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Some Liouville theorems for stationary
Navier-Stokes equations in Lebesgue and
Morrey spaces

Diego Chamorro* 1, Oscar Jarrin* *, Pierre-Gilles Lemarié-Rieusset™?

May 29, 2018

Abstract

Uniqueness of Leray solutions of the 3D Navier-Stokes equations is a challenging open prob-
lem. In this article we will study this problem for the 3D stationary Navier-Stokes equations
and under some additional hypotheses, stated in terms of Lebesgue and Morrey spaces, we will
show that the trivial solution U = 0 is the unique solution. This type of results are known as
Liouville theorems.

Keywords: Navier—Stokes equations; stationary system; Liouville theorem; Morrey
spaces.

1 Introduction

In this article we study uniqueness of weak solutions to the stationary and incompressible
Navier-Stokes equations in the whole space R3:

—AU+(U-VYU+VP=0, div(U)=0, (1)
where U : R® — R3 is the velocity and P : R3 — R is the pressure. Recall that a
weak solution of equations (1)) is a couple (U, P) € L2 (R?) x D' (R?) which verifies these

equations in the distributional sense. Recall also that we can concentrate our study in
the velocity U since we have the identity P = (_—1A)div((U . V)U).

It is clear that the trivial solution U = 0 satisfies and it is natural to ask if this is the

unique solution of these equations. In the general setting of the space L7 (R?), the answer

is negative: indeed, if we define the function ¢ : R3 — R by 9 (1, 29, x3) = % + %3 — 3
and if we set the functions U and P by the identities

5 > 1 -
U($1,9€27$3) = V¢($17I2,$3) = ($17l‘27 —2$3), and P($17$2,$3) = —§|U($1,$27$3)\2,
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then we have U € L2 (R?) (since |U(z)| ~ |x|) and using basic rules of vector calculus

we have that the couple ([j , P) given by the expressions above satisfies .

Thus, due to this lack of uniqueness in the general setting of space L? (R3) we are
interested in the following problem (also known as Liouville problem): find a functional
space E C L} _(R3) such that if U € L} _(R?) is a solution of equations (1) and if U € E,

then U = 0.

A well-known result on the Liouville problem for equation is given in the book
[4] of G. Galdi where it is shown that to prove the identity U = 0, we need a certain
decrease at infinity of the solution. More precisely, if the solution U € L} (R3) verifies
the additional hypothesis U € L2(R?) then we have U = 0 (see [4], Theorem X.9.5, page
729). This result has been improved in different settings: D. Chae and J. Wolf gave a
logarithmic improvement of Galdi’s result in [2]. Moreover, H. Kozono et.al. prove in [7]
that U = 0 when U € L2°°(R?) and with additional conditions on the decay (in space
variable) of the vorticity o = V AU. For more references on the Liouville problem for the
stationary Navier-Stokes equations see also the articles [I], [3] and [6] and the references
therein.

Another interesting result was given by G. Seregin in [I1] where the hypothesis Ue
L3(R3) is replaced by the condition U € LS(R3) N BMO™'(R3): here the solution U
decrease slowly to infinity since we only have U e L5(R3) and thus the extra hypothesis
BMO™(R?) is added to get the desired identity U = 0.

In our first theorem we generalize previous results and we study the Liouville problem
in the setting of Lebesgue spaces:

Theorem 1 Let U € L} (R?) be a weak solution of the stationary Navier-Stokes equa-
tions (1]).
1) If U € LP(R®) with 3 < p < 9, then U=0.
- L33 o . .
2) IfU € LP(R®) N B% *" (R?) with § <p <6, then U = 0.
3_3

p 2
as the set of distributions f € &'(R?) such that || f|| 2 300 = SUD t%(%_%)nht * fllpe < 400
B t>0

3.3
In the second point above, since < 0 we can characterize the Besov space B%, ? ’OO(]RS)

where h; denotes the heat kernel.

It is worth noting here that the space L%(]R?’) seems to be a limit space to solve the
Liouville problem in the sense that if 3 < p < % we do not need any extra information,
but if g < p < 6 we need an additional hypothesis given in terms of Besov spaces. Remark
also that, to the best of our knowledge, the Liouville problem for stationary Navier-Stokes
equations in the Lebesgue spaces LP(R3) with 1 < p < 3 or 6 < p < +o0 is still an open
problem.

More recently G. Seregin [I2] replaced the hypothesis U e L5(R¥) N BMO™(R3) by
a couple of homogeneous Morrey spaces MP4(R3). Recall that for 1 < p < ¢ < +oo the
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space MP1(RR3) is defined as the functions f € L? (R?) such that

loc

1
3_3 P
[flliges = sup ( ([ i) ><+oo. @
zo€ER3,r>0 B(zo,r)

This space is an homogeneous space of degree —% and in Theorem 1.1 of [12] it is shown
that if the solution U € L2 _(R3) verifies U € M2$(R3) N M23(R?) then we have U = 0.

loc
If we compare the condition U € L6(R3) and BMO~*(R?) given in [I1] with the hy-
pothesis U € M26(R3) N M23(R3) given in [12], we can observe that the shift to Morrey
spaces preserves the homogeneity: L°(R3) is substituted by the Morrey space M?%6(R?)
with the same homogeneous degree —1 while BMO~(R?) is replaced by the Morrey space
M23(R3), also with homogeneous degree —1.

