (Haase et al. 1992). Although pheomelanin is 

present in “greyish” pigeons, no correlation with the intensity of eumelanin deposition could 

be found (Haase et al. 1992). We divided the continuous variation in four groups, following 

the classification used by Johnston and Janiga (1995) and Jacquin et al. (2011): (1) Blue bar 

(grey mantle with two black wing bars i.e. wild type); (2) Checker (a checked mantle with 



 

 

moderate black spots); (3) T-pattern (a black mantle with small grey marks); and (4) Spread 

(a completely black plumage). This classification reflects genetic differences at two multi-

allelic loci (Johnston and Janiga 1995, Haag-Wackernagel et al. 2006), thus defining colour 

morphs (Roulin 2004). Although juveniles are slightly darker before their first moult, the 

morph of an individual remains the same throughout life (Johnston and Janiga 1995), an 

observation that was confirmed by photographs taken at different ages in captivity (L. 

Jacquin, pers. obs.). Previous studies have shown that eye scoring is a reliable method to 

estimate the colouration intensity of adult feral pigeons: it is highly repeatable and correlated 

with the percentage of dark feathers on the wing measured on standardized photographs 

(Jacquin et al. 2011). 

 

Local survival analyses 

To analyse recapture histories, we used Mark-Recapture statistical methodology to estimate 

two kinds of parameters: local survival probabilities Φ and recording probabilities p 

(Lebreton et al. 1992). Recording probability is the probability for an individual alive and 

present to be recorded at a particular time point. Local survival probability is the probability 

to be still alive and present on the study site between two time points (thus referring to both 

survival and dispersal). In our study, these parameters were estimated on a monthly scale. 

Adult and juvenile recording histories within each site were analysed separately, as a function 

of age (in months for juveniles) and plumage colouration score. To get a sufficient sample 

size within each colouration score, we pooled morphs 3 and 4 in adults and morphs 2, 3 and 4 

in juveniles (Table 2). Separating these groups did not improve the models indicating that 

there was either no difference or not enough power to detect a difference between these 

groups. It should also be noted that pooling morphs 2, 3 and 4 in adults did not change our 

results. Juvenile mortality occurs mostly before the age of six months (Johnston and Janiga 



 

 

1995), and preliminary studies showed that juveniles older than five months have similar 

survival rate as adults (unpublished results). We thus tested six different age structures for 

each juvenile local survival model: age was described by a number of age-classes varying 

from one (no effect of age) to six (age effect up to six months). For example, five-month old 

chicks could either be considered as a distinct age class (six age-classes model) or be pooled 

with older individuals (one to five age-classes models). 

We modelled the time-dependence in local survival by testing the effects of month, 

year and the interaction between the two. Since only one chick was born in 2007 in Pantin, it 

was not possible to estimate local survival rates and that year was excluded from the analysis 

for juveniles. Based on the results in Hetmański (2007), we included in our modelling the 

effect of juvenile density on local survival. We modelled the month by year effect on survival 

either as a categorical factor or as a numerical variable dependent on the number of chicks 

born during each month. In Fontenay where three years of data were available, we similarly 

modelled the year effect either as a categorical factor or as the total number of chicks born 

during each year. 

The time-dependent model Φt pt for each colour-group was first tested for goodness-

of-fit (Pollock et al. 1985) in U-CARE 2.3.2 (Choquet et al. 2009a). A transience effect was 

detected in adults from both sites (Pantin: z = 2.53, P = 0.01; Fontenay: z = 3.80, P = 0.001), 

which means that local survival rate of newly marked individuals differed from that of 

previously marked ones. It could be explained either by the occurrence of ‘transient’ 

individuals that are only present during a short time in the study population, by an effect of 

marking on survival or dispersal, or by a heterogeneity in individual recording probabilities. 

We added one virtual age-class when modelling local survival probabilities to take this effect 

into account (Brownie and Robson 1983). Trap-dependence was significant for all site-by-

stage categories except Pantin’s juveniles (Fontenay: adults z = -10.28, P < 0.001; juveniles z 



 

 

= -8.24, P < 0.001; Pantin: adults z = -11.58, P < 0.001; juveniles z = -0.97, P = 0.33). To take 

this effect into account, we modelled different recording probabilities according to the 

previous recording event for each individual in a multi-events model (Pradel 1993).  

