
HAL Id: hal-01802429
https://hal.science/hal-01802429

Preprint submitted on 29 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Grammars and clique-width bounds from split
decompositions

Bruno Courcelle

To cite this version:

Bruno Courcelle. Grammars and clique-width bounds from split decompositions. 2018. �hal-01802429�

https://hal.science/hal-01802429
https://hal.archives-ouvertes.fr

Grammars and clique-width bounds

from split decompositions

Bruno Courcelle
Labri, CNRS and Bordeaux University∗

33405 Talence, France
email: courcell@labri.fr

May 22, 2018

Abstract

Graph decompositions are important for algorithmic purposes and for
graph structure theory.

We relate the split decomposition introduced by Cunnigham to vertex
substitution, graph grammars and clique-width.

For this purpose, we extend the usual notion of substitution, upon
which modular decomposition is based by considering graphs with dead
vertices. We obtain a simple grammar for distance-hereditary graphs. We
also bound the clique-width of a graph in terms of those of the components
of a split decomposition that need not be canonical.

For extending these results to directed graphs and their split decompo-
sitions (that we handle formally as graph-labelled trees), we need another
extension of substitution : instead of two types of vertices, dead or live as
for undirected graphs, we need four types, in order to encode edge direc-
tions. We bound linearly the clique-width of a directed graph G in terms
of the maximal clique-width of a component arising in a graph-labelled
tree that defines G. This result concerns all directed graphs, not only the
strongly connected ones considered by Cunningham.

Introduction

Graph decompositions and graph complexity measures such as tree-width and
clique-width are important for algorithmic purposes and graph structure the-
ory. They are actually linearly related in many interesting cases [11]. Tree-width,

∗This work has been supported by the French National Research Agency (ANR) within
the IdEx Bordeaux program "Investments for the future", CPU, ANR-10-IDEX-03-02, and
also within the project GraphEn started in October 2015.

1

clique-width and rank-width (which is equivalent to clique-width with respect to
finite boundedness) are defined from hierarchical (tree-based) graph decomposi-
tions. Tree-width and clique-width occur as parameters in many fixed-parameter
tractable (FPT) algorithms [14, 16, 20, 24], in particular for the verification of
monadic second-order properties of graphs.

These algorithms are based on the construction of finite automata that run
on algebraic terms representing tree-decompositions, or on clique-width terms
in the case where the parameter is clique-width (see Definition 1.2). However,
these automata cannot be implemented in the classical way because their sets
of states are much to large. The notion of fly-automaton [12, 13] can overcome
this difficulty in many cases1 : these automata compute their transitions instead
of looking into transition tables.

Even for checking properties of graphs of bounded tree-width, it is convenient
to input graphs by clique-width terms, and we develop the theory and practice of
fly-automata for graphs defined in this way (cf. [12, 13, 21]). As for tree-width,
computing the exact clique-width of a graph is an NP-complete problem [23].
However, clique-width terms witnessing "good" approximations of clique-width
can be used with fly-automata. Such terms can be constructed by different
algorithms, and with help of modular or split decomposition2 , in preliminary
steps.

These decompositions are related to clique-width as follows. Each undirected
graph has a canonical (unique up to isomorphism) modular decomposition, and
also a canonical split decomposition. Its clique-width is the maximal clique-
width of a prime module of the modular decomposition (Proposition 2.112 of
[14]). Theorems 4.15 and 5.13 prove that it is linearly bounded in terms of the
maximal clique-width of a prime component of the split decomposition3 , the
other components being stars and cliques. These theorems improve the known
bounds based of complicated arguments of logic.

Our motivating example is the class of distance-hereditary graphs (DH graphs
in short). They are the undirected graphs G in which the distance in any con-
nected induced subgraph is the same as the one relative toG. They are known to
have clique-width at most 3 [27, 34, 35]. However, recognizing the clique-width
terms that define them is not easy. For the purpose of testing fly-automata,
one may wish to generate large "random" DH graphs, together with the alge-
braic terms of clique-width 3 that denote them. A good tool consists in using a
context-free graph grammar, built from clique-width operations that use three
labels. The characterization of DH graphs from [1], based on the addition of
pendant edges and twins (see Definition 1.1), uses rewriting rules that are not
those of a context-free grammar appropriate for using fly-automata intended to
run on their derivation trees or on the equivalent clique-width terms. However,
from this characterization, we can construct such a context-free grammar based

1A software is developped by Irène Durand [21]. Some parts of it are accessible online [22].
2See [29] and the references in that article for modular decomposition. Split decomposition

defined by Cunnigham [18] is studied in [8, 25]. We give definitions in Sections 4 and 5.
Modular and split decomposition can both be computed in linear time for undirected graphs.

3Prime components are in some sense undecomposable.

2

on vertex-replacement, a notion developped in [14] (also [7] for an axiomatic
approach to context-free graph grammars).

This construction uses a generalization of the standard notion of substitu-
tion of a graph for a vertex, that underlies the theory of modular decomposition.
We distinguish in a graph H some vertices as dead : they will not be linked
to any others in case H is substituted into another graph4 . We use this notion
of substitution to define an associated notion of context-free vertex-replacement
grammar (see [7, 14] for these graph grammars). We obtain a very simple gram-
mar for DH graphs. Distance-hereditary graphs are also easily characterized
in terms of their canonical split decompositions, and our grammar somehow
translates these decompositions.

Generalizing this observation, we use our grammars to generate the graphs
whose prime components (relative to split decomposition) belong (up to iso-
morphism) to a fixed finite setM. We bound their clique-width in terms of the
maximal clique-width of a graph in M, in a better way than what is known
from [8].

Split decomposition5 for strongly connected (directed) graphs has also been
studied in [8, 18]. We extend to directed graphs our results for undirected
graphs. For expressing split decompositions in terms of graph substitution, we
need a more involved notion of substitution. Whereas for undirected graphs, we
distinguish dead vertices from live ones (the others), for directed graphs, we
need three types of live vertices, in order to encode three types of connections
between two vertices u and v : from u to v (only), from v to u (only) or in both
directions.

We consider split decompositions of directed graphs that need not be strongly
connected, and we handle them formally as graph-labelled trees, a notion used
in [8, 25]. We prove that the clique-width of a directed graph G is bounded by
8k+1, where k is the maximum clique-width of a component of a graph-labelled
tree that defines G, or of its canonical split decomposition when it is strongly
connected.

To summarize, the purpose of this article is to clarify the close relation-
ships between split decomposition, clique-width and vertex-replacement graph
grammars based on vertex substitutions. In particular, we translate split de-
compositions of undirected graphs into graph grammars (based on appropriate
substitutions to vertices) and we bound linearly the clique-width of a decom-
posed, directed or undirected graph, in terms of those of the components.

Section 1 is devoted to basic definitions. Section 2 introduces vertex substitu-
tions for undirected graphs with dead vertices, and the corresponding grammars.
Section 3 relates clique-width and substitutions. Section 4 studies split decom-
position of undirected graphs in this perspective, with the help of graph-labelled

4 In [34], such vertices are defined in clique-width terms by inactive labels. We will use ⊥
as inactive label in Sections 3 and 5.

5A different notion of split decomposition for directed graphs, that generalizes also the one
for undirected graphs, has been defined in [32]. We will say a few words about it at the end
of Section 5.

3

trees. Section 5 develops the case of directed graphs.

Acknowledgement : I thank I. Durand, E. Gioan, M. Kanté, S. Oum and C.
Paul for their useful comments. I also thank the editors of the special issue
of Discrete Applied Mathematics relative to the GROW meeting in Toronto, in
2017 for wellcoming this submission.

1 Graphs and clique-width

Most definitions are well-known, we mainly review notation. We state a few
facts that are either well-known or easy to prove.

The union of two sets is denoted by ⊎ in cases where we stress they are
disjoint. The cardinality of a set X is denoted by |X| and its powerset by
P(X). The set of integers {1, ..., n} is denoted by [n].

All trees and graphs are nonempty and finite.

Trees
The set of nodes of a tree T is denoted by NT , its set of leaves, i.e., of nodes

of degree 1, by LT .
If T has a root, denoted by rootT , then <T denotes the corresponding an-

cestor relation, a strict partial order on NT (a node is not an ancestor of itself).
The root is the unique maximal element and the leaves different from the root
are the minimal ones. A star Sn is a tree with n−1 ≥ 2 leaves linked to a single
node called its center.

Graphs
We consider simple graphs, i.e., that are loop-free and without parallel edges.

Graphs are directed or not. Directed graphs may have pairs of opposite edges.
Undefined notions are as in [19]. A graph G has vertex set VG and edge set
EG. The corresponding binary adjacency relation is denoted by edgG. If G is
undirected, we denote by uv or vu an edge between u and v. If G is directed,
we denote by uv an edge from u to v.

