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Abstract — The fundamental and practical problem of passive 
localization in range and depth, of an acoustic underwater source 
is addressed, with application to an at-sea experiment. We propose 
and try a new matching method based on a metric called as 
Hausdorff distance as a cost-function to be minimized, in order to 
perform the localization inversion. The data set analyzed here was 
collected during the DGA campaign ALMA 2015, which took place 
in a shallow water environment of the southern coast of France. 
Acoustic data were measured over a 10m-high vertical linear 
array (VLA), composed of 64 hydrophones. The 2-D localization, 
in range and depth, is performed by matching the patterns of time 
difference of arrival (TDOA), between respectively observed and 
modeled sequences. Several variants of the Hausdorff Distance are 
applied, firstly separately in each single hydrophone, and then 
combined in order to improve the localization accuracy, reducing 
the ambiguity either is depth and in range. The performance is 
evaluated in terms of the localization accuracy of the proposed 
method, in a context of passive localization with a cooperative 
system considering a motionless target. Very satisfactory 
performance and accuracy are obtained. 

 Keywords— Target localization;  Hausdorff Distance Method; 
Passive sonar; Pattern recognition; Underwater localization 
inversion; Model based signal processing. 

I. INTRODUCTION 
Over the last decade, an enduring interest has being growing 

in passive sonar localization and tracking of underwater acoustic 
targets, using intercepted transient pulses. However this still 
challenging problem remains a constant research theme, being 
of a high strategic value for navy operations, most specific in 
protection of coastal areas.  

The context of shallow water combined with long target 
range produces signals reaching the sonar along multipath with 
small grazing angles of arrival, very close one to each other in 
angle and in travel time; a tremendous obstacle for achieving an 
accurate ranging of the target is the complex behavior of the 
sound channel, which features many interactions with complex 
boundaries (rough seabed, rough moving sea surface). Un-
stationary more-or-less random interference patterns, which can 
be either constructive (gain) or destructive (fading), impact the 
performance of signal processing. The signal received by each 
sonar sensor is assumed to be the sum of copies of the 
transmitted waveform from the target. It contains information 
about the specific range and depth of the target through the 

characteristics of the different propagation paths, and first of all 
through their different arrival times and arrival angles. Hence the 
target location information can be inferred from two widely used 
parameters: Time Difference Of Arrival (TDOA) and/or Angles 
Of Arrival (AOA). The most common technique for underwater 
localization consists of firstly predicting the received acoustic 
signals and the corresponding TDOA and/AOA modeled, with 
the help of an acoustic propagation models derived from the 
wave equation (rays theory, Normal modes, parabolic equation, 
multipath expansion, wavenumber integration.) for a set of 
possible target locations; these simulations sharply depend on 
the accuracy of the a priori knowledge of the undersea 
environment. The second step consists of finding the target 
location that produces the best matching between the modeled 
signal parameters and the measured ones; this best matching 
may be searched and achieved using different optimizations 
methods and criteria at the literature. The combination of several 
hydrophones improves and makes more robust the localization 
processing and its accuracy by making use of spatial diversity, 
as a remedy to the problem of multipath interference and fading. 

Significant data-to-model mismatch can result even in a 
relatively well characterized environment, a wrong location of 
the target.  

Uncertainties in environmental parameters may affect all 
features of the marine medium: sound speed profile (fronts, 
upwelling, tides, internal waves, currents and turbulence) 
influences the times and angles; seabed topography (micro-
topography, ripples) affects bottom reflection angles; sea bottom 
geo-acoustic properties like sediment type or layering of the 
seafloor affect reflection coefficient and may impact the 
detectability of late arrivals; the sea surface affected by gravity 
waves is an intrinsically random boundary and affects both 
reflection coefficients and arrival angles. In many cases, even a 
small variation in one of these items can change dramatically the 
propagation paths. Target localization in an operational context 
cannot rely on too complex time-consuming propagation 
models, requiring practically unavoidable environmental data; 
for remaining close to such practical situations, the 
representation of the shallow water medium involved in our 
localization scheme, was deliberately highly simplified as a 
range independent acoustic propagation model, calling for a 
mean constant Sound Speed Profile (SSP) and for a nominal flat 
seafloor with a local averaged depth.  