Following these ideas we study the Liouville problem in the setting of Morrey spaces
for equations and we generalize the result obtained in [I2] in the following way:

Theorem 2 Let U € L2 (R3) be a weak solution of the stationary Navier-Stokes equa-

loc

tions . 7 e M2 N M? with 3 < g < 400, then we ave U = 0.
' 1). If U € M?*3(R3) N M?9(R3 h 3 h h U=0

~ We observe here that we kept an homogeneous Morrey space of degree —1, namely
M 2’3(]1%?’), but the space M*%(R?) used previously in [12] is now replaced by any Morrey
space M?4(R?) which is an homogeneous space of degree —1 < —g < 0.

A natural question raises: it is possible to consider a single Morrey space in order
to solve the Liouville problem for equation ? The answer is positive, but we need to
introduce the following functional space.

Definition 1.1 Let 1 < p < ¢ < +oo. We define the space M (R3) as the closure of
the test functions C3°(R3) in the Morrey space MP(R3).

The space M"*(R?) is of course smaller than M?4(R?), and for suitable values of the
parameters p, ¢ we have the following result.

Theorem 3 Let 2 < p < 3 and consider the space Mp’g(]R‘g) given by Definition
above. Let U € L} (R3) be a weak solution of the stationary Navier-Stokes equations (1)).

loc

IfU € MP°(R?) then U = 0.

The reason why we prove the uniqueness of the solution U =0 in the setting of the
space Vi (R3) and not in the more general setting of the space M?3(R?) is purely tech-
nical as we will explain in details in Section [3.2]

This article is organized as follows: in Section [2| we study the Liouville problem for
equations in the setting of Lebesgue space. Then, in Section (3| we study the Liouville
problem in the setting of Morrey spaces where we prove Theorem [2] and Theorem [3]
Section [l is reserved for a technical lemma.



2 The Liouville problem in Lebesgue spaces

We prove here Theorem I and from now on U € L? (R?) will be a weak solution of the

stationary Navier-Stokes equations ([1)).

1) Assume that Ue LP(R3) with 3 <p < %. We are going to prove the identity U = 0
and for this we will follow the main ideas of [4] (Theorem X.9.5, page 729). We
start then by introducing the following cut-off function: let 6 € C§°(R?) be such that
0<6<1,0(x)=1if |z] <3 and 0(z) =0if || > 1. Let now R > 1 and define the
function Op(z) = 6 (%), we have then O(z) = 1 if |2| < £ and Ox(z) = 0 if |z] > R.

loc

Now, we multiply equation by the function 0,U , then we integrate on the ball
Br = {z € R®: |z| < R} to obtain the following identity

/ (AT + (@ - 9)T +VP) - (Ba0)dz = 0,
Br

Observe that, since U € LP(R?) with 3 < p < 2 then U € L} (R®) and by Theorem

X.1.1 of the book [4] (page 658), we have U COO(R3) and P € C*(R?). Thus, all
the terms in the identity above are well-defined and we have

/ AT - (eRﬁ) +(U- V)T - (w?) L VP, <eRU> dz = 0, (3)
Br
We study now each term in this identity. For the first term in , integrating by

parts and since Og(z) = 0 if |x| > R, then we write

3

Br Br

3,5=1 zleR

= Z/B Q;U:)( aeRde+Z/ (0;U)0r(0;U;)dx

7,7=1 1]1

= Z/B (00R)( 8Ude+Z 0(0;Ui)*d

i,7=1 i,5=1 Br
_ Z/ (9,0)0 ( )dx+/ 0r|V @ Ul*da
ij—1YBr Br
2
— —/ A0R<| |)dx+/ Or|V @ U|*dz. (4)
Bgr 2 Br

For the second term in we write

/(ﬁﬁ)ﬁ(eRﬁ)dI = Z/ U;(0;U5)( HRU)dx—Z 0rU;(0,U;)Usdx:
Br

1,7=1 zngR

= Z/B 0rU, (0 ( ))dx, (5)
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but, as div([j ) = 0 and then integrating by parts we can write

Z/ 0rU;(0 ( ) Z/BeRa( >dx—[BRﬁeR-<W—PU>dx.

,j=1 2,J=1
) (6)
For the third term in , integrating by parts and since div(U) = 0 then we have

\)

3 3
VP (0rU)dz = ) / (0 P)ORUide = = / PO, (0rU;)dx
i=1 Y Br i=1 Y Br
3

_ _Z/ PO6R)Ude = — | S0 (PD)dz.  (7)

Br

Bgr

i=1

With these identities and getting back to equation (3]) we can write

2 2
—/ N (‘ | )da:+/ 9R|V®U|2d:c—/ 500 (195 g V0p-(PO)dz = 0,
Br 2 Br Br 2 Br

hence we get

= o U2 = U2 =
Or|V @ Ul|*dx = AOp——dx + Vg - — + P | U |dx. (8)
Br Br 2 Br 2

On the other hand, as 0p(z) = 1 if |z| < £ then we have

/ |€®U|2dg;§/ Or|V ® U)2dz,
Bgr

Bgr

and by identity we obtain

IR U2 - U2 .
IVeU|*dx < Afp——dx + VOgp- || —+P|U |dx
Br Br 2 Br 2
< L(R) + I(R), 9)

and we will prove that lim I;(R) =0 fori=1,2.

R—+o00

Indeed, for the term I;(R), by Holder inequalities (with % + 123 = 1) we have

nm) < ([ isonpac)” ([ wvac)” < ([ 180apac) 1018,
Br Br Bgr

Moreover, as Og(z) = 0 (%) we have (/
BR

as % + ]23 = 1 then we can write [;(R) < R'~ b X | AO|| La(By) U2, .