We denote by G[X] the induced subgraph of G with vertex set X ⊆ VG, by
G−X the graph G[VG−X] and by G−x the graph G[VG−{x}] where x ∈ VG.

Definition 1.1 : Distance hereditary graph
An undirected graph G is distance hereditary (DH in short) if the distance

of two vertices in every connected induced subgraph is the same as in G. For
an example, the cycle C4 (with 4 vertices) is DH whereas C5 is not. The DH
graphs are characterized as follows6 : a DH graph is an isolated vertex, or the
disjoint union of two DH graphs or is obtained from a DH graph by the addition
of a pendant edge to a vertex x, or of a twin to x. Adding to x a true twin is

6This characterization is from [1]. The DH graphs are also the graphs of rank-width 1 [35].
They have clique-width at most 3, as we will prove in detail.

4

adding a new vertex y linked to x and to the neighbours of x. Adding a false
twin is similar with y not linked to x.

Labelled graphs.
Let C be a finite set of labels. A C-graph is a triple G = (VG,EG, πG) where

πG is a mapping: VG → C. Its type, denoted by τ(G) is πG(VG), i.e., the finite
set of labels from C that label some vertex of G.

We denote by ≃ the isomorphism of C-graphs up to vertex labels, i.e., the
isomorphism of the underlying unlabelled graphs, and by ≡ the existence of an
isomorphism that respects labels. An abstract C-graph is an equivalence class
of graphs for ≡.

Clique-width
Clique-width is based on operations that modify or combine C-graphs. There

will be some restrictions regarding the special label ⊥ (see Section 3 below).

Definition 1.2 : Clique-width
(a) We define the following operations on C-graphs :

- the union of two disjoint C-graphs is denoted by the binary function
symbol7 ⊕,

- the unary operation adda,b for a, b ∈ C, a �= b that adds an undi-
rected edge between each a-labelled vertex x and each b-labelled
vertex y (unless there is already an edge xy); for building directed

graphs, we use similarly
−−→
adda,b to add directed edges from a-labelled

to b-labelled vertices,

- the unary operation8 relabh that changes every vertex label a into
h(a) where h is a mapping from C to C,

- and, for each a ∈ C, the nullary symbol a(x) that denotes the
isolated vertex x labelled by a.

We denote by FC as the set of these operations9 . A term over FC is well-
formed if no two occurrences of nullary symbols designate the same vertex ;
in particular, the graphs defined by the two arguments of an operation ⊕ are
disjoint. We denote by T (FC) the set of well-formed terms. We call them clique-
width terms. Each such term t denotes a C-graph val(t) whose vertices are
exactly those specified by the nullary symbols of t. Its width is the number of
labels that occur in t.

7As ⊕ is associative, we will write t = t1 ⊕ t2 ⊕ ...⊕ tn instead of t1 ⊕ (t2 ⊕ (...⊕ tn)...).
8 If h only changes a into b, we denote relabh by relaba→b and call this operation an

elementary relabelling. By using only elementary relabellings, we obtain the same notion of
clique-width ([14], Proposition 2.118).

9Vertices are taken from a fixed countable set.

5

The clique-width of a labelled graph10 G, denoted by cwd(G), is the least
width of a term t such that G ≃ val(t). We denote by cwd∗(G) the least width of
t such that G ≡ val(t). Hence, cwd(G) ≤ cwd∗(G). Clearly, cwd(G) = cwd∗(G′)
where G′ is obtained from G by relabelling all its vertices in the same way.

Here are some examples. The clique-width of a tree is at most 3, that of
the clique Kn is 2 for n ≥ 2. The undirected cycles C3, C4 have clique-width 2,
C5, C6 have clique-width 3, and Cn has clique-width 4 for n ≥ 7. For directed

cycles
−→
C n, we have cwd(

−→
C 3) = 3 and cwd(

−→
C n) = 4 if n ≥ 4.

Lemma 1.3 : For every labelled graph G, we have :
max{|τ(G)| , cwd(G)} ≤ cwd∗(G) ≤ |τ(G)| · cwd(G).

Proof: The first inequality is clear from definitions. To prove the second
one, we assume without loss of generality, that the type of G is [p]. Let H be
G with all vertices labelled in the same way. Let C be the set of k labels of a
term t that defines H. For each a in C and i ∈ [p], we define a new label (a, i)
that will only label the vertices x such that πG(x) = i.

Consider in t a nullary symbol a(x). If πG(x) = i, we replace it by (a, i)(x).
Each relabelling relabh is replaced by relabh′ where h

′ maps (a, i) to (b, i)
whenever h maps a to b. Similarly, we replace adda,b by the composition of the
operations add(a,i),(b,j) for i, j ∈ [p]. We obtain in this way a term11 t′. We let
h′′ : C ×[p] map each label (a, i) to i for each a ∈ C.

Then G = relabh′′(val(t′)) = val(relabh′′(t′)). The term relabh′′(t′) uses at
most p + p.k labels. However, we can fix some a ∈ C and replace everywhere
(a, i) by i, for each i. We obtain a term of width at most p.k that defines G. �

Hence if the type of G consists of p labels and k is the clique-width of the
corresponding unlabelled graph, then one can define G, with its labelling, by a
term with at most p.k labels. This lemma implies that cwd(G) ≤ 2cwd(G− x)
if x is a vertex of G. This bound is proved in [28]. Can it be improved12 ? Can
one improve the bound p.k in Lemma 1.313 ?

We will also use nullary symbols a that do not designate any particular
vertex. In this case, the vertex defined by an occurrence u of a in a term is
u itself. We will also consider that a term written with such nullary symbols
denotes an abstract graph. See [14], Section 2.52. We will denote by FC the
signature FC where the symbols a(x) are replaced by a, and by t the term in
T (FC) obtained from a term t ∈ T (FC) by replacing each by a(x) by a. Then
val(t) ≡ val(t).

10 In [14], we denote cwd∗ by cwd.
11The construction is similar for directed graphs and it needs no more labels.
12 It not hard to prove that lcwd(G) ≤ lcwd(G − x) + 2 where lcwd denotes the linear

clique-width. This variant is defined by requiring that at least one of the two arguments of an
operation ⊕ is a nullary symbol. See e.g., [14, 30].

13A lower-bound is established in [17]. .

6

2 Substitution to vertices

We consider undirected graphs in this section. We will adapt the definitions for
directed graphs in Section 5.

Let C be a set of labels containing ⊥ . The vertices of a graph G labelled by
⊥ will be said to be dead ; they form the set V dead

G . The others, said to be live,
form the set V live

G . The unary operation κ, read kill, relabels all vertices by ⊥
hence makes them dead.

Definition 2.1 : Substitution.
LetK be a C-graph and x1, . . . , xp be pairwise distinct vertices. LetH1, . . . ,Hp

be pairwise disjoint C-graphs, that are disjoint14 from K. We define a C-graph
as follows:

G := K[H1/x1, . . . ,Hp/xp] where

VG := (VK − {x1, . . . , xp}) ⊎ VH1
⊎ . . . ⊎ VHp

,

πG(v) := πK(v) if v ∈ VK − {x1, . . . , xp},

πG(v) := πK(xi) if v ∈ V live
Hi

,

πG(v) := ⊥ if v ∈ V dead
Hi

.

Its edges are as follows, for u, v in VG :

uv ∈ EG if and only if :

either uv ∈ EK and neither u nor v is in {x1, . . . , xp},

or uv ∈ EHi
for some i,

or u ∈ VK , uxi ∈ EK and v ∈ V live
Hi

(or vice-versa since we define
undirected graphs),

or u ∈ V live
Hi

, v ∈ V live
Hj

and xixj ∈ EK (so that i �= j).

The type of G is thus that of K, possibly augmented with ⊥ if some Hi has
dead vertices (these vertices are dead in G). The labels of K have no influence
on the definition of the edges of G. They are only used for defining the labels of
the resulting graph G. The labels of the graphs Hi other than ⊥ do not appear
in G: hence, if we have hi(a) = ⊥ if and only if a = ⊥, for each i, then :

K[H1/x1, . . . ,Hp/xp] = K[relabh1(H1)/x1, . . . , relabhp(Hp)/xp].

If all vertices of Hp are dead, then

K[H1/x1, . . . ,Hp/xp] = (K − xp)[H1/x1, . . . ,Hp−1/xp−1] ⊕Hp.

14 It is actually enough to assume that (VH1
⊎ . . . ⊎ VHp

) ∩ (VK − {x1, . . . , xp}) = ∅.

7

Because of dead vertices, this notion of substitution differs from the classical
one, use in particular in the theory of modular decomposition (see the survey
[29]).

Proposition 2.2 : Let K,H1,H2 be pairwise disjoint C-graphs and x1 ∈
VK .

(1) If x2 is another vertex of K, then K[H1/x1][H2/x2] = K[H1/x1,H2/x2].
(2) If x2 ∈ VH1

, then K[H1/x1][H2/x2] = K[H1[H2/x2]/x1].