Our localization technique relies on recognizing the 
sequence of TDOA over all sensors of an array. When the signal 
radiated from the source is broadband and when the waveform 
parameters are known or can be estimated, the most popular 
method for estimating the TDOA is a so-called matched filtering 
(correlation of signal with estimated waveform). The TDOA can 
also be obtained by other methods such as described in: [1], [2] 
and [3]. The variance of the estimated TDOA depends on SNR, 
pulse bandwidth and frequency  [4]. The localization can then 
be performed by using  matched mode processing [5] or matched 
field processing [6] such as conventional beamforming (Bartlett) 
and high-resolution algorithms (adaptive beamforming), which 
include: maximum likelihood [7], MUSIC and derivatives [8], 
ESPRIT [9], and feature extraction methods [10]. High 
resolution algorithms mainly commonly use hydrophone arrays 
to localize a target. 

Localization may be understood as an optimization problem, 
where the model-to-observation discrepancy, as measured by 
some cost-function, must be minimized. The proposed method 
makes use of Hausdorff Distance (HD) as such a cost-function. 
The HD technique outlined in this paper has been widely used 
in image processing and pattern recognition, in many different 
fields like radar and satellite image processing[11], ship 
positioning by combining radar images with satellite images 
[12], speech recognition [13], video recognition, computer 
vision [14], underwater vehicle classification [15] [16], and 
sidescan sonar [17]. In the context of underwater localization, it 
was first used: in active sonar by Mours et al [18], and in passive 
sonar by Magalhaes et al [19] in a tank experiment, 
demonstrated that the HD could also be applied in a single 
hydrophone configuration.  

The main advantage of the HD as a cost function to be 
minimized is that it takes into consideration the spatial proximity 
of each individual point in the observation and in a rasterized 
grid of simulated points. It is far more robust to the 
environmental mismatch when compared with other well-
known localization techniques, such as the Matched Field 
Processing (MFP), where even a small mismatch between the 
two sets of observed and modeled points may preclude from 
matching; this would strongly affect the accuracy of the location. 
The basic difference between these two methods is that the MFP 
evaluates the position of the target based on the maximum value 
of the output correlator of the observed impulse response, which 
contains the information about the Time Differences Of Arrival 
(TDOA) and Angles of Arrival (AOA) of all ray paths. The HD 
distance quantifies the similarity between the two measured and 
modeled sets, TDOA and/or AOA). The correct target location 
is then identified as the output from a global search for the 
minimal value, corresponding to a maximal match between 
those sets, theoretically being zero if both sets are identical. In  
presence of an environmental mismatch, an error would be 
introduced in the modeled sets, and induce a corresponding error 
in the estimated location of the target; however it seems that the 
impact of the modeling error on results from the HD cost 
function is far less critical than for the MFP correlation. A 
second advantage of HD is the short computational runtime, 
again comparing with the MF. The HD also offers an 
opportunity for a hierarchical cell decomposition strategy, 
defining a preliminary large cell grid for a rough first global 

search, and then refining the mesh size for a higher final 
accuracy. 

This article consists of five sections. Section II describes the 
environment and the instruments of the ALMA 2015 sea trial 
setup. Section III describes the three proposed cost-functions 
based on variants of the HD and its applicability to underwater 
localization. Section IV presents the results of our technique 
applied to ALMA 2015 experiment. Section V gives conclusions 
and evokes future work. 

II. THE ALMA 2015 EXPERIMENT 
Experimental acoustic and environmental data were 

collected during the three days of ALMA 2015 campaign, 
making use of the modular array-and-source system ALMA 
(Acoustic Laboratory for Marine Applications) [20], designed 
and managed by DGA Naval Systems. It took place in October 
2015, in a shallow water environment off the southern coast of 
France, near the harbor of  Toulon.  Fig. 1 presents the location 
of the acoustic projector and of the receiving 10m-high array (64 
vertical linear passive array hydrophones (VLA), distributed in 
depth from 52.5m to 62.3m. The seafloor was roughly flat, with 
a depth about 100 m, with a sediment cover constantly sandy or 
gravelly-sandy. During the processed sequence, the calm sea 
roughness height was about 0.1 m  (sea state 1). The source-to-
receiver range was about 9.0 km. The source, moored at a depth 
of 56.2 m, transmitted sequences featuring different narrow- and 
wide-band codes, among which we considered only Linear 
Frequency Modulations  (LFM) over the of 4 to 6 kHz frequency 
band; the acoustic signals were sampled at 48 kHz. We have 
analyzed 50 signals over about two hours, with one transmission 
every three minutes.  

 
Fig. 1.Top view of the experimental setup measurements region. 