]A@R|qd;v> . Ri 2 % X [|AO||La(py), and

In this estimate we observe that since 3 < p < % then —1 < 1 — g < —% and



thus we get lim [;(R) = 0.

R—+00

We study now the term I5(R) in @ Recall that 0 (z) = 1if |z| < £ and Op(z) =0
if |z| > R, so we have supp (6&2) C {z eR*: £ <|z| < R} =C(%,R) and we can
write

712 712
L(R)= | Vg 0%, p)o d:c:/ Son- [ (U2 4 p) 7] a,
Br 2 (2 R) 2

hence we have

1

L(R)| —/ W@MWM+/ 50| P|[T|de
C(&.R) C(&,Rr)

IN

2
< (I2)a(R) + (I2)s(R),

and we will prove now that lim ([3),(R) =0and lim (I3),(R)=0.

R—+o00 R—+o00
For the term (I2),(R), by Holder inequalities (with ; + > = 1) we have

1

<12>G<R>s( / WeRr”dx) (/ |ﬁ|pdx) , (10)
C(&,R) C(&.R)

and we study now the first term in the right side. As 0z(z) = 6 (}%) then we have

T

p

/ IVOr["dz | < R%_1||§9||Lr, and since X = 1— 2 then we have 2 —1 =22
C(%,R) r P r

r

and thus we write (/ \ﬁGR\’"dx) < R2’%H6HL7~. But, since 3 < p < 2 then
C(&,Rr)

we have —1 < 2 — % < 0, and since R > 1 then we get R* < 1. So, by the last
inequality we can write

(/ Weﬂm) < IV - (11)
C(&.R)

With this estimate and getting back to estimate (10]) we can write

(12)al(R) < 9016101 o .1y

. = 3 . 2 o .
and since U € LP(R?) then we have Rgnglroo HUHLP(C@J%)) = 0 and we obtain

lim (). (R) = 0.

R—+o0

For the term (I5),(R), by Hélder inequalities (with & + ]% = 1) and by estimate
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we can write

3=
e

(L2)s(R)

IN

2 2

901 < /
C(

But, recall that since the velocity U belongs to the space LP(R?) then pressure P
belongs to the space L2 (R?). Indeed, we write

2

/ WeRHPHmdxs/ V05" dx / (1P| % de
C(Z.R) C(E.R) C(Z,R)

IN

<rPr|ﬁr>§da:>p . (12)

B

)R)

3 3

P=>" %aiaj(Uin) =Y RiR;(UU), (13)

4,j=1 1,j=1

where R; = \/% denotes the i-th Riesz transform. By the continuity of the opera-
tor R;R; on Lebesgue spaces LI(R?) (with 1 < ¢ < +00) and applying the Holder
inequalities we get | P|| 5 < c||U]|7,.

Then, getting back to estimate , always by Holder inequalities (with % + % =3)

we write :
1
» . Vg
|P|2dx> (/ |U|pdx) ,
(5:R) C(%,R)

and since U € LP(R3) and P € L%(R3) then we get lim (),(R) = 0. We have

R—400
proven that lim I(R) = 0.
R—+00

hSEIN]

(12)o(R) < [IVO)]| - </C

e

Now with the information Rlirri Li(R) =0 for i = 1,2 we get back to estimate
— 400

@) and we can deduce that / IV ® U|?dz = 0. But, recall that by the Hardy-
R3
Littlewood-Sobolev inequalities we have [|U||zsgs) < ¢||U|| z1(gs) and thus we have

the identity U =0.

. RETER
\ﬁfe suppose now U € LP(R®*) N BL * (R®) with § < p < 6 and we will prove that

U = 0. For this we will follow some ideas of the article [I1] and the first thing to do
is to prove the following proposition.

. L33 0
Proposition 2.1 Let 2 <p <6 and let U € LPNB% *" (R?) be a weak solution of
the stationary Navier-Stokes equations . Then U € Hl(R?’) and we have H(jHHl <

e (14101 5 4 ) 10

Proof. To prove this result we need to verify the following estimate (also called a
Cacciopoli type inequality [11], [12]): let R > 1 and let the ball B = {z € R? : |z| <

7



R}, then we have
| 190k < om0, (19
Bg

2

where C(U, R) = ¢ (le% + 1> X (1 + |0 .g§,w> , and where ¢ > 0 is a constant
B

which does not depend of the solution U nor of R > 1.

To verify we start by introducing the test functions ¢ and Wx as follows:

for a fixed R > 1, we define first the function ¢p € C§°(R?) by 0 < ¢g < 1 such that
for £ < p <r < R we have pg(z) = 1if |z| < p, pr(z) =0if [z| > r and

- c
\Y o < ——. 15
Vol < —— (15)

Next we define the function W as the solution of the problem
div(WR) = ﬁgoR .U, over B,, and Wg =0 over dB,, (16)

where 9B, = {x € R® : 2| = r}. Existence of such function Wy is assured by Lemma
I11.3.1 (page 162) of the book [4] and where it is proven that Wr € W'?(B,) with

IV @ WallLos,) < cllVor - Ullwas,)- (17)

Once we have defined the functions ¢ and WR above, we consider now the function
wrU — Wg and we write

/ (-7 + (@ V)0 + VP) - (pall ~ Wg) d =0 (18)

r

Remark that since U € LP(R?) with 2 < p < 6 then U e L3 _(R?) and always by

loc
Theorem X.1.1 of the book [] (page 658) we have U € C*(R3) and P € C*°(R?) and
thus every term in the last identity is well-defined.

