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REGION-BASED EPIPOLAR AND PLANAR GEOMETRY ESTIMATION IN

LOW-TEXTURED ENVIRONMENTS

Vincent Gaudillière, Gilles Simon, Marie-Odile Berger

Inria Nancy - Grand Est / Loria, Nancy, France

ABSTRACT

Given two views of the same scene, usual correspondence

geometry estimation techniques exploit the well-established

effectiveness of keypoint descriptors. However, such features

have a hard time in poorly textured man-made environments,

possibly containing repetitive patterns and/or specularities,

such as industrial places. In that paper, we propose a novel

method for two-view epipolar and planar geometry esti-

mation that first aims at detecting and matching physical

vertical planes frequently present in these environments, be-

fore estimating corresponding homographies. Inferred local

correspondences are finally used to improve fundamental

matrix estimation. The gain in precision is demonstrated on

industrial and urban environments.

Index Terms— Epipolar geometry estimation, homogra-

phy estimation, plane detection, low-textured industrial envi-

ronments.

1. INTRODUCTION

The problem of two-view correspondence geometry estima-

tion has been extensively studied over the past decades. Most

commonly used techniques consist in matching previously ex-

tracted keypoint descriptors [1]. Keypoints extraction and

description has known its golden age as soon as SIFT was

introduced [2]. Since then, a great deal of research has fo-

cused on designing faster methods [3, 4, 5], or more invariant

ones [6]. However, those methods work well with highly tex-

tured scenes, but fail with poorly textured ones. Moreover,

the Lowe’s ratio most often used to get potential matches [2]

leads to ignoring repetitive features in the initial matches set.

Therefore, line segments may appear as suitable features

for complex environments such as industrial ones, even if line

matching remains a very tough issue. Several types of match-

ing strategies have been investigated in the past, and most

of them consist in iteratively estimating a geometric model

among a set of putative matches (RANSAC-like algorithms).

Potential segment matches can be determined from the ap-

pearance similarity of their neighborhoods [7, 8, 9]. How-

ever, line segments in industrial environments often corre-

spond to 3D object edges, i.e. their neighborhoods consist
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of an information-poor content (e.g. solid color) on one side,

and a viewpoint-dependant content on the other side. The

same argument can be opposed to segments described by key-

points in their neighborhoods [10, 11]. Conversely, one can

create the initial set of matches thanks to geometric criteria

[12, 13, 14], yet such invariant-based methods are highly sen-

sitive to noise, and often lead to very combinatorial problems.

Finally, matching groups of lines can compensate for the lack

of information, but here again at the cost of a high combina-

torics [15, 16].

In our work, we take advantage of global properties of the

environment to guide matching:

• First, industrial environments often contain a sub-

stantial number of vertical planes. Starting from the

observation that information about existing planes is

somehow encapsulated into vanishing points, the way

our method takes advantage of them is two-fold. First,

we associate each line segment to its vanishing point,

and that information is then used to constrain seg-

ment matching. Second, vanishing points are used as

primitives for local homography estimation, thereby

reducing the combinatorial complexity and avoiding to

place excessive reliance on sparse visual keypoints.

• Second, it appears in [17] that image regions are robust

features to match, even in the presence of severe view-

point and condition changes. Indeed, appropriately-

designed descriptors of subimages can offer the advan-

tage of being robust to both viewpoint changes (as lo-

cal descriptors) and condition changes (as global de-

scriptors) [18]. In our method, subimage correspon-

dences are used as prior for vertical planes detection

and matching. By doing that, line matching is more

constrained, thereby circumventing inherent difficulties

of industrial environments, without compromising the

processing time.

Given two different views of the scene, our processing

pipeline is finally broken down as follows: (1) Region cor-

respondences are computed between images (Section 2). (2)

Local homographies are detected between matched regions,

then merged to identify physical planes (Section 3). (3) Seg-

ment correspondences defined by local homographies are

used to improve epipolar geometry estimation (Section 4).



2. REGION PROPOSAL AND MATCHING

Our method for generating a set of hypotheses of matched

regions is inspired from the work of Sünderhauf et al. [17].

In their method, subimage correspondences are computed to

robustly recognize places. To do that, object proposals are ex-

tracted, before mid-level ConvNet features are computed for

each of them. Thus, an image is described by a collection of

CNN descriptors corresponding to different subimages. Af-

ter a dimensionality reduction step, matching of descriptors

is performed using a nearest neighbor search based on the

cosine distance between them, followed by a cross-check en-

suring that only mutual matches are accepted.

In our method, we broadly follow the same approach, ex-

cept for the fact that we directly consider high-level ConvNet

features (e.g. the last layer before fully-connected ones) from

[19] as region descriptors, enabling us to do without the di-

mensionality reduction step. Edge Boxes [20] is used as ob-

ject proposal, since it appears to be particularly suitable for

scenes made of contours, such as in industrial environments.