We therefore defined three states (alive and recorded, alive but not recorded, dead), 

and two events (recorded, not recorded). Two transition matrices were defined: the first one 

allowed us to estimate local survival probabilities, independently from the previous recording 

event, and the second allowed us to estimate recording probabilities, as a function of the 

previous recording event for each individual. We were not able to estimate separately the 

probability of using the pigeon house when alive  probability of being recorded when using 

the pigeon house. The event matrix E was therefore set to constant. 

We conducted model selection to investigate the factors explaining local survival. We 

tested for the effect of age (for juvenile), time (year and month), colour score, and trap-

dependence effect on recording probability. All interactions (up to four-way interactions) 

were tested alongside the corresponding main effects. Model selection was conducted 

according to the procedure used in Lebreton et al. (1992) using E-SURGE 1.7.1 (Choquet et 

al. 2009b). Local survival and recording probabilities were estimated using the maximum 

likelihood criterion. We first modelled recording probabilities (p), keeping the complete 

model for local survival probabilities (Φ). Once the best model was obtained for p, we 

adjusted the model for Φ. Models were compared using Akaike information criterion (AIC, 

Akaike 1981): models with lower AIC values are better supported by the data. When the 

difference between two AIC was less than two, the model with fewer parameters was 

preferred. AIC weights were calculated as they express the likelihood of the models relative 

to all the alternative models (Burnham and Anderson 2002). The beta parameters, and their 

significance levels following a Gaussian distribution, were estimated for each linear covariate 

and each level of categorical variables (Choquet et al. 2009b). 



 

 

 

Results 

Colour scores repartition 

The proportion of darker individuals was higher in adults than in juveniles in both pigeon 

houses (Pearson Chi-squared test; Fontenay: χ2 = 17.2, p = 0.0002; Pantin: χ2 = 5.92, p = 

0.05): 1.5% of the juveniles in Fontenay and 8.5% in Pantin belonged to the darker morphs 

“T-pattern” and “Spread”, compared to respectively 16.1% and 15.5% of the adults. There 

was a decrease over age in the proportion of intermediate “Checker” individuals in both 

pigeon houses, but no consistent trend for the paler morph “Blue Bar” (Table 2). The 

distribution of colour groups was similar between houses in adults (χ2 = 1.49, p = 0.47) but 

not in juveniles: more dark (“T-pattern” and “Spread”) and less pale (“Blue Bar”) juveniles 

were observed in Pantin than in Fontenay (Table 2, Pearson Chi-squared test with p-values 

computed by Monte Carlo simulations: χ2 = 7.78, p = 0.022).  

 

Local survival of adults 

Estimates of monthly adult local survival were similar between Fontenay (mean = 0.984; 

range = 0.937 – 1) and Pantin (mean = 0.990; range = 0.937 – 1). They only depended on 

month (in Pantin and Fontenay) and on year (in Fontenay), with no noticeable trend. The 

monthly or yearly number of chicks did not affect these parameters (Tables 3 and 6). In 

addition, adult local survival was not explained by plumage colouration (Tables 3 and 6). 

 

Local survival of juveniles in Fontenay 

Juvenile local survival in Fontenay differed between months and increased with age until five 

months old (best model with five age-classes; Table 4). It was also negatively correlated with 

the yearly number of chicks (Tables 4 and 6, Fig. 1). Moreover, juvenile local survival in 



 

 

Fontenay was linked to colouration, with pale juveniles (“Blue Bar”) having a lower local 

survival than darker juveniles (“Checker”, “T-pattern” and “Spread”; Tables 4 and 6, Fig. 1).  

 

Local survival of juveniles in Pantin 

In Pantin, juvenile local survival was month-dependent and increased with age until three 

months old (best model with three age-classes; Table 4). However, there was no difference 

between colour morphs (Tables 4 and 6). We did not test for the effect of yearly number of 

chicks, since we only had data for two years. 

 

Discussion 

 

The aim of the study was to compare local survival between differently coloured free-living 

feral pigeons. An increase in the proportion of darker individuals between juveniles and adults 

was noticed in both pigeon houses. Such differences have already been observed in Vienna 

(Haag-Wackernagel et al. 2006) and in different populations in and around Paris (Jacquin et 

al. 2013b), using a similar visual scoring protocol. These observations suggest directional 

selection at the juvenile stage, but could be flawed if detectability varies according to 

colouration (Gimenez et al. 2008). 