In the identity || we start by studying the third term VP <¢Rﬁ — WR> dz
Br
and by an integration by parts we write

/Br VP (SDR(j - WR> dr = — /BT P (ﬁng U + prdiv(l) — div(WR)> dr.

but since Wi is a solution of problem 1} and since div(ﬁ ) = 0 then we can write

/ VP (@R[j — WR> dx = 0 and thus identity can be written as:



In this equation above we study now the term —AU - (cp RU — WR) dx and al-
By
ways integrating by parts we have

/B —~AU - (SOR(? - WR> dr = i /B (0;U:)0; (9rU; — (WR);) dx

z]l 7,7=1 7,7=1

= Z 0,Ui( ]goR)Ud:c—i-/ wrlV @ U? - Z/ (0;U,)0;(Wrg)ida.

2,j=1 i,7=1

With this identity we get back to equation and we can write

Z aU ]ng)deJr/ or|V @ U)? - Z/ (0,U;)0;(Wrg)da

2,j=1 1,j=1

+ / (((7 )0) - (ol = W) do =0,

hence we have

/¢R|ﬁ®ﬁ|2dx = —Z/ ;Ui ( JgoRde+Z/ (0,U,)0;(Wg);d

1,j=1 i,j=1
~ [ (@ 9)-0) - (ol = Wi
B,

Now, we must study the terms Iy, I and I3 above and for this we decompose our
study in two technical lemmas:

. L33 o
Lemma 2.1 Let § <p <6 and let U € LP N B% * (R?) be a weak solution of the
stationary Navier-Stokes equations . Then there ezists a constant ¢ > 0 (which
does not depend of R,r,p and U ) such that

r3(3) Lo\ B L
(i + |I2] < e (/ V@ U dx) (/ |U|pdx> .
r—p B, B,

Proof. For the term [ in identity (20]), by the Cauchy-Schwarz inequality we write

L 3 . . 3
<c< \V®U|2dx) ( |V¢R®U|2dx> :
B, B,

then in the second term of the quantity in the right side we apply the Hoélder in-
equalities (with 1 = % + i) and since |[Vg|r~ < -5 we can write

1 1 1 3 1
(/ WgoR@dex) g(/ W@Rwdx)q(/ ][j]pdx>p§c e (/ |U'|pdx> ,
B, B, Br r—=2p B,

9

L] = Z (9;0R)Usda

i,7=1




and thus we have the estimate

‘Ill < C

(/ V& U dx) <Br|ﬁ\pd:p);

Recalling that g < p <r < R we finally get

(1) WINEN
|| < CRT— </ IV ® U]Qd:c> </ \U|pdx) : (21)
B,

We study now the term Iy in the identity . By the Cauchy-Schwarz inequality

we write

! !

|| = < c( ]6@(7\2(11’) ( ]ﬁ@Wﬂ%x)
B, By

Z/aUa (Wg)idx

7,7=1

. 2 L 5
c (/ V® U|2dx> r3(37%) (/ V® WR|pdx> .
T BT
1 1
But, by estimate we have ( IV ® WRV’dx) <c ( Vg - lj|pdx) , and
B, B

by the last estimate we can write

IA

- - % 11 = = %
L] <c </ IV ® U]Qda:) r3(2=5) (/ Vg - U]pda:) :
B, B,

Again, since % < p <r < R we have

RA3-1) L 1
12| < C— </ IV ® U]Qd:c> </ \[7|pdx) : (22)
B,
With inequalities and , the Lemma is proven. |

In order to study the last quantity I3 in we will need the following lemma.

. L33 o
Lemma 2.2 Let § <p <6 andlet U € L? N BL * (R?) be a weak solution of the
stationary Navier-Stokes equations . Then we have the following estimate:

L 3 . 5
I <ec R U JEE. V @ Uldx UlPdax 23
r— 2’
Br Br

where ¢ > 0 is always a constant which does not depend of R,r,p and U.

This lemma is technical and we postpone to the appendix the details of its proof.

10



Thus, by equation and with the inequalities of Lemmas and -, we can
write

L R3(§—%)
/¢R|V®U|2d:c <c (
B,

1
R L. 3
il _2m> ( / \V®U|2dm)

r—p r B2 B,
x ( / |(7|de) " (24)
Moreover, for the first term in the right side we have

R3(G3) R - rRG3) 4 R .

¢ ( + HUH . ,00> <c <—+ <1 + HUH .3—%,00) )
r—p r— r—p BE,

¢(U,R)=c <R3(%—%) + R) (1 + HU||B

and thus we write

and we set now the constant

5 200) >0, (25)

R3(%—%) R ¢U,R
C( " 7” ”U“ p200> < ( )
B

r—op
With these estimates we get back to inequality and we have the following esti-
mate:

=

L ¢(U,R
/¢R|V®U|2dx< (U, R)

N
<G=g ([, 19 e 0rar) 10t

On the other hand, as pr(z) = 1if |z| < p, we have/ IV @ UlPde < / or|V @ U|Pd,
B
and by the last estimate we can write ’

/ |€®U’|2 < @(ﬁ, R)
By

. 7
_m(/ |V®U|2d$) Ul zr,

where, applying the Young inequalities (with 1 = 1 + 1) in the term in the right side
we obtain the following inequality

— — 1 5 5 2 - — 2p
/ \V®U]2dx§1/ ¥ © T2de + 4% U, R)|UIZ
By B

o (26)

With this inequality at hand, we obtain the desired estimate as follows: for all
R
k € N positive we set pg

—, and in estimate (26) we set p = pr and r = pri1
%
(where & < pp < pr+1 < R) and then we write

S 5 o (U, R)|U|2,
/ |V®U|2§—/ IV @ Uldx 4 4 W, Bl ”;. (27)
By, 4 Bppys (Prs1 — Pr)

11



R
Now, let us study the second term in the right side. Since py = — then we have

2%
1 1)’ 1 11
(prs1 — pr)? = R? ( —— — — | - But, for k£ € N positive we have —— — — > ¢,
st 2% DTS 2% k

where ¢ > 0 is a numerical constant which does not depend of k, and thus we have
2

R
(Pro1 — pr)* > Crz hence we write

277 7112 2(77 7112
(CORNO _ @O RII,
(Pk+1 - Pk)2 R?