3. LOCAL PLANAR HOMOGRAPHIES

ESTIMATION

Once subimage correspondences have been computed, our

algorithm aims at detecting local homographies between

matched regions. To ensure efficient estimations, we have

developed a dedicated RANSAC framework in which model

hypotheses are first generated based on vanishing point and

visual keypoint correspondences, and then validated on key-

points and line segments. That scheme enables us to circum-

vent problems encountered in poorly-textured images (spar-

sity of visual keypoints and difficulties to match segments)

while taking advantage of the abundance of segments and

vanishing points characteristic of industrial environments.

3.1. Features extraction and matching

Vanishing points (VPs) are detected in both images using

[21]. This method detects the zenith and all existing hori-

zontal VPs, therefore associated to vertical planes. Zeniths

are easily identified, and thus matched, by selecting in each

image the VP with the greatest absolute coordinate along the

vertical axis.

Line segments are extracted with LSD [22]. Segments as-

sociated to previously computed VPs (according to a thresh-

old on the angular distance between the line the segment be-

longs to and the line connecting the VP to the middle of the

segment) are retained, while the others are discarded.

Visual keypoints (KPs) are finally detected with a learned

variant of SIFT, called LIFT [6]. Correspondences are ob-

tained by applying the Lowe’s ratio on both directions, then

keeping only mutual matches in order to maximize the inlier

rate within the initial set of putative matches S0.

Fig. 1. Overview of our homographies estimation method.

Row 1: Two views of an industrial environment. Row 2: Ex-

amples of matched regions (one color per match). Row 3:

Inliers (points and segments) from homographies estimated

between matched regions (one color per homography). Row

4: Inliers after merging homographies. Row 5: Inliers of the

first three planes obtained by 4-points multi-RANSAC.

3.2. Homographies estimation

Selection of matched boxes Due to the specificities of our

environments, regions matched during the first stage can be

considered as vertical plane proposals. Since those correspon-

dences have an important overlap, testing all pairs of boxes to

find homographies would unnecessarily increase the process-

ing time. To handle that issue, pairs of boxes are roughly

ranked from smallest ones to biggest ones, according to the

mean area of boxes. The key idea is to process pairs of boxes

in that order, while updating two maps of already visited pix-

els. These maps have the same resolution as the original im-



ages, and each pixel takes the value 1 if a box containing that

pixel has already been tested, 0 otherwise. A pair of boxes is

tested if less than 50% of the pixels of each box have already

been visited.

Feature selection The processing of one pair of boxes

first consists in selecting features it contains (KPs, segments,

VPs associated to the segments), and then in applying a

merging procedure on line segments in order to offset over-

segmentation induced by LSD. Among segments that share

the same VP, those to merge are determined using the same

kind of tangential and normal constraints as those presented

in [14]. If segments are sufficiently aligned, they are thus

merged. Finally, only the longest segments associated to each

VP are retained, in order to keep the most significant ones

and reduce the combinatorial complexity of matching.

Robust homography estimation Due to the difficulties

to generate correct segment correspondences, RANSAC hy-

potheses are only generated from VPs and KPs. At each it-

eration, we randomly pick one pair of horizontal VPs, two

matched pairs of KPs, and the pair of zeniths. These four

pairs of points thus define an homography induced by a verti-

cal plane. Unlike [9], VPs are directly used here as primitives

to define the models. That choice enables us to drastically

reduce the combinatorics and the reliance on visual KPs, by

limiting to just two the number of KP matches needed to gen-

erate an homography model.

To determine the number of RANSAC iterations, we use

a customized version of the adaptive algorithm described in

[1] (Section 4.7.1). Given Nhvp
total the total number of possible

pairs of horizontal VPs, the probability to pick the correct pair

at any iteration is whvp = 1/Nhvp
total. Given Np

total the number

of putative pairs of KPs, the probability to pick a correct pair

is wp = Np
inliers/N

p
total, where Np

inliers is the number of

point inliers in the current iteration. The number Niter of

iterations required to ensure, with a probability p, that at least

one set of primitives is free from outliers is thus given by the

formula:

Niter =
log(1− p)

log(1− whvp.w2
p)

(1)

At each iteration, Niter is updated based on the current value

of wp, and the algorithm stops if the current iteration is greater

than Niter.

Note that when only one type of features is used, Niter

is computed as: Niter = log(1−p)
log(1−w4) . If we assume a con-

figuration with 2 horizontal VPs per image, 40% of point in-

liers, and 1% of segment inliers (non-matched segments), our

method requires 113 iterations, while the 4-point algorithm

requires 178 iterations, and the 4-segment method requires

4.6× 108 iterations. If the considered box pair is not correct,

the gain in performance between our method and the 4-point

algorithm is much more important.