Therefore, we estimated local survival in two pigeon houses using a mark-recapture 

protocol. Contrary to what we predicted, colouration was not related to local survival in 

adults. However, we found a relationship for juveniles: pale eumelanic juveniles had a lower 

monthly local survival probability than darker eumelanic ones. This relationship however was 

restricted to only one pigeon house (Fontenay). Thus, darker eumelanic juveniles could have a 

selective advantage compared to paler juveniles in some environmental contexts, which 

would explain the higher proportion of dark adult individuals in urban populations of feral 



 

 

pigeons compared to more rural ones. Interestingly, a long term study of barn owls Tyto alba 

also found a higher local survival of dark individuals in juveniles but not in adults (Roulin et 

al. 2010). Although other mechanisms (e.g. annual reproductive success) could generate 

fitness differences later in life, it thus seems that differences of survival and/or dispersal 

according to colouration are mainly expressed at the juvenile stage. 

Adult local survival was similar between the two studied populations and was not 

linked to the number of chicks born. In contrast, local survival of juveniles was negatively 

correlated to the yearly number of chicks born in Fontenay, which varied according to egg 

removal management. Despite not being able to test this effect for juveniles in Pantin (due to 

having only two years of data), the observed decrease in local survival between 2008 and 

2009 (Table 5) still coincided with an increase in the number of chicks. The observed 

variation in juvenile local survival between years may thus have resulted directly from 

variation in reproductive output due to chicks removal rather than from variation in 

environmental conditions. This contrasted response between adult and juveniles is consistent 

with previous studies that found juveniles to be more sensitive to environmental variation, in 

terms of survival (Gaillard et al. 2000) or dispersal (Schreiber et al. 2004). Taken together 

with the difference in colouration-dependence between adults and juveniles, this suggest that 

juvenile and adult local survival vary quite independently in feral pigeons, similarly to what 

was observed for other bird species (Altwegg et al. 2007). 

The human-driven variation in chick number is likely to have induced changes in 

competition for food, which may impact juvenile mortality. Indeed, juveniles are less efficient 

foragers than adults, which makes them more sensitive to competition for food (Sol et al. 

1998). A possible scenario is that when egg removal rate is high (i.e. before 2009 in Pantin, in 

2009 in Fontenay), the number of chicks is lower, and juveniles are likely to experience a 

lower competition with other juveniles and/or with adults feeding them. Reduced competition 



 

 

could then act positively on local survival through lower mortality. Such effect could also be 

driven by differential natal dispersal rate. Indeed, juveniles tend to disperse towards less 

dense populations when densities on their natal site are high (Hetmański 2007).  

Several underlying mechanisms could explain the difference in survival and/or 

dispersal between differently coloured juveniles. Indeed, melanin-based colouration intensity 

has been shown to be associated with various life-history traits such as behaviour, 

reproduction and parasite resistance in pigeons (Johnson and Johnston 1989, Johnston and 

Janiga 1995, Jacquin et al. 2011, 2012) and in other species (Moreno and Møller 2006, 

Ducrest et al. 2008, McKinnon and Pierrotti 2010). Different factors could thus act 

advantageously for dark coloured juvenile pigeons in one of our population. For instance, 

differential selection on pale and dark juveniles could be due to differences in competitive 

abilities. Darker individuals are known to be more aggressive and to have better competitive 

abilities for access to food resources (Senar 2006). Parasitism could also play a role in linking 

survival and colouration (Piault et al. 2009), because dark feral pigeons are known to develop 

stronger immune responses, to be more resistant to blood parasites (Jacquin et al. 2011) and to 

transmit more antibodies to their eggs (Jacquin et al. 2013a). As parasite transmission is 

generally higher in denser host populations (Arneberg 2001), darker eumelanic juveniles 

could have a selective advantage in dense populations. Selection could thus act directly 

through a higher survival and/or a lower dispersal of darker juveniles in dense populations. In 

agreement with this hypothesis, juvenile local survival differed according to colouration in 

Fontenay but not in Pantin, and competition is likely to be higher in Fontenay compared to 

Pantin due to lower reproductive control and a higher number of chicks born (Table 1). 

Moreover, differences in local survival between pale and dark juveniles in Fontenay were 

more pronounced in 2007 and 2008, when the number of chicks born was high, compared to 

2009, where the number of chicks was lower (Table 3, Fig 1). An alternative explanation 



 

 

could be the higher urbanisation rate in Fontenay compared to Pantin, resp. 92.4% and 85.2% 

(Jacquin et al. 2013b). However the effect of urbanisation could only be tested by studying 

several sites in a wide range of urbanisation rates. In birds, colouration-by-environment 

interactions have already been found on chicks’ condition and growth, taken as proxies for 

survival prospect (Roulin et al. 2008, Piault et al. 2009). However a colouration-by-

environment interaction on dispersal has only been described in insects (Ahnesjö and 

Forsman 2006). 