Then, with this estimate and getting back to inequality we get the following
recursive formula:

(0, R)|T|3,

— — 1 — —
/ |V®U|2§Z/ 1V & OPde +4ck* 000
B B

Pk Pk+1

Now, iterating this recursive formula for £ = 1,--- ,n and since p; = % we get the
following estimate

. 1 . ¢2(U, R)||U|I2 Z” k2
2 2 ’ Lr
/B;R|V®U‘dl’§4_n/3p+|v®[]’dl’+4c R2 F .
5 n+41

k=1

In this estimate, recall that p,.; < R and then we can write

. 1 L. 2(77 7 2 n 2
/ |V®U|2dx§4—n/ ¥V ® 02dy + 4 SO <Z’f_>
B Br

2 k—1
5 R c~ 4
+o00 2
and taking the limit when n — 400 and since Z = < 400 then we have
k=1

(U, R)|U| 13
R? '

/ V@ UPde < ¢ (28)
=

. L . (U, R) .

Finally, in this inequality we study the term ————. Recall that the quantity

(’I(U , R) is defined in expression and by this expression we have
¢2(U, R) 1 11 2 . 2
T < Cﬁ (R3(2 p) + R) (1 + ||U||Bg%w)

1-6 = ?
c|lR»+1 1+HUH.37§,00 .
BE 2

2

Thus, we define now the constant C(U, R) = ¢ (le% + 1) (1 + 0] ,ggm) and
Bso

by estimate ([28]) we have Cacciopoli type estimate ((14)).

IN
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With the estimate we can prove now that U € H'(R?). Indeed, by this es-
timate we can write

/ ¥ ® U(e)2dr < C(T, R)|T|1%.
B

S

But, since C(U, R) = ¢ (Rl_% + 1) (1 + H[jHB;_s

p 2
oo

2
) , and since % < p < 6 then

we have —% <1-— g < 0 and thus we can write

R—+o0

2
lim C([j,R) =c (1 + HﬁH .3_3,00) < +o00.
B%

Now, in estimate estimate we take the limit when R — +o00 and we get
Hﬁqul <c (1 + ”ﬁHBi_g’“> U2, < +oc. Propositionis now proven. |

By Proposition we have the information U € H'(R3) and now we can prove
3

. I
the identity U = 0. Recall that we also have the information U € BZ > (R3) and
then if we set the parameter 5 = g—% (where, as % < p < 6 then we have % <pB<1)
then by the improved Sobolev inequalities (see the article [5]) we can write

181120 < el TN I TN (29)
with 0 = % and g = ﬂ; and by these identities we have the following relation

q:%+2,where,as%<B<1thenwehave3<q<%.

Once we have U € L(R3), with 3 < ¢ < 2, by point 1) of Theorem [1f we can
write U = 0. This finish the proof of the second point of Theorem |1f and this theo-

rem is now proven. [ |

3 The Liouville problem in Morrey spaces

In this section we study the Liouville problem for the stationary Navier-Stokes equations
where the weak solution U € L7, .(R?) belongs to Morrey spaces.

3.1 Proof of Theorem [2

Assume that U € M23(R?) N M29(R?) with 3 < ¢ < +oo. We will prove the identity
U = 0 and for this, first we need to prove that the solution U also belongs to the Lebesgue
space L>°(R3).

13



Indeed, let us consider the stationary solution U € M 24(R3) as the initial data of the
Cauchy problem for the non stationary Navier-Stokes equations:

dyii + (- V)il — A+ Vp =0, div(@) =0, (0,-)="0. (30)

By Theorem 8.2 (page 166) of the book [9], there exists a time Ty > 0, and a function
@ € C([0,Ty[, M*4(R?)) which is a solution of the Cauchy problem and which also

verifies the estimate

sup 424 ||ii(t, -)|| p < +00. (31)
0<t<Top

Moreover, by Theorem 8.4 (page 172) of book the [9], for the values 3 < ¢ < 400 we
have the uniqueness of this solution @ € C([0, Ty[, M27(R3)). But, since U € M>9(R3)
is a stationary function then we have U € C([0, Tp[, M>49(R?)) and since U is a solution
of the stationary Navier-Stokes equations then this function is also a solution for the
Cauchy problem (since we have o,U = 0) and thus, by uniqueness of solution u, we
have the identity u = U.

Thus, by estimate we can write

T,
( 0) ||U||Loo < sup t?HUHLoo < +00, (32)

2 0<t<Tp

and we get U € L(R?).