Proof : (1) Straightforward verification from the definitions.
(2) Let G := K[H1/x1][H2/x2] and G′ := K[H1[H2/x2]/x1].
Clearly, VG = VG′ .
Let u, v belong to VG. If u and v are both, either in VK , or in VH1

or in VH2
,

then uv ∈ EG if and only if uv ∈ EG′ . Otherwise we distinguish three cases.
(i) u ∈ VK and v ∈ VH1

; then, uv ∈ EG if and only if ux1 ∈ EK and v is live
in H1, if and only if uv ∈ EG′ .

(ii) u ∈ VK and v ∈ VH2
; then, uv ∈ EG if and only if ux2 ∈ EK[H1/x1] and

v is live in H2. The condition ux2 ∈ EK[H1/x1] is equivalent to : ux1 ∈ EK and
x2 is live in H1.

Now uv ∈ EG′ if and only if ux1 ∈ EK and v is live in H1[H2/x2] which is
true if and only if v is live in H2 and x2 is live in H1. Hence, uv ∈ EG if and
only if uv ∈ EG′ .

(iii) u ∈ VH1
− {x2} and v ∈ VH2

; then uv ∈ EG if and only if ux2 ∈ EH1

and v is live in H2, if and only if uv ∈ EH1[H2/x2], if and only if uv ∈ EG′ .
It remains to verify that πG = πG′ .
If u ∈ (VK − {x1})⊎ (VH1

− {x2}), then πG(u) = πG′(u) because u is not
affected by the substitutions to x2.

If u ∈ VH2
, then πG(u) = ⊥ if u is dead in H2; it is πK[H1/x1](x2) otherwise;

but πK[H1/x1](x2) = ⊥ if x2 is dead in H1, otherwise πK[H1/x1](x2) = πK(x1).
Now, πG′(u) = ⊥ if u is dead in H1[H2/x2] and it is πK(x1) otherwise; observe
that u is dead in H1[H2/x2] if and only if it is dead in H2 or x2 is dead in H1.
We obtain πG(u) = πG′(u) in this case; this value is either πK(x1) or ⊥ (if u is
dead in H2 or x2 is dead in H1).

This completes the proof. �

In [7], Properties (1) and (2) are called respectively commutativity and asso-
ciativity of substitution. They are axioms for the definition of context-free graph
grammars based on an abstract notion of substitution. These grammars are
particular vertex replacement grammars [14].

Definition 2.3 : Graph operations based on substitution.
(a) For eachC-graphK with vertex set enumerated as {x1, . . . , xp}, we define

as follows a p-ary graph operation15 on C-graphs denoted by σ[K,x1, . . . , xp] :
σ[K,x1, . . . , xp](H1, . . . ,Hp) := K[H1/x1, . . . ,Hp/xp]

15We use the notation σ[K, v1, . . . , vp] for the function symbol and the corresponding oper-
ation.

8

where H1, . . . ,Hp are pairwise disjoint C-graphs that are disjoint from K.
Note that the vertex set of σ[K, v1, . . . , vp](H1, . . . ,Hp) is VH1

⊎ . . . ⊎ VHp
.

If H1, . . . ,Hp are not pairwise disjoint, we replace them by isomorphic copies
in a standard way ([14], Chapter 2), so that σ[K,x1, . . . , xp] becomes a p-ary
operation on abstract C-graphs, (i.e., isomorphism classes of C-graphs).

We denote by ΣC the countable set of these operations together with the
nullary symbols a(x) to denote vertices.

A term in T (ΣC) is well-formed if each vertex x occurs at most once in a
symbol a(x). Every well-formed term t denotes a graph val(t). The signature
ΣC is obtained from ΣC by replacing, for each a, the different symbols a(x) by
a. As for clique-width terms in T (FC), each term in T (Σ) denotes an abstract
graph.

We denote by relaba the relabelling that replaces by a every label except ⊥.

Proposition 2.4 : Let t, t′ ∈ T (ΣC) and x be a vertex in val(t) defined by
a nullary symbol a(x). Let t′ be a term such that Vval(t′) ∩ (Vval(t) − {x}) = ∅.
Then, we have :

val(t)[val(t′)/x] = val(t[relaba(t
′)/a(x)]).

The term t[relaba(t
′)/a(x)] is obtained by substituting t′ in t for the unique

occurrence of a(x). It is well-defined because Vval(t′) ∩ (Vval(t) − {x}) = ∅ (cf.
the footnote in Definition 2.1).

Proof : By induction of the structure of t.
If t = a(x), then val(t[relaba(t′)/a(x)] = val(relaba(t′)) = a(x)[val(t′)/x])

by the definition of substitution, hence is equal to val(t)[val(t′)/x].
Let t = σ[K, v1, . . . , vp](t1, . . . , tp).Without loss of generality and to simplify

notation, we assume that a(x) occurs in t1. Then,

t[t′/a(x)] = σ[K, v1, . . . , vp](t1[t
′/a(x)], t2, . . . , tp);

val(t[t′/a(x)]) = K[val(t1[t
′/a(x)])/v1, val(t2)/v2, . . . , val(tp)/vp].

By induction :

val(t1[t
′/a(x)]) = val(t1)[val(t

′)/x],

hence

val(t[t′/a(x)]) = K[val(t1)[val(t′)/x]/v1, . . . , val(tp)/vp]

= K[val(t1)/v1, . . . , val(tp)/vp][val(t
′)/x] by Propoposition 2.2(2),

= val(t)[val(t′)/x]. �

9

From these operations one can define grammars, formalized by systems of
recursive equations in sets of abstract C-graphs of which one takes least solutions
(cf. [14], Chapter 3 for "context-free" grammars in a universal algebra setting).
We first consider some examples.

Definitions 2.5 : Some basic operations.
Here are operations of particular interest. They concern D-graphs where

D := {⊥,⊤} (and ⊤ labels live vertices).

H1⊕H2 = σ[K,x1, x2](H1,H2) where K consists of two isolated live
vertices x1 and x2.

H1 ⊗H2 := σ[K,x1, x2](H1,H2) where K is the edge x1x2 and x1
and x2 are live.

We will also use :

Λ(H1,H2) := σ[K,x1, x2](H1,H2) where K is the edge x1x2, x1 is
live and x2 is dead.

We have :

κ(H) = σ[K,x1](H) where K consists of the dead vertex x1.

The operations ⊕ and ⊗ are associative and commutative. Here are some
algebraic properties of the other ones:

Λ(Λ(G,H1),H2) = Λ(Λ(G,H2),H1) = Λ(G,H1 ⊕H2),

κ(Λ(G,H)) = κ(G⊗H),

Λ(κ(G),H) = κ(G)⊕ κ(H).

We let Σdh be the signature {⊕,⊗,Λ, κ,⊤} ⊆ ΣD. We need not use the
nullary symbols ⊥(x) because a dead vertex x can be defined by κ(⊤(x)).
Actually, a vertex introduced as dead remains isolated.

Examples 2.6 : Some grammars (equations in sets of D-graphs) over Σdh.
(1) The equation

X =⊤ ∪ (X ⊕X) ∪ (X ⊗X)

defines the set of cographs (all vertices are live, as ⊕ and ⊗ do not introduce
dead vertices). Here X denotes a set of abstract {⊤}-graphs, X ⊕X denotes
{G⊕H | G,H ∈ X}, and similarly for the other operations.

This equation can also be solved in the set of terms T ({⊕,⊗,⊤}). Then X
denotes a subset of T ({⊕,⊗,⊤}) and X ⊕X denotes the set of terms {t ⊕ t′ |
t, t′ ∈ X} (and similarly for ⊗). We obtain the set of terms L(X).

10

More generally, for a system of recursive equations with unknowns X,Y,Z,
... we denote by L(X), L(Y), L(Z),... the sets of terms. A fundamental property
of these systems ([14], Proposition 3.23) establishes that the corresponding sets
of objects X,Y,Z (elements of the relevant algebra) are the sets of values of
the terms in L(X), L(Y), L(Z),... Here, we get that the cographs are the values
of the terms in L(X), where terms are evaluated as abstract graphs. In the
present case, we have L(X) = T ({⊕,⊗,⊤}), hence the cographs are defined by
all terms in T ({⊤,⊕,⊗}).

(2) The rooted trees are defined by the equation

R = ⊤ ∪ Λ(R,R).

In a tree defined in this way, only the root is live. Another grammar for
trees, using two equations, is :

Y = ⊤ ∪ Λ(⊤, Z),

Z = Y ∪ (Z ⊕ Z).

Here, Z defines forests, i.e., nonempty disjoint unions of rooted trees. Trees
(without distinguished root) are defined by the additional equations T = κ(R)
or T = κ(Y).