  

Our results suggest that eumelanin-based colouration is under directional survival 

selection in dense populations of highly urbanized areas, and that such selection occurs 

through differential survival or dispersal rate of juveniles. Interactions between melanin-based 

colouration and population densities could explain the observed differences in local survival. 

Consistently, Obukhova (2011) found that proportions of darker morphs were positively 

correlated with pigeon densities both in space and time. Darker eumelanic colouration could 

thus reflect an adaptation to high population density, which could entail a selective advantage 

in more urbanized areas. Indeed, densely urbanized areas are associated with higher densities 

of pigeon populations compared to more rural ones (Johnston and Janiga 1995), and stronger 

competition for food and changes in parasite exposure has often been invoked as a central 

selective factor in such densely colonized urban areas (Shochat et al. 2004, Bradley and 

Altizer 2004). 

To conclude, this study provides the first demonstration of colouration-dependent 

selection in juvenile feral pigeons taking into account detection probabilities. It contributes to 

the growing body of evidence that darker eumelanic individuals have a higher survival and/or 

a lower dispersal than paler ones, especially at the juvenile stage and in stressful 

environments (Roulin et al. 2008, Piault et al. 2009). The observed differences in local 



 

 

survival according to colouration intensity were indeed context-dependent, linked potentially 

to the degree of competition and/or parasite exposure in more or less dense populations. 

Although our results are consistent with such density-dependent effects, the present study 

does not provide enough data to test them in full. Moreover, it was conducted in populations 

exploiting pigeon houses, so conditions might be quite different from those experienced by 

free-living populations. A current survey of colour-ringed pigeons from free-living 

populations and pigeon houses in various sites of Paris area may yield interesting information 

on the environmental correlates of colouration-dependent local survival and on the relative 

contributions of mortality and dispersal. 
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Table 1: Description of the two pigeon houses surveyed: egg-removal protocol (0, 1 or 2 eggs removed per clutch), total number of chicks born 1 

per year, and months during which recording took place (in grey). 2 

Year 2007 2008 2009 

Month J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D 

P
an

ti
n

 Egg removal 2 eggs per clutch 1 egg per clutch 1 egg per clutch 

Chicks born 1 61 86 

Recording                                                                         

F
o
n
te

n
ay

 Egg removal 0 egg per clutch 0 egg per clutch 1 egg per clutch 

Chicks born 98 104 34 

Recording                                                                         

 3 



 

 

Table 2: Number of birds included in the survey. All were recorded at least once after ringing. The percentage of each colour morph relative to 4 

the number of individuals of the same age and site are given in brackets. 5 

  
Colour morph 

All Blue Bar Checker T-pattern/Spread 

Adults Pantin 188 51 (27.1) 107 (56.9) 30 (16.0) 

Fontenay 136 29 (21.3) 85 (62.5) 22 (16.2) 

Juveniles Pantin 89 17 (19.1) 64 (71.9) 8 (9.0) 

Fontenay 128 35 (27.3) 91 (71.1) 2 (1.6) 



 

 

Table 3: Model selection for adult local survival (selected models in bold). All models with an AIC weight higher than 1% are reported. In 6 

Pantin, recapture probabilities are set as year-dependent and include trap-dependence. In Fontenay, recapture probabilities are set as fully time-7 

dependent (month x year) and include trap-dependence. Survival probabilities all include a transience-effect (see methods). Models with 8 

interactions include the corresponding main effects. 9 

Site Modelled effects on adult local survival Parameters Deviance AIC AIC weight 

Pantin Yearly number of chicks + Month 19 701.9 739.9 0.323 

 Month 18 704.3 740.3 0.265 

 Year + Month 20 700.3 740.3 0.256 

 Colour + Yearly number of chicks + Month 21 701.7 743.7 0.048 

 Year × Month 32 680.2 744.2 0.037 

 Colour × Yearly number of chicks + Month 23 699.3 745.3 0.021 

 Colour + Year + Month 22 701.6 745.6 0.018 

 Yearly number of chicks 8 730.3 746.3 0.013 

Fontenay Year × Month 59 754.1 872.1 0.738 

 Colour + Year × Month 61 753.2 875.2 0.152 

 Month 44 789.8 877.8 0.041 

 Year + Month 46 786.5 878.5 0.029 

 Yearly number of chicks + Month 45 789.2 879.2 0.020 

10 



 

