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Abstract— The work presented in this paper focuses on the
environmental monitoring of underwater areas using acoustic
signals. In particular, we propose to compare the effectiveness of
various feature sets used to represent the underwater acoustic
data for the automatic processing of fish sounds We focus on
the detection and classification tasks. Specifically, we compare
the use of features issued from signal processing presented and
validated in [15], [16] to the use of features obtained through
deep convolutional neural networks. Experimental results show
that the use of signal processing features outperform the deep
features in terms of classification accuracy.

I. INTRODUCTION

The vitality assessment of environmental areas is of great
interest to the scientific community [11], [13]. The moni-
toring of sensitive marine zones (which are often difficult
to access) is of tremendous importance. Sensors can be
deployed and record continuous acoustic signals which once
processed, help gather information about the area of interest.
The potentially huge amount of data acquired has triggered
the development of autonomous analysis procedures for
example based on machine learning approaches [10], [13].
In this study, we focus on tools dedicated to the automatic
detection and classification of such data, focusing on in situ
recordings of many fish sounds acquired on the Mediter-
ranean coasts.

In previous a work [15], we showed the effectiveness of
a machine learning based approach to continuously process
underwater recordings for the automatic classification of
fish sounds. The effectiveness of the method in processing
continuous recordings is of particular interest with respect
to the monitoring of underwater areas. In this study, we
propose to compare the use of different sets of descriptors for
extracting features of the recorded signals. Those feature are
then input to the learning algorithm to train a classification
model. In particular, we compare the discriminative power
(in terms of classification accuracy) of the feature set we
proposed in [16] (based on descriptors computed on the
signals in the time, frequency and cepstral domains) with
features based on deep learning.

In the latest years, deep learning methods have been of
an increasing interest given the remarkable results achieved
in image classification [12], [19] or speech processing [8].
Given the success of those methods, they are now being ap-
plied for processing other types of data, including underwater
signals [10].

*Institute of Engineering Univ. Grenoble Alpes

Fig. 1. Spectrogram of underwater recordings and illustration of the
labeling process. Recording place #3: posidonia/ sand boarder, depth 38m.

Convolutional Neural Networks (CNNs), a classification
technique based on the deep learning paradigm, have proven
their ability to learn features from a dataset of images and
capture their properties [12], [19]. Similarly, they are now
used with underwater signals [2], [5]. In this applicative sce-
nario, spectrograms are computed from the recorded signals
and then processed with a CNN as they are images. However,
the major limitation of CNN - and of deep neural network in
general - is the amount of labeled data needed for training.
Such large labeled datasets are very difficult to gather given
the amount of labor and cost needed to perform the labeling
task. Nevertheless, one might benefit from the CNN ability
to represent data in the case of a limited labelld dataset by
considering features computed by a CNN trained on another
dataset as input to a standard classifier. This procedure is
within the scope of transfer learning, and has proven its
effectiveness when training a full CNN is not feasible due
to limited number of training observations [17].

II. DATASET

The data used in this study were recorded in coastal
areas of the Mediterranean sea, in France (Corsica) [14].
Several days of continuous recordings sampled at 156kHz
are available. Ten minutes of recordings containing several
fish sounds were labeled into five classes displayed in Figure
1: four fish sounds and one background class. A non-
overlapping sliding window of size ∆t = 0.5s is used and
two bandwidths (50-450Hz and 400-900Hz) are considered,
leading to 913 labeled observations.

III. METHODS

The automatic classification method follows the archi-
tecture presented in [15], [16] and uses machine learning
algorithms to build a prediction model from the learning
data. The key point of the architecture lies in the descriptors



leading to the representation of the acoustic signals in feature
space. We showed in [15], [16] the effectiveness in terms of
class discrimination when using a feature set composed of 84
features for the characterization of the acoustic signals shape
and properties (more detail on the feature set will be given in
the full paper). In particular, general shape descriptor features
are extracted from various representation of the observations:
temporal, spectral, and cepstral domains. Cepstral domain is
usually used in speech processing, to describe the harmonic
properties of a signal by computing the Fourier transform
on the signal spectrum. This approach lead to excellent
classification results and has since then been tested on other
datasets [16].