For example, the tree with nodes u, v, w, x, y, z, root x and edges xy, xz, xv, zu
and vw is defined by the term :

Λ(Λ(Λ(⊤(x),⊤(y)),Λ(⊤(z),⊤(u))),Λ(⊤(v),⊤(w)))

belonging to L(Y) or by the term of L(U) :

Λ(⊤(x),⊤(y)⊕ Λ(⊤(z),⊤(u))⊕ Λ(⊤(v),⊤(w))).

The paths with one live vertex at one end are defined by the equation

P = ⊤ ∪Λ(⊤, P).

(3) We will prove below that the equation
W = ⊤ ∪ (W ⊕W) ∪ (W ⊗W) ∪ Λ(W,W)
defines, up to vertex labels, the distance hereditary graphs.

From these equations, we obtain that the rooted trees are defined by all
terms in T ({Λ,⊤}) or by certain terms in T ({⊕,Λ,⊤}), and that the distance
hereditary graphs are defined by terms in T ({⊕,⊗,Λ,⊤}). In these equations
and the generated terms, the label ⊥ for dead vertices does not appear explicily,
but it is introduced by the operations Λ and κ. �

In the following description of DH graphs, all vertices are defined as dead,
equivalently, unlabelled (there is no reason to distinguish any vertices as "roots").

11

The following recursive definition of DH graphs has been established in [5], but
we think interesting to prove it by using the concepts of this article. We recall
that equation systems always define abstract graphs.

Proposition 2.7 : (1) The DH graphs form the set X defined by the two
equations :

X = κ(W),

W = ⊤ ∪ (W ⊕W) ∪ (W ⊗W) ∪ Λ(W,W).

(2) The connected DH graphs form the set Y defined by the equation :

Y = κ(⊤) ∪ κ(W ⊗W)

and the equation of (1) that defines W .

Proof : (1) Note that16 L(W) = T ({⊕,⊗,Λ,⊤}). For both direction we
will use the characterization of DH graphs recalled in Definition 1.1.

(a) Every DH graph G is in the set val(X) = val(κ(W)).
We use induction on the number n of vertices of G.
If n = 1, then G is a single dead vertex, hence is G ≡ κ(⊤) ∈ κ(W).
Otherwise there are four cases.
(i) G is the disjoint union of two DH graphs H,H ′. Then, H ≡ κ(t),H′ ≡

κ(t′) for some t, t′ ∈W = T ({⊕,⊗,Λ,⊤}). Hence, G ≡ κ(t⊕t′) where t⊕t′ ∈W
because κ(t⊕ t′) ≡ κ(t)⊕ κ(t′).

(ii) If G is obtained from a DH G′ by adding a pendant vertex y to a vertex
x of G′, we have G = G′[H/x] where H is the edge xy, with x live and y dead17 ;
hence H = val(Λ(⊤(x),⊤(y))).

We have G′ = κ(val(t′)) where t′ is a well-formed term over ⊕,⊗,Λ and the
nullaries that define vertices. It has one occurrence of ⊤(x).

We let t := t′[Λ(⊤(x),⊤(y))/⊤(x)]. By Proposition 2.4, we have val(t) =
val(t′)[H/⊤(x)]. Hence G = κ(t), so that G ≡ κ(t) where t ∈ W is obtained
from t by replacing by ⊤ the symbols ⊤(z) that define vertices.

(iii) If G is obtained from a DH G′ by adding a false twin y to a vertex x.
We have G = G′[H/x] where H consists of two isolated live vertices x and y.
Hence H = val(⊤(x)⊕⊤(y)). The proof continues as in (ii) with ⊤(x)⊕⊤(y)
instead of Λ(⊤(x),⊤(y)).

(iv) If G is obtained from DH G′ by adding a true twin y to a vertex x. Here
G = G′[H/x] where H consists of two live vertices x and y linked by an edge,
hence H = val(⊤(x)⊗⊤(y)). The proof continues as in (iii) with ⊤(x)⊗⊤(y)
instead of ⊤(x)⊕⊤(y).

(b) Conversely, let G = val(t) for some well-formed term t over ⊕,⊗,Λ and
the nullaries that define vertices. We prove that κ(G) is DH by induction on
the size of t.

16See Example 2.5(1) for the solution of equations in sets of terms. In the proof, we will
identify W and L(W) without risk of difficulty.

17We use here the footnote in Definition 2.1.

12

If t = ⊤(x), the result holds because an isolated vertex is DH. Otherwise, we
can find a position u in t such that t/u, the subterm of t issued from position u is
either Λ(⊤(x),⊤(y)) or⊤(x)⊕⊤(y), or⊤(x)⊗⊤(y). Then t = t′[(t/u) /⊤(x)]
for some well-formed term t′ (obtained by replacing in t the subterm t/u by
⊤(x)). By induction, κ(val(t′)) is a DH graph G′ and G = G′[H/x] by Propo-
sition 2.6, where H is respectively as in cases (ii), (iii) or (iv).

(2) It is clear that a term t in L(X) defines a connected graph if and only if
it is not of the form κ(t1⊕ t2). Hence, the connected DH graphs can be defined
by the equation :

Y = κ(⊤) ∪ κ(W ⊗W) ∪ κ(Λ(W,W))

where W is as in (1). However, we observed that κ(Λ(G,H)) = κ(G ⊗H)
for all D-graphs G and H. Hence, the term κ(Λ(W,W)) can be removed. �

The bipartite DH graphs are built from isolated vertices by the addition of
pendant edges and of false twins [1]. Hence, they form the set B defined by the
two equations B = κ(W ′) and W ′ = ⊤ ∪ (W ′ ⊕W ′) ∪ Λ(W ′,W ′).

3 Clique-width and substitution operations.

Substitutions as derived clique-width operations.

We recall18 that a derived operation relative to an algebraM over a functional
signature F is defined by a term t in T (F, {u1, ..., up}), i.e., a term over F with
variables (nullary symbols to which values or terms can be substituted) u1, ..., up.
The corresponding p-ary function tM is defined by evaluating t with p arguments
from the domain of M as values of u1, ..., up.

For an example using clique-width operations, the operation ⊗ on graphs
of type {⊤} (cf. Definition 2.3) adds to the disjoint union of the two argument
graphs G and H all possible edges between the vertices of G and those of H.
We have G⊗H = relaba→⊤(add⊤,a(G⊕ relab⊤→a(H)). Hence, ⊗ is defined by
the term19 relaba→⊤(add⊥,a(u1 ⊕ relab⊤→a(u2)).

We let Lin(FC , {u1, ..., up}) be the set of terms where each variable ui has
a unique occurrence and no other nullary symbol occurs. Every such term
defines a p-ary mapping on C-graphs denoted by tG. For pairwise disjoint graphs
H1, . . . ,Hp, the vertex set of tG(H1, . . . ,Hp) is VH1

⊎ . . . ⊎ VHp
. Our objective

is to express the operations σ[K,x1, . . . , xp] as derived operations over FC, the
signature upon which clique-width is based.

18 from [14], Section 2.1
19This term uses an auxiliary label a to define graphs of type {⊤}. This label does not

appear in the type. It can be replaced by any other one different from ⊤.

13

We define T⊥(FC) as the set of terms that use neither the operations20

adda,⊥, add⊥,b (nor the similar ones that define directed edges), nor relabh such
that h(⊥) �= ⊥, nor the nullary symbols ⊥(x). We denote by cwd⊥(G) the
minimal cardinality of C−{⊥} such that G ≃ val(t) for some term t ∈ T⊥(FC).
Clearly, cwd(G) ≤ cwd⊥(G)+1. We have cwd(T) = 3 and cwd⊥(T) = 2 for any
tree T that is not a star.

Let K be a C-graph with vertex set {x1, . . . , xp} defined by a term t in
T⊥(FC). Each vertex xi is defined by a nullary symbol ai(xi) in t (ai �= ⊥). We
define �t := t[u1/a1(x1), . . . , up/ap(xp)]. This term is in Lin(FC , {u1, ..., up}).
We recall that relaba is the relabelling that replaces by a every label except ⊥.

Lemma 3.1 : For pairwise disjoint C-graphs H1, . . . ,Hp, we have:

σ[K,x1, . . . , xp](H1, . . . ,Hp) = �tG(relaba1(H1), . . . , relabap(Hp)).

Proof: By induction on the structure of t.
If t = a1(x1), then �t = u1 and σ[K,x1](H1) = relaba1(H1) by the definition

of substitution, hence is �tG(relaba1(H1)).
If t = t1 ⊕ t2, then, without loss of generality, we assume that the vertices

of K1 := val(t1) are x1, . . . , xi and those of K2 := val(t2) are xi+1, . . . , xp. We
have �t = �t1 ⊕ �t2. Then, since substitution distributes over disjoint union21 and
by induction :

σ[K,x1, . . . , xp](H1, . . . ,Hp) =

σ[K1, x1, . . . , xi](H1, . . . ,Hi)⊕ σ[K2, xi+1, . . . , xp](Hi+1, . . . ,Hp) =

�t1G(relaba1(H1), . . . , relabai(Hi))⊕ �t2G(relabai(Hi), . . . , relabap(Hp)) =

�tG(relaba1(H1), . . . , relabap(Hp)).