Once we have the information U € L*(R3), we will use the additional information

UeM 23(R3) in order to prove U = 0. Let us start by proving the following propo-

sition:

Proposition 3.1 Let UeL>® ﬂM273(R3) be a solution of stationary Navier-Stokes equa-
L - S T

tions . Then U € HY(R?) and we have ||U ||z < c||U|Z U] jy2.-

Proof. Let R > 1 and Br = {z € R?: |x| < R}. We will prove the following estimate
- - 1 = 2 . -
[ @0k <o (IO s + Wm0 ) . 9
Bpr Rs

For this, following some ideas of the articles [I1] and [12], the first thing to do is to define
the following cut-off function: for a ﬁxed R > 1, we define the function ¢ € C3°(R?) such
that 0 < ¢p < 1, (bR( ) = 1if |z| < &, (bR( ) = 0 if |x| > R and moreover this function

verifies || Vgl pe < E and ||A¢R||Loo < — 7 where ¢ > 0 is a constant which does not
depend of R > 1.

With this function ¢r and the stationary solution U we consider now the function ¢R(7
and we write

/ (-AT + (@ V)0 +VP) - (6s0)dz =0, (34)

Now, we must study this identity and for this we need first the following technical lemma:

14



Lemma 3.1 Let U € L N M>**(R?). Then we have [|U]] 0.3 < cHUHLOOHUHM”

Proof. Let xyp € R and r > 0. Let the ball B(xg, R) C R3, we have

( / |U|3dx> <c (/ |U|2dx) 1.,
B(zo,r) B(zo,r)

1

and multiplying by 73 in both sides of this estimate we get

rs (/ |(7\3d:6) < crs ( U] dx) U]
B(zo,r) B(zo,r)
<( |U|d) ) 151}

Now, if in the first estimate in the left side1 we vgri;ﬁe rT3 =13
last estimate to the right side we write r~2 = 372, then we have

3_3 R 3 3_3 = : : Ik
rs ® (/ |U|3da:> <c|rs2 (/ |U|2d$) U] 2ee
B(zor) B(@o,r)

and thus we can write

1 1 3
_§ - 3 3 3 — 2 - 1
; ( / |U|3da:) <o swp [ri ( / |U|2dx) 17}
B(zo,r) zo€R3,r>0 B(zo,r)

3.9 and |TU]| 25 given in formula (2) we can write

1T g3 < T U] u

M2.3°

IA

oeo
wlw

and moreover, if in the

wo|w

sup r
20 €ER3,r>0

Finally, by definition of quantltles |0 ||

Once we have the information U € M®2(R3) we get back to study the identity (3

Remark first that since U € M2 (R3) then we have U € L} (R?) and thus, by The-
orem X.1.1 of the book [4] (page 658), we have U € C*°(R3) and P € C*(R?) and thus
all the terms in (34]) are well-defined and they are smooth enough.

Then, we can integrate by parts each term in the identity : for the first term
/ (—A[j ) . ((ﬁR(j )dz, following the same computations in equation (with the func-
Br

tion ¢ in instead of the function ) we have

/B (—Alj) (¢prU)dz = —/B A¢r (g) dx + : or|V @ U2da.

15



For the second term in identity 1.’

same computations in equations (j5) and we can write

/B ((ﬁﬁ)ﬁ) (¢prU)dz = —/B Vor - (”772&) dz.

Finally, for the third term in identity |D / (ﬁP) : (¢R(7 )dzx, following again the
B

same computations as in equation we have

/B (W ) (¢pU)dz == [ Vg - (PU)dz,

Br

With these identities, we get back to the identity and we write

2 2
—/ A¢r (' | )d:c+ ¢R|V®U|2dx—/ Vo <|U| )da:—/ Vor-(PU)dr = 0,
Br 2 Br Br 2 Bgr

hence we have

= U2 = U2 =
or|V@U|*de = App——dx + Vor - +P U |dx
Br Br 2 Br 2

= L(R) + Iy(R),

and we study now the terms [;(R) and I(R).

For the first term [,(R), as ||A¢r||r~ < % we have

U2
ni< [ aen S < g5 [ 0P

and in the last term in the right side we can write

& 1_1 - % & o %
£ dr < = [ RS(3-3) / 34 < — / Sda | .
o [ 0P < ( ([ wpas)" ) <& ([ wopas

But, since U € M*2(R?) then by expression (2) we have

2

- 3 -
([ 10pas)” < DR,
B M=z

=5 % RG(%fg) C = 9
(/ 0 d:c) <e 161205 = <11, 5.
Br R3 M™2

16

and thus we get

=l a

/ <(U VU ) (¢prU)dz, always following the
Bp

(35)



Thus, by these estimates we finally get

C —
IR < 100y (36)
For the second term I(R) in , since ||Vog||z~ < % then we can write

N ('U'Q+P>U
< (I2)a + (L2)p, (37)

dw < < ]U|3dw+—/ \P||T|dx
.

and we still need to study the terms (15), and (I3), above.

recall first that U € M32 2(R?) and by expression 1' we

In order to study the term (I3)q,
%) HUH3 . Thus we get

can write / ][7|3dw < R9<%
Bgr

& = & 1_2
(I2)q < E/B OPdr < o (RGDITIE ,y) < elTIF . (38)

For the term (I3)s, applying the Holder inequalities (with 1 = 2 + %) we can write

C - C 3 % — %
WQ)”‘SE/B \PHU\deE</B ]P|2da:) (/B ]U|3dx) , (39)

and we study now the two last terms in the right side.

2
. 3
In order to estimate the term ( / |P |§d3:> in the inequality above we need the follow-
B

R
ing technical lemma.