III. LOCALIZATION METHOD  

1) MAXIMUM HAUSDORFF DISTANCE   
The Maximum Hausdorff Distance (MaxHD), introduced by 

Huttenlocher [21] in the field of image processing, is a technique 
to measure the degree of similarity among different sets of points 
over a metric space. Here we invoke the HD for evaluating the 

respectively modeled and measured TDOA, giving an 
interesting measure of their mutual suitable proximity.  

Two bounded non-empty subsets A and B of an metric space 
are considered, one being the measured sequence of TDOA 
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, and the other one the modeled sequence 
of TDOA . Each point in one of the two 
sequences is assigned to its nearest neighbor in the other 
sequence, and the distance between those selected points is the 
Euclidean norm . This way, a sequence of point-to-point 
distances is obtained; the roles of the modeled and measured 
TDOA may be exchanged, resulting in two different sequences 
of distances. 

The final step for defining the HD   consists of selecting the 
largest one among these minimal distances, which is the largest 
departure between the two sets of points. Three variants exist, 
depending on the sequence used for extracting the maximum: 
backward and forward sequences, backward alone, and forward 
alone. Typically, the equation most commonly presented in the 
literature is the maximum bidirectional HD, defined as: 

TTTTTT R,S h,S,R hmax=S,RH  (1) 

In this paper we will use the notations h( TR , TS ) and h( TS ,

TR ) for the forward and backward HD respectively. Those two 
- are not symmetrical in general, depending 

on the number of points at each subset, and the combinations 
with the near neighbors themselves: 

 

x,1,2,3,=i     minmax=S,R h
RrTT sri

 (2) 

 

y,1,2,3,=j     minmax=R,S h
SsTT rsi

 (3) 

The MaxHD reaches its minimal value when every point of 
the modeled TDOA sequence is close to some point of the 
measured TDOA sequence. If the modeled environment is close 
enough to the experimental setup environment, the simulations 
of acoustic propagation models should give, for the correct 
target location, the same sequence of TDOA, with an ideal HD 
equal to 0, or practically reaching its minimum. The best 
matching (localization) is then performed through a global 
search for the minimal output of MaxHD between the measured 
TDOA sequence and the modeled TDOA sequence where a 
sampling of source location in depth and range is tried.  

The MaxHD tolerates small variations in time at the set of 
TDOAs, and it is unaffected by variations in absolute phase or 
initial delay, being in that sense an incoherent process. The 
disadvantage of only selecting the farthest distance in the 
definition of MaxHD appears in presence of outliers; those 
extra-points un-legitimately dominate the final MaxHD, and 
may be responsible for huge mismatches.  Two variants of the 
basic MaxHD, presented in the following, mitigate this specific 
problem.  

In the following, this paper will consider only the backward 
Hausdorff Distance; the reason for this choice is that the number 
of points in the set of modeled TDOA in this experiment was 
less than the number of the measured TDOA. this is important 
because of avoiding the missing point problem, i.e. points that 
were not modeled after over the 15 ms interval after the first path 
arrival; This number of ten came from a previous analysis in a 
realistic operational scenario, related with the average 

transmitted source power signal and the level of detection of the 
received array, provided a SNR allowing the detection of a 
source at a specified range. 

2) MEAN HAUSDORFF DISTANCE 
A first variant of the MaxHD, proposed by Dubuisson, is the 

Mean Hausdorff Distance [22], where the average of the 
Euclidian distances is taken instead of its maximum. The 
MeanHD is defined as:  

y,1,2,3,=j     min
Y
 1=R,S h

Y

1j
TT rsiSs

 (4) 

The main advantage of the MeanHD is that all points 
contribute to the final measure of similarity, which ensures that 
the other closest points will be take into account, and not only 
the ones that are the farthest one to each other and which can be 
outliers. In other words, the big mismatch which could arise 
from those outliers, is divided by the number of the subset points 
and in this way the error can be reduced. 

 

3) MEDIAN HAUSDORFF DISTANCE 
The second variant, called the Median Hausdorff Distance 
(MedHD), was also proposed by Dubuisson [22], Instead of the 
maximum or the average of the Euclidean distances, their 
median is adopted:  

 

 y,1,2,3,=j   min K=R,S h  th50
TT

50th rsiSs
 (5) 

The main advantage of this variant compared with the others 
two previous, is its stronger robustness to the outlier artifacts, 
due to the elimination of the largest distances; however, if no 
extra-point, the MedHD does not take benefit of the total amount 
of available points, because 50% of points in principle do not 
contribute to the final result. 