If t = f(t1) where f is relabh or adda,b, then the result holds because, for
every C-graph K with vertices x1, . . . , xp, we have :

σ[f(K), x1, . . . , xp](H1, . . . ,Hp) = f(σ[K,x1, . . . , xp](H1, . . . ,Hp)).

The equality to be proved follows then by induction. �

We will denote by tK and �tK terms associated with K as above. We say
that an operation σ[K,x1, . . . , xp] has width k if cwd⊥(K) = k. The operations
⊕,⊗,Λ and κ have respective widths 2,2,2 and 1.

Proposition 3.2 : If G ≡ val(s) for some term s in T (ΣC) whose operations
have width at most k, then cwd⊥(G) ≤ k and cwd(G) ≤ k + 1.

Proof : By induction on the structure of s, we define a term �s in T (FC)
such that val(�s) ≡ val(s).

If s = a(x1), then �s := s.
If s = σ[K,x1, . . . , xp](s1, . . . , sp) then, we let �tK ∈ Lin(FC , {u1, ..., up}) be

a term associated with K as in Lemma 3.1, and we define

20These limitations on the use of ⊥ make it an inactive label in [34].
21This is clear from Definition 2.1.

14

�s := �tK [relaba1(�s1)/u1, . . . , relabap(�sp)/up].

It is clear that val(�s) ≡ val(s).
The set of labels used in �s is the set of all those used in the terms �tK . We

now bound cwd⊥(G). Without loss of generality, we can assume that all labels
of the terms that define the operations that occur in s are in a set C such that
C − {⊥} has cardinality k. Hence cwd⊥(G) ≤ k and cwd(G) ≤ k + 1. �

If in s, all the operations of maximal width k do not use ⊥ in their definitions
by terms, then cwd(G) = cwd⊥(G) ≤ k.

We obtain that distance hereditary graphs have clique-width at most 3
(known from [27, 35]) because they are defined with the operations κ,Λ, ⊕
and ⊗ of width at most 2. As the operation Λ of width 2 needs ⊥ in its defining
term, we do not have cwd(G) = cwd⊥(G) ≤ 2. Proposition 4.9 of [34] establishes
that conversely, G is distance hereditary if cwd⊥(G) ≤ 2.

4 Split decomposition

The split decomposition of directed and undirected graphs has been defined and
studied by Cunnigham in [18]. We will formulate it in terms of graph-labelled
trees as in [25] (called and split-decomposition graphs in [8]). We only consider
undirected graphs in this section.

Definition 4.1 : Graph-labelled trees and the graphs they describe.
We denote by LT the set of leaves of a tree T and by IncT (v) the set of

edges incident to a node v.
(a) A graph-labelled tree, denoted by T is a tree T with at least three nodes

that is equipped, for each node v ∈ NT , with a connected graph Hv, called a
component, and a bijection ρv : IncT (v)→ VHv

. The components are pairwise
disjoint. We identify u and the unique vertex of Hu if u is a leaf.

(b) The corresponding split-graph S(T) is the union of the components to-
gether with the edges ρu(e)ρv(e) for e = uv, (cf. Figure 1). A path in S(T) is
alternating if no two consecutive edges are in a same component. Between any
two vertices x, y of S(T), there is at most one alternating path. If there is one,
we say that x is accessible from y. We add through z (or e) to indicate that this
path goes through a particular vertex z (or edge e). For a vertex w of S(T)
belonging to a component Hu, we denote by A(w) (respectively by P (w)) the
set of vertices accessible from w by a nonempty alternating path whose first
edge is not in Hu (reachable from w by a nonempty path in S(T) whose first
edge is not in Hu).

(c) The graph described by T , denoted by G(T), has vertex set LT and an
edge uv if and only if u is accessible from v. It is connected ([25], Lemma 2.3)

15

Figure 1: A graph-labelled tree T .

Figure 2: The graph G(T).

because the components are defined as connected22 .
(d) Let e = uv be an edge of T between two internal nodes. The node-

joining operation (cf. [25]) contracts this edge, hence fuses u and v into a single
node say w, giving tree T ′; it replaces Hu ⊎Hv by the connected graph H′

w :=
Hu ⊎ Hv − {ρu(e), ρv(e)} and with an edge between any vertex x in Hu and
any vertex y in Hv such that xρu(e) ∈ EHu

and ρv(e)y ∈ EHv
. We obtain a

graph-labelled tree T ′ that describes the same graph. If ρu(e) has degree r in
Hu and ρv(e) has degree s in Hs the resulting component H′

w has a subgraph
isomorphic to the complete bipartite graph Kr,s. The opposite transformation
is called node-splitting. It preserves also the defined graph. �

Example 4.2 : Figure 1 shows a graph-labelled tree with leaves 1, ..., 8 and
internal nodes u, v, w, x. The associated graph G is in Figure 2. There is an

22 If some components are not connected, the defined graph is not connected. Disconnected
graphs are best described through their connected components. Hence, we assume that all
components are connected. In Section 5, we will allow components that are not connected for
directed graphs.

16

alternating path between leaf 7 and leaf 1. Hence, they are adjacent vertices in
G. On any path between 3 and 7, there are at least two consecutive edges of
Hu, hence, 7 is not adjacent to 3. �

Remark 4.3 : A graph consisting of a single edge is defined by a graph
labelled tree one component of which is an edge. Otherwise, all single edge
components can be eliminated by node-joinings. The resulting tree has no node
of degree 2.

However in a graph-labelled tree T that defines a graph with at least 2
vertices, it may be useful to insert a component consisting of a single edge (cf.
Example 4.12 below): consider an edge uv of T , replace it by two edges uw and
wv where w is new node, and define the new component corresponding to w as
consisting of a single edge.

Lemma 4.4 : Let T be a graph labelled tree and G = G(T).
(1) For each vertex x of S(T), the set A(x) ∩ LT is not empty.
(2) Let x, y be distinct vertices of some component H. If xy is an edge of

H, there is an alternating path between any leaf in A(x) and any leaf of A(y).
Conversely, if an alternating path links a leaf in A(x) and a leaf of A(y), then
this path goes through H, and more precisely, through x and y, and xy ∈ EH .
Each component is isomorphic to an induced subgraph of G.

(3) Let uv be an edge of T . There is an alternating path between any leaf in
A(x) where x is a neighbour of ρu(uv) in Hu and any leaf in A(y) where y is a
neighbour of ρv(uv) in Hv. Any such path goes through the edge ρu(uv)ρv(uv).

Proof: (1) Let x belong to Hu. Then x = ρu(uv) for some (unique) edge uv
of T . We use induction on the cardinality of NT,u\v, defined as the set of nodes
of the connected component of T − u that contains v.

If
��NT,u\v

�� = 1, then v is a leaf and A(x) = {v} = ρv(uv) is a satisfying
leaf.

Otherwise, Hv has an edge ρv(uv)y and then, y = ρv(vw) for some edge vw
of T . Then NT,v\w ⊂ NT,u\v and A(y)∩LT ⊆ A(x)∩LT . The set A(y)∩LT is
not empty by induction, so is A(x) ∩ LT .

(2) Let xy = ρu(uv)ρu(uw) be an edge of component Hu. Let z ∈ A(x)∩LT
and z′ ∈ A(y) ∩ LT . By connecting alternating paths between z and x, and z′

and y with the edge xy, we get an alternating path between z and z′. Any such
path must through xy as one checks from the definitions.

For each vertex x of Hu, choose a vertex �x of G in A(x) ∩ LT . By the
previous observations, the induced subgraph of G whose vertices are the �x’s is
isomorphic to Hu.

(3) The proof is similar to that of (2). �

The following corollary illustrates these notions in the basic case of trees.

Corollary 4.5 : G(T) is a tree if and only if :

17

(1) each component of T is a tree, and

(2) if e = uv ∈ ET is not a pendant edge, then at least one of ρu(e)
and/or ρv(e) is a leaf of, respectively Hu and/or Hv.

Proof : Assume G(T) is a tree. By Lemma 4.4(2), each component of T is
isomorphic to an induced subgraph ofG(T), hence is a tree since components are
connected. For Property (2), if none of ρu(e) and ρv(e) is a leaf, then the node-
joining of u and v (Definition 4.1(d)) merges Hu and Hv into a component that
contains a complete bipartite graph Kr,s such that r, s ≥ 2. This component
has a cycle and G(T) is not a tree by (1).