Model validation (RANSAC) Validation is based on KPs

and segments. KP inliers are determined in the classic way,

whereas all possible pairs of segments (between segments as-

sociated to the zeniths on the one hand, and between seg-

ments associated to the picked horizontal VPs on the other

hand) are tested. The pairs that satisfy both tangential and

normal constraints presented in [14] are retained. To pre-

vent from degenerate cases, one segment in the original im-

age can be matched with only one segment in the target im-

age (the closest in the sense of the normal constraint). From

there, the number of target segments involved in a pair that

satisfy the homography (Ns
inliers) is added to the number

of keypoint inliers, thus defining a score for the model H:

Score(H) = Np
inliers + Ns

inliers. Since only the most sig-

nificant segments have been retained, segment matches are

likely to be of equal importance. Moreover, adding both KPs

and segments contribution is justified by the fact that it allows

us to rely on any kind of features when the other is scarce.

Final decision Subimages matched during the first stage

may not be linked by an homography, either because they do

not contain a planar object, or because the match is incorrect.

Thus, to distinguish between real and fake homographies, we

only consider homographies producing more than 10 inliers.

3.3. Homographies merging

At this point, several local homographies can identify the

same vertical plane (see Fig. 1: Row 3). We thus apply a

merging step, which consists, for each homography, in test-

ing the inliers of other homographies. If more than 50% of

the KP inliers of an homography A are also inliers of an

homography B, and if the same performance is achieved with

the segment inliers, then A and B are merged.

4. EPIPOLAR GEOMETRY ESTIMATION

As the consensus set of homographies contain pairs of seg-

ments, we now use them to improve epipolar geometry es-

timation. The main idea, inspired by [8], is to add segment

intersections to the set of putative KP matches S0, and then

to give the new set of matches as input to a state-of-the-art

epipolar geometry estimation algorithm, called ORSA [23].

In our method, segments are first converted into lines

in both images. Then, for each consensus set, intersections

between vertical lines (those generated from segments asso-

ciated with the zenith) and horizontal ones (those generated

from segments associated with the horizontal VP) are com-

puted. Since several segments can generate approximatively

the same line (due to the merging step), and since near-

identical duplicate matches can disrupt the epipolar geometry

estimation algorithm, we have decided to divide both im-

ages according to a regular grid, and to keep at most one

intersection point per square of the grid. Finally, these new

intersection point matches are added to the initial set of KP

matches S0.



Avg. nb of inliers Avg. inlier rate (%)

indus. urban indus. urban

SIFT 198.6 102.8 30.02 52.3

LIFT 207.4 100.3 42.24 58.4

Ours 260.7 126.0 45.84 62.44

Table 1. Average performance on test datasets, in terms of

both number of inliers and inlier rate.

5. RESULTS AND CONCLUSION

Experiments have been conducted on two datasets. The first

one consists of 46 pairs of images taken in an electricity plant,

and the second one of 14 pairs of urban images extracted from

[24]. For each pair, the ground truth consists of approximately

20 pairs of points that have been placed by hand. These points

have been selected with the aim of covering the images as

widely as possible, while ensuring an homogeneous distri-

bution. Industrial images have a resolution of 1280×1920

pixels, whereas urban ones are 640×640. It must be noted

that [9] fails to detect reliable segment correspondences in

the considered examples.

In the following, our method is compared to the standard

method composed of two steps (i) extraction and matching of

keypoints on the whole image by applying the Lowe’s ratio on

both directions then keeping only mutual matches (ii) compu-

tation of the epipolar geometry from this set of matched points

using ORSA. SIFT and LIFT are used in our comparison. Es-

timated epipolar geometries are finally compared in terms of

inliers (numbers and rates), and precision (error w.r.t ground

truth).
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Fig. 2. Average errors on both industrial and urban datasets

(referred as indus. and urban), w.r.t. ground truth.

The precision of estimated fundamental matrices is as-

sessed in Fig. 2. For each image pair, the difference between

ground truth points and estimated epipolar lines have been

measured through RMSE and maximum error. These criteria

have then been averaged over the datasets. In average, our

method presents the highest precision, whichever error crite-

rion is used.

Table 1 presents the quality of estimated models in terms

of inliers (here again, results are averaged over the datasets).

Our method has the highest number of inliers and the best

inlier rate, which could substantially improve the quality of

further reconstruction or pose computation steps. Fig. 3 illus-

trates the higher number of inliers obtained with our method.

In addition, it is worth noting that there are 6 pairs of indus-

trial images on which ORSA fails at estimating a model based

on classical SIFT correspondences.

Fig. 3. Example of test images on which ORSA inliers (in

green) are more numerous among our matches (right) rather

than among LIFT ones (left).

Fig. 1 shows the ability of our method to detect physi-

cal vertical planes (Row 4), while a classical multi-RANSAC

based on keypoint matches (Row 5) can merge points from

different planes (see green and orange inliers), or find inliers

out of any physical plane (see red and green dots). Fig. 4

shows other examples of planes detected by our method (con-

vex hulls of point and segment inliers, after homographies

merging step), in both industrial and urban environments.

Fig. 4. Convex hulls of homographies inliers (points and seg-

ments), after merging step, on two pairs of test images (one

color per homography).

These experiments demonstrate that our method can im-

prove correspondence geometry estimation in complex mul-

tiplanar environments, even in the absence of rich visual con-

tent.
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