The aim of this study is to compare the discrimination
performance when using features based on deep learning and
referred as deep features. In particular, four pre-trained deep
CNNs architectures are considered: VGG16 [19], ResNet50
[7], MobileNet [9] and InceptionV3 [20]. The top
dense layer of each CNN is removed (since it is the classifica-
tion layer and is adjusted only for data similar to the training
dataset) and the output features can be directly used into a
classic machine learning algorithm. Each CNN was train on
ImageNet dataset [18], and the top layer was removed. Those
networks are among the most effective ones that are already
trained, and are publicly available.

Some studies have also reported that features extracted
from a CNN are more and more complex with the network
depth [21], [6]. It can therefore be interesting to extract
features at different layers of a CNN and to compare the
associated results. This issue will be investigated with the
best performing CNN feature set.

IV. RESULTS & DISCUSSION

In the following section, we describe the obtained results
and compare them to the use of signal processing features.
Spectrograms are computed using Kaiser windows of size
n = 1024, with on overlap of 90%. The fast Fourier
transform is computed on N = 1.5 ∗ n points and a
decibel scaling is used on the spectrograms is used before
generating the images. Keras implementation of the networks
were used to extract features, and all tests were run using
on a M2000 NIVIDIA Quadro GPU card with 768 cores
and 4 GB of memory. Cross validation process was use to
estimate the models performances, with 70% of the data
in training and 30% in testing. Ten trials were performed,
and mean and standard deviation of the overall accuracy
are considered. Both Random Forest (RF) [4] and Support
Vector Machine (SVM) [3] learning algorithms are used and
compared. Hyper-parameters of both algorithms are set to
optimized the cross validation results. SVM was considered
with a linear kernel for the deep features and rbf kernel with
the signal processing features. RF was computed with 100
decision trees that were not pruned in both configurations.

A. Comparison between the various feature sets

Cross-validation results for SVM (linear kernel) and RF
are summarized in table I. Several remarks can be made

on those results. First, among the four different CNNs,
ResNet50 systematically performs better than the others,
with 89.5 ± 1.15% for RF and 93.9 ± 0.97% for SVM. The
lowest results are obtained with VGG16, with 75.0 ± 1.99%
for RF and 86.8 ± 1.40% for SVM. Secondly, accuracy is
repeatedly lower with deep features than with the signal
processing features (96.9 ± 2.0% for RF and 96.5 ± 1.6%
for SVM). However, it is worth noticing that the dimension
of deep features is very high compared to the 84 proposed
features. At this point, it is not possible to say if the lower
results obtained with deep features are related to a lesser
informative content or to their high dimension. The curse
of dimensionality [1] could influence the results. It therefore
rises the issue of the feature vectors dimension and their
impact on the accuracy. Thirdly, results are systematically
higher with SVM (with linear kernel) than RF. The accuracy
gain when using SVM can vary from 4.4% with ResNet50
to 11.9% with VGG16. It is worth noticing that the network
leading to the smaller accuracy difference (ResNet50) is
also the one with the smaller output dimension. This third
point also rises the question of the feature vectors dimension.

TABLE I
COMPARISON BETWEEN THE USE OF SIGNAL PROCESSING FEATURES

AND FEATURES COMPUTED FROM VARIOUS CNNS. RESULTS ARE

PROPOSED USING SVM AND RF ALGORITHMS AND CROSS-VALIDATION

PROCESS (α = 0.7 ON THE LEARNING SET).

Feature set Dim X-validation
RF SVM

Signal Processing 84 96.9± 2.0% 96.5± 1.6%

InceptionV3 131072 80.6± 0.93% 88.4± 1.72%

MobileNet 50176 81.9± 1.04% 91.5± 1.37%

ResNet50 2048 89.5± 1.15% 93.9± 0.97%

VGG16 25088 75.0± 1.99% 86.8± 1.40%

B. Influence of the feature vectors dimension

We here study the impact of the feature vectors dimension
on the accuracy results. Two main questions are raised. Com-
pared to the other three networks, is ResNet50 leading to
the best results because of its shorter dimension? and Is SVM
performing better than RF because of the high dimension,
or is SVM more adapted for this dataset? To answer both
questions, Principal Component Analysis (PCA) is use to
compress the feature vectors output by the various CNNs.
Five to 500 components are kept as the new feature vectors,
and the comparison between the four CNNs is run again.
Results are presented in Figure 2. The top graph presents
RF results, and the lower one SVM results. Accuracy values
depending on the feature vectors dimensions (CNNs and
PCA) are represented (color dots), and accuracy values from
the previous part (CNNs without PCA) are displayed for
reference (colored triangles).