Conversely, let T satisfy (1) and (2). Consider e = uv satisfying Property
(2) : if we apply to it the node-joining operation, the component H ′

w created
in this way is still a tree. The obtained graph-labelled tree T ′ satisfies (1) and
(2) and describes G(T). By repeating this operation until all edges are pendant,
we obtain a graph-labelled tree that defines G(T) and that has one component
that is a tree, all others being leaves. Hence G(T) is a tree. �

A tree may be be defined from several nonisomorphic graph-labelled trees. A
stronger condition than (2) of Corollary 4.5, namely Condition (2) of Theorem
4.7, yields unicity, up to isomorphism, of the graph-labelled trees that define
trees.

Definition 4.6 : The (canonical) split decomposition.
(1) A split of a graph G is a bipartition of VG into two sets V1 and V2 having

each at least 2 vertices, such that the edges between V1 and V2 form a complete
bipartite graph with at least one edge. Its bipartition is (A1,A2) where A1 ⊆ V1
and A2 ⊆ V2. Hence, G is κ(G1⊗G2) for the induced subgraphs G1 = G[V1] and
G2 = G[V1] with appropriate labelling in D = {⊤,⊥}: the vertices in A1 ∪ A2
are labelled by ⊤ and the others by ⊥.

(2) A graph is defined as prime23 if it has at least 4 vertices and no split.
The connected graphs with 3 vertices are stars S3 and triangles (i.e., K3). A
star Sn, n ≥ 3, has a center and n − 1 adjacent vertices that are leaves (Sn is
a tree). Stars and cliques are not prime. A prime graph has actually at least 5
vertices. The cycles Cn for n ≥ 5 are prime. Theorem 3 of [18], also proved as
Theorem 2.9 in [25], states the following.

Theorem 4.7 : Every connected graph with at least 3 vertices is G(T) for
a unique graph-labelled tree T such that :

(1) each component Hv is singleton, or prime, or is a clique Kn or a star Sn,
for some n ≥ 3,

(2) if e = uv ∈ ET , then Hu and Hv are not both cliques, and, if they are
both stars, ρu(e) and ρv(e) are both centers or both leaves.

Unicity is understood up to isomorphism. �

23A different notion of prime graph is used in the theory of modular decomposition.

18

Such a graph-labelled tree is called the split decomposition of G. It can
be obtained from an arbitrary graph-labelled tree that defines G by the node-
splittings and the node-joinings of Definition 4.1(d) (see [25] for details). The
resulting tree has no node of degree 2 (cf. Remark 4.3). We will actually describe
graphs by graph-labelled trees that need not be canonical.

Examples 4.8 : (1) The split decomposition of a clique Kn, n ≥ 3, has a
unique component that is a clique. But any graph-labelled tree all components
of which are cliques defines a clique. A clique Kn, n ≥ 3 can be defined by a
graph labelled tree all components of which are triangles or isolated vertices.
By using node splitting, we can replace a component Kr+s+2 where r, s > 1 by
two components Kr+1 and Ks+1.

(2) In the split decomposition of a tree, all components are stars, and if
e = uv ∈ ET , then ρu(e) and ρv(e) are both leaves of Hu and Hv by Corollary
4.5 and Theorem 4.7. Every tree with at least 3 nodes can be defined by a
graph-labelled tree all components of which are stars S3 or isolated vertices. As
above, this can be achieved by node-splitting.

(3) A graph-labelled tree defines a DH graph if and only if all its components
are stars and cliques ([25], Section 3.1).

(4) The article [25] also studies particular DH graphs called 3-leaf powers. A
3-leaf power is a graph G defined as follows from a tree R : VG := LR and two
vertices are adjacent if and only if they are at distance at most 3 in R. A graph is
a 3-leaf power if and only if it is obtained from a tree by substitutions of cliques
to its vertices [4]. It follows that a graph G is a 3-leaf power if and only if it is
a clique or is G(T) for some graph-labelled tree T having one component, say
H0, that is a tree and all others are cliques (an isolated vertex is a clique K1).
Hence, the set L of 3-leaf powers is defined, up to labels, by the two equations:

L = K ∪ Λ(L,L)

K =⊤ ∪ (K ⊗K).

The set K is that of cliques where all vertices are live. The equation for
L is derived from the first equation for rooted trees in Example 2.6(2). In
the characterization of 3-leaf powers of [25], the component H0 that is a tree is
decomposed in the canonical way of Theorem 4.7. �

Graph-labelled trees and substitution operations.

We will use D-graphs, where D := {⊤,⊥}.

Definitions 4.9 : Rooted graph-labelled trees and related notions.
(a) Let T be a graph-labelled tree, with underlying tree T , not reduced to

a single node. Let us select a node r ∈ NT that is not a leaf and make it a root
for T . We call then T a rooted graph-labelled tree.

(b) If u ∈ NT , we let Nu := {x ∈ NT | x ≤T u} and Vu := {x ∈ VG | x ≤T

u}. Hence, Vr = LT , Vu = {u} if u ∈ LT .

19

(c) If u ∈ NT has father w, we say that ρu(wu) is the leader of Hu, denoted
by u, and we define H′

u as the D-graph Hu−u where a vertex x live (labelled by
⊤) if it is adjacent to u in Hu and is dead (labelled by ⊥) otherwise. Otherwise,
u is the root r and H ′

r := Hr, all its vertices being defined as dead.
(d) If u ∈ NT , we define Gu as G[Vu] labelled as follows:

(d.1) if u = r, then every vertex of Gu = G is labelled as dead,

(d.2) if u �= r, a vertex y of Gu is labelled by ⊤ if it is in A(z)
for some neighbour z (in Hu) of the leader of Hu; otherwise, it is
labelled by ⊥.

Example : Consider the graph-labelled tree of Figure 1 with root x. The
vertices 4 and 5 are live in Gv, but not in Gu (so is 3). The vertices 2,6,7 are
live in Gu. �

The following lemma relates graph-labelled trees and substitution opera-
tions. Note that the graphs H ′

u depend on the root that is chosen.

Lemma 4.10 : Let T be a graph-labelled tree that definesG. If u ∈ NT−LT
has sons u1, ..., up, and the corresponding p vertices of H ′

u are x1, ..., xp (that is,
xi := ρu(uui)), then we have Gu = H′

u[Gu1/x1, ..., Gup/xp].
Proof : Let K := H ′

u[Gu1/x1, ..., Gup/xp].
1) The vertex set of Gu is Vu := {x ∈ VG | x ≤T u} (VG = LT) hence, is

the union the sets Vui := {x ∈ VG | x ≤T ui} that are the vertex sets of the
graphs Gui . Hence, Gu and K have the same vertices.

2) As the graphs Gw are induced subgraphs of G, two vertices of Gui are
adjacent in Gu if and only if they are in G as well as in Gui , hence also in K.

Consider vertices x of Gui and y of Guj , j �= i. If they are adjacent in Gu,
hence in G, they are linked by an alternating path, that must go through Hu

(and not through its leader) and use its edge ρu(uiu)ρu(uju) = xixj , an edge of
H′
u. This path goes through the leader ρui(uiu) of Hui . Hence, x is live in Gui .

Similarly, y is live in Guj . Hence xy is an edge of K.
Conversely, if xy ∈ EK , then xixj is an edge of H ′

u, the vertex x is live in
Gui and y is live in Guj . Going back to definitions, we have an alternating path
between x and y. Hence, xy is a edge of G hence of Gu.

3) If u is the root, all vertices of H′
u are dead, hence, so are those of K, as

well as those of G = Gr.
Otherwise, let x be a vertex ofGui that is live. Hence, there an alterning path

P between x and the leader ρui(uiu) of Hui . If ρu(uiu) = xi is a neighbour
of the leader z of Hu, then x is live in K. It is also in Gu because P can be
extended into an alterning path from x to z. If ρu(uiu) = xi is not a neighbour
of z, then x is dead in K. It is also in Gu because P cannot be extended into
an alterning path from x to z.

If x is not live in Gui , then it is not in K, and is not either in Gu, because
otherwise, the alternating path between x and z would give a path P as above.
�

20

From graph-labelled trees to grammars

IfM is a finite set of connected (unlabelled) graphs having at least 2 vertices.
We define G(M) as the set of graphs described by graph-labelled trees whose
components are in M. For each H ∈ M and x ∈ VH , we define H\x as the
D-graph H − x where the neighbours of x are labelled by ⊤ and the others by
⊥, hence are defined as dead. Note that H − x need not be connected. The
labelled graph H ′

u of Definition 4.9 is Hu\u.
In the following theorem, σ denotes operations σ[H,x1, ..., xp] for H ∈ M,

where all vertices of H are dead, and σ′ operations σ[H\x, x1, ..., xp] for H ∈M
and x ∈ VH .

Theorem 4.11 : IfM is a finite set of connected graphs having at least 2
vertices, then G(M) is the set S defined by the two equations :

S = κ(⊤) ∪ ... ∪ σ(U, ..., U) ∪ ...

U = ⊤ ∪ ... ∪ σ′(U, ..., U) ∪ ...