Lemma 3.2 Let (U, P) € L2 _(R3) x D' (R?) be a solution of the stationary Navier-Stokes
equations . IfU e MP(R3) with p > 2 and q > 3 then we have P € M%3(R?) and
1Plly2.3 < cllT|2

M22 Mpq

3
Proof. By equation |D we write the pressure P as P = Z RiR;(U;U;), where recall

ij=1

that R, = \/% denotes the i-th Riesz transform. Then, by continuity of the operator

R;R; on Morrey spaces MP4(R?) for the values p > 2 and ¢ > 3 (see the book [9], page
171) and applying the Holder inequalities we get the following estimate

MP:q*

3
Pl < e 32 IRRAUL x5 < 0@ Ulyns < el

17



Thus, since U € M32(R3) then by this lemma we have P € M#2%(R?) and using the
definition of the Morrey spaces given in we can write

2
3 3 2 4
([ 1par) < mGD1p . (40)
R

1

. 3
For the term ( / U |3dx) in inequality (3 , since U € M3 2(R3) always by expression
Br

([2) we can write
1
— § 1 —
([ 10pas)” < 00D, g, (a1)
R

Thus, with estimates and . ) we get back to the inequality and moreover, since

by Lemmanwe have ||P|| pg < cHU||Mpq then we obtain

)l < 5 (REDPY ) (RO HﬁuMs,g)
Pl 4101 g < DI, (42)

M?21 M39

A

Now, with estimates and at hand, we get back to inequality and we can
write

[L(R)| < c|[UI[. . 5- (43)
Once we have estimates and , getting back to identity we have

— — C — —
nlY & O < ST,y + AT,

Bgr

But, recall that ¢g(z) = 1if [z] < £ and then we have/ Vo UPde < | ¢p|lVeUPde

Bp Br
2
and thus we get the following estimate:

— — C — —
V@ UPde < —< (U5 +lUN
Bg Rs~ M72 Mz

2

. L1 2
Moreover, recall that by Lemma 3.1/ we have the estimate |[U| .53 < c|[Ul[z= U]}z,
and thus we finally obtain the inequality ([33)).

In order to finish the proof of Proposition , in inequality we take the limit
— - 1 —
R — +o0 and we get ||U|| < || U2 |U|| yy2.s- u

End of the proof of Theorem [2]
Now we have all the tools to prove the identity U = 0. First, recall that MZ3(R3) is
a homogeneous Banach space of degree —1 and then we have M*3(R?) C B_*°(R?) (see

the Chapter 4 of the book [10]). Thus, since U € M23(R3) then we have U € B> (R3).
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Moreover, by Proposition we also have U € H 1(R3) and then by the improved Sobolev
inequalities (with the parameters 3 = 1, § = 1 and ¢ = 4) we have U € L*(R%).
Then, by point 1) of Theorem |1| we can write U = 0 and Theorem [2] is now proven. W

3.2 Proof of Theorem [3

Assume here that the solution U € L2 (R3) of stationary Navier-Stokes equations 1)

loc
1.1]

verifies U € Mp’?’(R?’) with 2 < p < 3, where the space Mp’g(R?’) is given in Definition
In order to prove the identity U = 0 we will follow some ideas of the proof of Theorem

and the first thing to do is to prove that with this hypothesis on the solution U we have
U € L=(R3).

Indeed, we consider the stationary solution U € Mp’g(R?’) as the initial data of the Cauchy
problem for the non stationary Navier-Stokes equations . Then, always by Theorem

8.2 of the book [9], there exists a function @ € C([0, TO[,MP’?’(R3)) which is a solution of

problem (30). Moreover, this solution « verifies the estimate:

sup 2 ||@(t, )| e < +o00. (44)

0<t<Top

On the other hand, recall that the stationary solution verifies U € C([0, Ty, Y (R?)) and
this function is also a solution of problem 1} (always since 0,0 = 0). But, for the values
2 < p < 3 by Theorem 8.4 of book [9] we have the uniqueness of solution @ and thus we
have the identity u = U. By this identity we have that the function U verifies the estimate
hence, writing the same estimate as in equation , we get U e L>(R3). Remark

here that Theorem 8.4 assures the uniqueness of solution 4 in the space C([0, Ty, Mp’?’(]Rg))
and not in the more general setting of the space C([0, To[, MP3(R3)). For this reason we

consider in Theorem [3| the functional space 3" (R3).

We have now the information U € Mp’gﬂLoo(R3) which will allows us to prove the identity
U = 0. Indeed, recall that 2" C M23(R?), hence we have U € M>3(R%) N L=(R?) and
by Proposition [3.1| we get U € H'(R?). On the other hand, since M23(R?) ¢ B> (R?)
then the solution U € M?*(R3) verifies U € B»*(R3) and the proof of the identity
U = 0 follows the same lines given above at the end of the proof of Theorem . |

4 Appendix: Proof of Lemma page [9

We prove here the estimate , where recall that the term I3 (defined in the identity
(20])) is given by

I; = — / (U181(7 + UsdhU + Ugagﬁ) (orU — Wg)dz. (45)

r
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In order to study the term in right side above remark the U can be written as

U=VAV (46)
where the vector field V is given by the following expression:
L
V—_A<V/\U> (47)
Indeed, since div(U) = 0 then we have the following identities
1 —, =, hy 2 1 — X —
VAV = V/\( < (v A U)) — (v A (YA U)) - — <V(dw(U))>——A (AU) = .

But, in order to carry out the estimates which we will need later, in equatlon - we will
consider a little variant of function V above and we set now the function V* =V — V(O).
Remark that we have the identity VAV = V A V* (because V(0) € R? is a constant
vector) and then by equation we can write U = V A ‘7*, i.e., we have the identities
Ui = 0;Vi — 0V}, where it is worth noting here that we always consider the indices
i,7,k € {1,2,3} given by the right-hand rule: if i = 1 then j = 2 and k = 2; if i = 2 then
j=3and k=1 and so on.