 

IV. RESULTS OF THE HD TECHNIQUES 
The signal transmitted from the source reaches each sensor 

along a cluster of multipath arrivals with different energies, and 
very close arrival time delays and angles, resulting in overlaps 
and interference. When considering a single sensor, these small 
differences in time or angle can generate an error or ambiguity 
either in target range or in depths. The spatial diversity among 
the sensors of the quite high array (10 m) and the coherent 
structure of the signals may help in relaxing these unfortunate 
consequences of this dense clustering. The combination of all 
hydrophones should reduce the ambiguity generated by the 
interferences and overlaps, and improve the target localization. 
In our first trial, we use only TDOA; the combination of all 
sensors is also important because it stabilizes the estimates of the 
measured TDOA sequence to be matched with the modeled 
TDOA sequences. Table 1 shows the result of our three various 
HD localization techniques during the analyzed set of 50 pings.  

Table I .Percentage of pings with localization errors less than 1km error in 
range and less than10 m in depth (True solution: range 9 km ; depth 56 m) 

 



 
The best result among the tested variants is obtained with the 

MeanHD, which was able to correctly localize the position of 
the targetin range in 68 % of considered transmissions, and 
localize in depths in 50 % of transmissions, considering an error 
less than 1 km in range and less than 10 m in target depth. These 
errors are departs of about 10% around the correct target 
location. According to operational navy specialist, one considers 
a localization as sufficiently correct when the error is less than 
20% of the target position;we reach the half of this critical value. 
The next step was to evaluate a fourth cost function: the 
combination of all three HD variants. The improvement brought 
by this combination is significant: the target is correctly 
localized in 76 % of pings for error less than 1 km in range and 
in 64 % for error less than 10 m in depth. The idea of using a 
combination of two variants of the HD came from the awareness 
of a possible mismatch between the 2 sets of points, which can 
generate ambiguities and finally wrong target position. Since 
each different variant performs different combinations, we may 
expect that secondary lobes occurs in different positions. As a 
result, the combinations can be used as a remedy to mitigate this 
particular problem. 

The last improvement came from using mean spatial filtering 
with the window four-by-four, after the combination of the 64 
hydrophones. Each hydrophone has its own measured sequence 
of TDOA, which may feature a small time mismatch resulting in 
a small spatial mismatch of target location.  The combination of 
the 64 hydrophones takes advantages of the spatial diversity of 
the vertical linear array; this spatial filtering allows us to 

neighborhood.   

Each variant of the Hausdorff method features has its own 
histogram of localization results based on measures of error 
generated by the different matching of TDOAs. The Fig.2 
displays the histograms of estimated target range and depth 
using the combination of the three HD variants techniques: a 
sharp dominant peak clearly appears at the correct depth and 
range locations, with far lower secondary ambiguity maxima.  

 

 

 
Fig. 2.HD combination error histogram in range (top), and in depth (bottom). 

 

 

V. CONCLUSION 
We have developed and tried several variants of an acoustic 
target localization technique relying of the Hausdorff Distance 
as a cost-function to be minimized when comparing 
observations with model outputs for a sampling of target range 
and depth. These methods were validated on real data involving 
a part of the signals collected in October 2015, in a shallow 
Mediterranean environment, during the DGA experimental 
campaign ALMA 2015. Target localization using these 
experimental data was challenging to underwater localization 
due to its difficult configuration: shallow water and long range, 
plus both transmitter and receivers located in mid-depth column 
waters. This generates a strong interfering cluster of multiple 
surface and bottom-reflected arrivals, close one to each other in 
time and angle, which are often difficult to separate within the 
signal temporal resolution capacity. The second difficulty was 
the choice of a highly simplified modeled channel for the inverse 
problem, due to the fact that we wanted to test our technique in 
a worst case scenario, close to operational situations, and to test 
the robustness of the proposed method in combating the 
environmental mismatch: the irregularities and movements of 
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the sea surface and bottom are disregarded; the SSP fluctuations 
are also ignored. The Hausdorff Distance techniques, 
historically used in the fields of image processing and shape 
recognition, seems to be a robust incoherent model based signal 
processing in order to perform the localization inversion, as 
demonstrated in a real at sea experiment, in a context of 
cooperative passive underwater localization. A significant 
improvement on the localization accuracy can be reached by 
using the spatial filtering to mitigate the information on the 

neighborhood. Overall, considering the theoretical and 
experimental feasibility, the proposed method has shown very 
satisfactory for localizing a target, with a good operational 
precision. 
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