 

Table 4: Model selection for juvenile local survival (selected models in bold). For each model, only the model with the best age structure is 11 

reported. Only models with an AIC weight higher than 2% are reported. In Pantin, recapture probability is modelled as age-dependent up to 4 12 

months. In Fontenay, recapture probability is dependent on year and age (up to 4 months), with trap-dependence. Models with interactions 13 

include the corresponding main effects. 14 

Site Modelled effects on juvenile local survival Parameters Deviance AIC AIC weight 

Pantin Month + Age up to 3 months 20 291.0 331.0 0.095 

 Year + Month + Age up to 3 months 21 289.9 331.9 0.061 

 Colour + Month + Age up to 3 months 21 290.3 332.3 0.051 

 Colour × Age up to 3 months + Year + Month 24 284.1 332.1 0.055 

 Colour + Year + Month + Age up to 3 months 22 289.3 333.3 0.031 

 (Year + Age up to 3 months) × Colour + Month 25 283.5 333.5 0.027 

Fontenay Colour + Year + Month + Age up to 5 months 28 648.5 704.5 0.256 

 Colour + Yearly number of chicks + Month + Age up to 5 months 27 651.3 705.3 0.166 

 Colour + Yearly number of chicks × Age up to 5 months + Month 27 653.9 707.9 0.045 

 Colour + Yearly number of chicks + Age up to 5 months 15 678.0 708.0 0.043 

 Colour + Month + Age up to 5 months 26 656.2 708.2 0.040 

 Colour × Age up to 6 months + Year + Month 34 640.3 708.3 0.038 

 Colour × Age up to 6 months + Yearly number of chicks + Month 33 643.5 709.5 0.021 

15 



 

 

Table 5: Maximum-likelihood estimates and 95% confidence intervals for monthly local survival rates according to year, site and age. Estimates 16 

for both colour morphs are given separately for juveniles of Fontenay (“Pale”: Blue Bar, “Dark”: Checker/T-pattern/Spread). These values are 17 

obtained from the best models without the month effect. 18 

   

Year 

2007 2008 2009 

Adults Pantin  0.99 [0.46 – 1.00] 0.99 [0.26 – 1.00] 0.99 [0.86 – 0.99] 

Fontenay  0.98 [0.96 – 0.99] 0.98 [0.96 – 0.98] 0.99 [0.97 – 0.98] 

Juveniles Pantin  – 0.90 [0.78 – 0.96] 0.59 [0.49 – 0.68] 

Fontenay Pale 0.55 [0.41 – 0.69] 0.48 [0.31 – 0.66] 0.85 [0.70 – 0.93] 

Dark 0.78 [0.70 – 0.85] 0.73 [0.59 – 0.84] 0.94 [0.87 – 0.97] 

 19 

20 



 

 

Table 6: Maximum-likelihood estimates ± S.E. (beta parameters) for the effects of colouration and of the yearly number of chicks born on local 21 

survival. P-values are given into brackets. 22 

  Colouration (relative to Blue Bar birds) Number of chicks born 

Adults  Checker T-pattern/Spread  

 Pantin + 0.15 ± 0.50 (0.76) + 0.30 ± 0.73 (0.68) -  3.74 ± 2.70 (0.17) 

 Fontenay -  0.05 ± 0.38 (0.90) + 0.31 ± 0.52 (0.54) + 0.80 ± 1.01 (0.43) 

Juveniles  Checker/T-pattern/Spread  

 Pantin + 0.37 ± 0.42 (0.39) – 

 Fontenay     + 1.27 ± 0.34 (0.0002) -  3.32 ± 1.77 (0.06) 

 23 

24 



 

 

Figure 1: Monthly mortality rate of one-month old juveniles in Fontenay as a function of year and colouration (“Pale”: Blue Bar, “Dark”: 25 

Checker/T-pattern/Spread) and number of chicks born in Fontenay (dotted line) as a function of year. Model selection indicated that mortality 26 

differed between years, as a function of the yearly number of chicks born, as well as between colour scores. The graphs for older juveniles 27 

indicate similar trends. The error bars give the 95% confidence intervals. 28 
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