Now, getting back to the term in the right side in expression , we substitute Uj;
by 0;V;: — 0,V and we write

I = —/ (0215 = 0V3)0,0 + (D57 = V)0 + (4V — 0:V,)05T ) - (prll — W)
_ _/ Z (@i — 0V)0T0) - (ol — Wi
B

= [ 3 (000 (ol i)~ VO (oD — i)

T og=1

Then, integrating by parts in each term above we have

and grouping the terms (a) and (b) we can write

I = / (Vk (0,0,0) — vj*(akaz-(j’)>.<mﬁ_WR)) dz

T =1
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where we study now the terms (/3), and (I3)p.

For the first term (I3),, recall that the indices i, j, k € {1,2,3} are always given by the
3

right-hand rule and then we have Z (Vk*(ﬁj@-ﬁ) — V;*(@;ﬁlﬁ)) = (0,0,0) (just develop
i=1
this sum to see that each term is canceled). Thus we get

/ vk (9,0,0) — vj*@kaiﬁ)) (prU — WR)) dz = 0. (49)

™ og=1

For the second term ([3), we write

- /kaaU (0500)U + pr(0,0) —0;Wp | da
B N——

T =1 (©)

3
4 [ S -vio0 - | @en0 + pn@ul) ~0utTn | do.
B R/_/

net (@)
and grouping now the terms (¢) and (d) above we write

/B Z VkaU (@R(a U)) — ‘/J*(‘)Z[j' (@R(@ﬁ))) dr

T —1
/ Z Ve, U - (0rrl — 0,Wg) — v;aiﬁ-(amﬁ—ak%)) dz.
B =1

But, always since the indices i, 7,k € {1,2,3} are given by the right-hand rule then we
3

have Z <Vk*8i(7 - <¢R(8j[7)> - 1/;*82[7 - (¢R(6kﬁ)>) = 0 (again, develop this sum to see
=1

that each term is canceled) and thus we get

(I3)y = / Z Veo,U - (8iprU — 0;Wg) — V}*aiﬁ - (OkprU — 3kWR)) dz. (50)
B

T i=1

With estimates and (50), we get back to term I3 given in identity and we can

write

I3 = : Z Vo, - zSDRU ~0,Wg) — Vj*@(j - (OkprU —0,Wg) | da,
T oi=1
(6) )]

where, grouping again the terms (e) and (f) above write

/ Z ViU - (i)l = Vo, - (akgoR)ﬁ)d

711

3
B

Tzl
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hence we have
L < / |V*||6®U||6¢R®ﬁ|dx+/ VY @ O||% @ Wlds
B, B
< [ 190 (1 I¥ene )+ [ 1960 (I7IV 8 W) do
BT‘ By

In both terms in the right side, applying first the Cauchy-Schwarz inequality we write

1I;] < </ W®(7|2dx> (/ \V*|2|6¢R®ﬁ|2dx>
B, B,
+(/ W@ﬁﬁdw) (/ |V*|2|6®WR|2dx) ,

then, in each term in the right side we apply the Holder inequalities (with % = % + 1—17) and
we have

[I3] < (/ IV ® (7|2d.75) (/ |‘7*]qu>q ((/ IVor ® ﬁ\pdx)p + (/ W@WR]pdx>p> ,
T T T BT'

and we study now the third term in the right side. Recall that by equation ((15)) we have
= c
V|~ <

and then we can write
r—p

1 1
( Ver @ (7|pdx> < © < |17\de) .
B, =P \JB,

Moreover, recall that by equation we have ||V @ Wa||s(s,) < | Ver - UllLr(s,) and
then we have

(/ ¥ WR|pdx>p < (/ |z7\de)”
B, r—p B,

Thus, by these estimates we write

(/ |§¢R®mpdw)p+(/ |6®W3]pd:c)p < </ \ﬁ\pdx)p,
B B, r—p .

and then we get the following estimate

|=

P

Tip </ I6®ﬁy2dx)5 (/ |x7*|qu)‘17 (/ |(7|de> ‘ (51)

\‘7*|qu) . Recall first that the

|I5] <

Q=

In this estimate we still need to study the term <
B,

function V* is defined as V* = V — V(0) where the function V is given by the velocity U

L, .3.3 ~
in expression 1) and since U € B, 2’OO(IRS) then always by expression 1’ we have V' €
1

9

5 < p < 6 and then we have

R
B% *"(R®). But, recall also that the parameter p verifies
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iy . Q_l’ . . . . .
0< %—% < ¢. Thus, since V € B%, * oo(R?’) then this function is an a—Hoélder continuous

V(z) - V(0 >
— %; and then we can write sup M < VI s ge-
0<|z|<r |ZE|57§ B

function with o = %

With this information and the identity V* = V—=V(0), we get back to the term (

and we write

([ Wpae)" < (W = VOlmiay) 1 < (471 5 ) o
B B&

But, by the relation % = % + % we have the identity ]% + % — % = 1, and thus we can write

1
(/ |x7*yqu>q .
BZ ¥

Moreover, by equation 1) we have ||V|| 2l S Ul .23, and since r < R then we
BL, B

write

Q=

( "7*|qdﬂf) <cR|U| 1 3.
B, BL ?

With this estimate, we get back to inequality and we can write

1 1

R - L 2 . v

|I3] < ¢ HUH,;_%,OO (/ |V®U|2d;p> </ |U|de) ,
r—=p B B B,

which is the estimate . [ |
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