Proof : Let G belong to S. If it is a dead isolated vertex κ(⊤), it is in
G(M). Otherwise, it is defined by a finite term t = σ(t1, ..., tp) where t1, ..., tp
are terms over ⊤ and the operations σ′. By Lemma 4.10, this term represents a
rooted graph labelled tree T . The component at the root is isomorphic toH such
that σ = σ[H,x1, ..., xp]. The terms t1, ..., tp represent the subtrees of T issued
from the p sons of the root. Hence, G is described by a rooted graph-labelled
tree with components in M. Hence G ∈ G(M).

Let conversely G ∈ G(M). If it is a dead isolated vertex, then it is in S,
defined by κ(⊤). Otherwise it is defined by a rooted graph-labelled tree T ,
hence, by a term t = σ(t1, ..., tp) as above. The subtrees of T issued from the
sons of the root are defined by the terms t1, ..., tp. �

Examples 4.12 : (1) We examine some of the operations σ[H,x1, ..., xp]
and σ[H\x, x1, ..., xp−1] that arise in split decompositions, in particular, in the
canonical ones.

Case 1 : H or H\x is a clique Kp, p ≥ 1, all vertices being live. Then, we
have :

σ[Kp, x1, ..., xp](G1,, Gp) = G1 ⊗ ...⊗Gp.

Case 2 : H = Sp, p ≥ 3, with center x1, that is live in Sp\xp, all other
vertices being dead. We have :

σ[Sp\xp, x1, ..., xp−1](G1,, Gp−1) = Λ(Λ(...Λ(G1, G2),G3), ..., Gp−1))...)).

Case 3 : H = Sp, p ≥ 3, with center xp. Then, all vertices of Sp\xp are live
and we have :

σ[Sp\xp, x1, ..., xp−1](G1,, Gp−1) = G1 ⊕ ...⊕Gp−1.

21

(2) A connected DH graph is defined by a graph-labelled tree T whose com-
ponents are stars, cliques and single vertices. By means of node splittings (Defi-
nition 4.1(d)), we can transform T into a graph-labelled tree whose components
are stars S3, triangles K3, together with one component24 K2 : for n ≥ 4, a
component (isomorphic to)Kn can be split intoK3 and Kn−1, and a component
Sn can be split into S3 and Sn−1 where the center of S3 is linked to a leaf of
Sn−1.

Let us take as root the component K2. We obtain from Theorem 4.11 the
following equations for defining these graphs :

S = κ(⊤) ∪ κ(U ⊗ U),
U = ⊤∪ (U ⊕ U) ∪ (U ⊗ U) ∪ Λ(U,U),
that are the two equations of Proposition 2.7(2). �

Clique-width bounds from graph-labelled trees

Theorem 4.13 : Let G be a connected graph defined by rooted graph
labelled tree T such that each operation σ[H ′

u, x1, ..., xp] has width at most k.
Then cwd⊥(G) ≤ k and cwd(G) ≤ k + 1.

Proof: Immediate consequence of Proposition 3.2 and Theorem 4.11. �

The next lemma gives an upper-bound to the widths of the terms in T⊥(FC)
that define the D-graphs H ′

u.

Lemma 4.14 : Let H be a D-graph of clique-width k. Then cwd⊥(H) ≤
k +min{k,

��V live
H

�� ,
��V dead
H

��}.
Proof: That cwd⊥(H) ≤ 2k follows from Lemma 1.3. This lemma uses

a partition of the vertex set in two parts. At the end of the construction, all
vertices of one part are relabelled into ⊥.

For proving that cwd⊥(H) ≤ k+
��V live
H

��, we consider a term that defines H
with a set C′ of k labels different ⊥. Assume that V live

H = {x1, ..., xp}. We add
labels c1, ..., cp to C′ such that ci will only label xi.

We transform t into t′ accordingly. In particular, to take a typical case, if at
some position in t the operation adda,b adds edges between xi, labelled at this
point by a (there may be other a-labelled vertices) and b-labelled vertices, then
we replace it by addci,b ◦ adda,b. Hence, we can use p + k labels different from
⊥.

If V dead
H = {x1, ..., xp}. We do a similar construction. �

Theorem 4.15 : Let G be defined by a canonical graph-labelled tree T
whose components have maximal clique-width m and maximal degree d, then
m ≤ cwd(G) ≤ m+min{m,d}+ 1.

Proof : The inequalitym ≤ cwd(G) follows from Lemma 4.4(2) since clique-
width is monotone with respect to the induced subgraph relation.

We now prove the other inequality. For each component Hu, the number
of live vertices in H ′

u is at most d. Hence, Lemma 4.14 gives cwd⊥(H ′
u) ≤

24By Remark 4.3.

22

m + min{m,d}. Then, Theorem 4.13 gives cwd⊥(G) ≤ m + min{m,d} hence,
cwd(G) ≤ m+min{m,d}+1. �

Remark 4.16 : If G is a tree that is not a star and is defined by T whose
components are stars with three nodes, hence of clique-width 2, we have m = 2
and cwd(G) = 3.

Parity graphs.
A graph is a parity graph if for any two vertices, the induced paths joining

them have the same parity. DH graphs and bipartite graphs are parity graphs.
The article [6] establishes that parity graphs are those with a split decompo-
sitions whose components are cliques and bipartite graphs. We do not get a
finite grammar as bipartite graphs, whence also parity graphs, have unbounded
clique-width.

Rank-width.

Rank-width is another complexity measure initially defined for undirected
graphs25 , denoted by rwd(G). As tree-width and clique-width, it is based on a
tree-structuring of the given graph G. The DH graphs are those of rank-width
1 [35]. Rank-width is related to clique-width by the inequalities rwd(G) ≤
cwd(G) ≤ 2rwd(G)+1−1. Furthermore, if G = G(T) for some graph-labelled tree
T , and m is the maximal rank-width of a component Hu, then rwd(G) = m
(Theorem 4.3 of [31]). Hence, if cwd(Hu) ≤ m for all u, we get rwd(G) ≤ m
and cwd(G) ≤ 2m+1 − 1. The bound given by Theorem 4.15 is thus better.

5 Directed graphs

We now extend our results to directed graphs. We recall that Cunnigham defines
in [18] a canonical split decomposition for directed graphs that are strongly
connected (Theorem 1). An undirected graph can be seen as a directed one where
each edge has an opposite one. It is connected if and only if the corresponding
directed graph is strongly connected. Hence, Theorem 4.7 is a special case of a
more general one for directed graphs26 .

We use again graph-labelled trees and split decomposition graphs as in [8].
In order to extend to directed graphs the results of Section 4, we will revise
the notion of substitution of Section 2 for graphs with labels that encode edge
directions. In some sense, the set of live vertices is partitioned into three sets,
designated by the tags ⊤,+,− , attached to the labels of the sets C used to
construct graphs.

25Extension to directed graphs is in [32].
26We thought better to begin with undirected graphs, because the formal setting is simpler

and most graph structure theory and graph algorithms concern undirected graphs.

23

In this section, all graphs are directed unless otherwise indicated. However,
the graphs representing graph-labelled trees have undirected edges as well as
directed ones.

Definition 5.1 : Substitutions.
We let D be the set of labels {⊥,⊤,+,−} ordered in such a way that ⊥ <

+ < ⊤, ⊥ < − < ⊤ and + and − are incomparable. Let K be a D-graph with
vertex set {x1, . . . , xp} and H1, . . . ,Hp be pairwise disjoint D-graphs, that are
disjoint from K. We define a D-graph G as follows:

G := K[H1/x1, . . . ,Hp/xp] where

VG := VH1
⊎ . . . ⊎ VHp

,

πG(v) := inf{πHi
(v), πK(xi)} if v ∈ VHi

,

its (directed) edges are as follows, for u, v ∈ VG :

uv ∈ EG if and only if :

uv ∈ EHi
for some i,

or πHi
(u) ∈ {⊤,+}, πHj

(v) ∈ {⊤,−} and xixj ∈ EK (and so i �= j).

Lemma 5.12 motivates this definition. If we consider an undirected graph as
a directed graph where each edge has an opposite one, and vertices are labelled
by ⊥ or ⊤, then Definition 5.1 gives the same notion of substitution as Definition
2.1.

Example : LetK be x −→ y←→ z. where the labels of x, y and z are respec-
tively +,− and ⊤. Let X be the edgeless D-graph ⊥(0)⊕+(1)⊕−(2)⊕⊤(3)
(its vertices 0,1,2,3 are labelled respectively by ⊥,+,−,⊤). Let similarly Y :=
+(4)⊕−(5)⊕⊤(6) and Z := +(7)⊕−(8)⊕⊤(9).The graph K[X/x, Y/y, Z/z]
is shown in Figure 3. The labels of vertices 0,1,5,7,8 and 9 are as in X,Y and Z.
Those of 2,3,4 and 6 are respectively ⊥, +, ⊥ and − because of the inf operator
in Definition 5.1(a). �

We obtain graph operations, as in Section 2, that we will use to describe the
directed graphs defined by graph-labelled trees.