First, ResNet50 still performs well with PCA (red dots),
but MobileNet tends to have better results (green dots).
The difference is generally small, but is more pronounced
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Fig. 2. Use of PCA on the deep feature vectors, with different components kept as input of the learning algorithm. RF is consider on the top graph,
SVM with linear kernel on the lower graph. Triangles display results when using the full deep feature vectors (no PCA).

when using RF compared to SVM. When using PCA,
ResNet50, Inception and MobileNet perform better
with SVM while results with VGG16 are higher with RF.

Results are generally speaking quite different from RF to
SVM. The general trend for RF accuracy evolution would
be to increase with the PCA dimension, with a maximum
around 50 dimensions, and then to decrease. This observation
could have been related to the curse of dimensionality, but the
comparison with results from the previous part rules out this
hypothesis. Results without PCA are equivalents (VGG16) or
superiors (ResNet50, MobileNet and InceptionV3)
without PCA than with PCA and 500 components. There is
no clear tendency between accuracy without PCA and PCA
with 50 dimensions (best results when considering RF and
PCA): ResNet50 and Inception perform better without
PCA, VGG16 has similar results in both configuration, while
MobileNet performs notably better with the use of PCA.
There is no clear interpretation on RF and the input data
dimension, but the use of PCA with RF would not necessarily
be recommended. If used, the choice of the PCA dimensions
to keep should be considered as a hyper-parameter of the
problem.

This interpretation with SVM as learning algorithm is
quite different, since the general trend is toward better
results with higher dimensions, whether PCA is used or not.
This observation could be explained by the use of a linear
kernel: the more separable the input data are, the better for
classification results. With this configuration, the use of PCA

which compacts the data informative content would not be
recommended.

C. Layer selection for deep features extraction

CNN features get more and more complex with the layer
depth. In those conditions, it might be interesting to use
features from the bottom layers (simple shape features) rather
than from the top layers (complex shapes and features). This
is the object of this experiment in which we compare features
extracted at different layers from ResNet50. In particular,
ResNet50 architecture is made of four blocks of layers, and
features extracted from each of those four blocks are consid-
ered and will be referred as block1 to block4 feature sets.
Feature set block1 being the simplest and block4 the
most complex. Results comparing those four feature vector
sets are reported in Figure 3. The figure displays accuracy
levels for each of the four feature sets and put them in
relation with the feature vectors dimensions. block1 and
block4 features vectors have similar dimensions, 193, 600
and 200, 704 respectively. They lead to similar accuracy
levels when used with SVM (93.8±1.17% and 94.2±1.14%
respectively) but block1 leads to better results with RF
(90.5 ± 1.18% and 83.1 ± 2.07% respectively). The second
and third feature sets lead to lower accuracy levels, but also
have larger dimensions, 774,400 and 401,408 respectively. To
compare the effect of the different feature vectors regardless
of their dimensions, the same experiment is conducted with
the use PCA. block1 features perform better than the other
feature sets regardless of the learning algorithm and the
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Influence of the features depth in ResNet50 with (triangles) and without (dots) PCA (RF). 
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Fig. 3. Layer selection performed on ResNet50. Dimension reduction of the deep features vectors is also considered with the use of PCA (50 components).
Results are proposed using SVM and RF algorithms and using cross-validation process.

number of components extracted from the PCA. Features
from the bottom layers of ResNet50 therefore seem to be
interesting for this application, even if in this configuration,
best results are obtained with block4 features and the use
of SVM. In this configuration, accuracy is almost as high as
it is when using the proposed and handcrafted features.

V. CONCLUSION

The effectiveness of deep learning methods have originally
been demonstrated in image and speech processing. Nowa-
days, these tools are considered for several other applications.
In this work, we investigate the use of features issued from
deep learning for the automatic classification of fish sounds,
comparing them to more conventional features issued from
signal processing. Results are in favor of signal process-
ing features with overall accuracy reaching 96.9 ± 2.0%
when using RF (similar results with SVM). However some
configuration in which features are extracted from CNNs
can reach close accuracy levels. Such results validate and
encourage the use of machine learning methods for the
process of continuous underwater recordings and the study
of underwater areas.
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