Definition 5.2: Graph operations based on substitution.
For each D-graph K with vertex set enumerated as {x1, . . . , xp}, we define

as follows a p-ary operation on D-graphs denoted by σ[K,x1, . . . , xp] :

σ[K,x1, . . . , xp](H1, . . . ,Hp) := K[H1/x1, . . . ,Hp/xp]

24

Figure 3: Figure 3

where H1, . . . ,Hp are pairwise disjoint and disjoint from K. If they are not,
we replace them by isomorphic copies, so that σ[K,x1, . . . , xp] becomes a p-ary
operation on abstract D-graphs. �

If we extend Definition 5.1 so that K has other vertices than x1, . . . , xp, then
the properties of Proposition 2.2 are still valid.

Substitutions as derived operations

Clique-width is defined for directed graphs with the help of the operations
−−→
adda,b that create directed edges from a-labelled vertices to b-labelled ones.
Our objective is to bound the clique-width of G := K[H1/x1, . . . ,Hp/xp] as
O(max{cwd(K), cwd(H1), . . . , cwd(Hp)}).

Definitions and notations 5.3. We consider G := K[H1/x1, . . . ,Hp/xp].

(a) The graphs G,K,H1, . . . ,Hp are D-graphs that we will define by terms
tG, tK , ... in T (FE) whereE ⊂ C×D×D, in such a way thatG = relabf (val(tG)),
where f((a, α, β)) := β for all (a, α, β) in E, and similarly for K,H1, . . . ,Hp,
with the same function f . More precisely, we will use E := {(a, α, β) | a ∈
C,α, β ∈ D,β ≤ α}. (The set D is ordered, cf. Definition 5.1).

(b) Let K ≃ val(t) for some term tK ∈ T (FC). (The labels in C do not
specify the labelling πK : VK → D). Let x1, . . . , xp be the vertices of K. Each
vertex xi is defined by a nullary symbol ai(xi) in t. We construct a term �tK in
T (FE , {u1, . . . , up}) as follows :

- we replace each ai(xi) by the variable ui,

- we replace each operation relabh by relab�h where
�h((a, α, β)) := (h(a), α, β)

for all (a, α, β) ∈ E,

25

- we replace each operation
−−→
adda,b by the composition (in any order) of the

operations
−−→
add(a,α,β),(b,α′,β′) such that α ∈ {⊤,+}, α′ ∈ {⊤,−} and β, β′ ∈ D.

Furthermore, for each i := 1, ..., p, we define hi : E → E by hi((a, α, β)) :=
((ai, β, inf{β, πK(xi)})) for (a, α, β) ∈ E.�

With these definitions and notation, we have :

Lemma 5.4 : If for each i we have a term ti ∈ T (FE) such that Hi =
relabf (val(ti)), then :

K[H1/x1, . . . ,Hp/xp] = relabf (val(�tK [relabh1(t1)/u1, ..., relabhp(tp)/up])).

Proof : Let G := K[H1/x1, . . . ,Hp/xp] and

G′ := relabf (val(�tK [relabh1(t1)/u1, ..., relabhp(tp)/up])).
These two graphs have the same vertex set, VH1

⊎ . . . ⊎ VHp
.

Let u ∈ VHi
. Let (a, α, β) be its label in val(ti). Its label is β in Hi, and

is (ai, β, inf{β, πK(xi)}) in relabhi(ti). Its label in G′ is thus inf{β, πK(xi)}
because the relabellings in �tK do not modify the third components of labels. It
is same in G by Definition 5.1.

We now compare the edges of G and of G′.
Case 1 : u, v ∈ VHi

. If uv ∈ EHi
, it is also an edge of G and of G′. If

uv /∈ EHi
, it is not an edge of G either. And it is not an edge of G′ because

the labels of u and v have the same first components in relabhi(ti) and the
relabellings in �tK maintain this equality. Hence, no edge between u and v is

created by the operations
−−→
add(a,α,β),(b,α′,β′) of �tK (in which a �= b). Hence,

uv /∈ EG′ .
Case 2 : u ∈ VHi

, v ∈ VHj
, i �= j. If uv ∈ EG, then xixj is an edge of K and

the labels of u and v in Hi and Hj are respectively α ∈ {⊤,+} and α′ ∈ {⊤,−}
by Definition 5.1.

Let us now consider G′. At some position w in tK the edge xixj is created

by an operation
−−→
adda,b.

In val(relabhi(ti)) and val(relabhj (tj)), the labels of u and v are respectively
(ai, α, β) and (aj , α

′, β′). for some β and β′, and, in tK , ai and aj are relabelled
into a and b at position w. The labels of u and v are thus (a, α, β) and (b, α′, β′)
in �tK at the position p′ corresponding to p. Hence, uv is an edge of G′, created

by
−−→
add(a,α,β),(b,α′,β′) at p

′.
Hence every edge of G is an edge of G′. The proof is similar in the other

direction. Hence, G = G′. �

No label (a,⊥,⊥) occurs in an edge addition operation of �tK . Furthermore,
f((a,⊥,⊥)) = ⊥ for each a ∈ C. Hence, all labels (a,⊥,⊥) can be replaced
by the unique label (c,⊥,⊥) for some fixed c ∈ C. It follows that �tK and the
relabellings hi only use the following 8 |C|+ 1 labels :

(c,⊥,⊥),

26

(a,⊤,⊤), (a,⊤,+), (a,⊤,−), (a,⊤,⊥),

(a,+,+), (a,+,⊥),

(a,−,−), (a,−,⊥),

for all a ∈ C. By using this remark, we obtain:

Proposition 5.5 : If a graph G is defined up to vertex labels by a composi-
tion of operations σ[K,x1, . . . , xp] such that each graph K has clique-width at
most k, then, cwd(G) ≤ 8k + 1.

Proof : Let G be defined by a term over operations σ[K,x1, . . . , xp] such
that cwd(K) ≤ k, and, of course, nullary symbols. The terms tK can be written
with the labels of a set C of k labels; as nullary symbols one can use the single
one c.

By composing the terms �tK and the relabellings hi according to Lemma 5.4,
we obtain a term that defines G by using only 8k + 1 labels. Hence, cwd(G) ≤
8k + 1. �

Directed graph-labelled trees.

Definition 5.6 : Graph-labelled trees describing directed graphs.
In the following definition, unspecified definitions and notation are as in

Definition 4.1. We avoid repetions as much as possible.

(a) A directed graph-labelled tree, denoted by T is an undirected tree T with
at least 3 nodes, that is equipped, for each node v ∈ NT , with a directed graph
Hv, called a component, and a bijection ρv : IncT (v) → VHv

. Components are
pairwise disjoint and need not be connected, see Remark 5.7(2) below. If v is a
leaf, then Hv has a single vertex that we identify with v.

(b) We define S(T) as the graph consisting of the union of the components
together with the undirected edges ρu(e)ρv(e) for e = uv, (cf. Figure 4). The
directed edges are those inside the components. A path, or a walk27 , in S(T)
from x to y is alternating if no two consecutive edges are in a same component
and all edges belonging to components are directed from x to y. There is at
most one alternating path from x to y, but there may exist also one from y to
x. This is the case if and only if each directed edge zz′ on this path has an
opposite edge z′z.

To be more precise, we define for a vertex x of a component Hu, A
−(x) as

the set of vertices of S(T) accessible from x by an alternating path whose first
edge is not in Hu, and A+(x) as the set of vertices w of S(T) such that there is
an alternating path from w to x whose last edge is not in Hu.

(c) The graph described by T , denoted by G(T), has vertex set LT (the set
of leaves of T) and an edge uv if and only if there is an alternating path from

27A walk is like a path but it can go several times through a vertex.

27

Figure 4: A directed graph-labelled tree T .

u to v. If there is a path u1 → u2... → up in G(T), the concatenation of the
alternating paths corresponding to the edges uiui+1 forms an alternating walk
from u1 to up.

(d) The node-joining operation (called elimination of an edge e of T in [8])
is defined as follows. If e = uv is an edge between two internal nodes of T , its
contraction fuses u and v into a single node say w, giving tree T ′, and replaces
the graph Hu ⊎ Hv by H ′

w := (Hu ⊎ Hv) − {ρu(e), ρv(e)} augmented with an
edge from any vertex x in Hu to any vertex y in Hv such that xρu(e) ∈ EHu

and ρv(e)y ∈ EHv
. We obtain a directed graph-labelled tree T ′ that describes

the same graph : this is easy to check by considering alternating paths. By
iterating as much as possible this elimination step, we obtain a star whose
central component is isomorphic to G(T).

The opposite transformation called node-splitting also preserves the defined
graph. �

The notion of canonical decomposition for strongly connected (directed)
graphs (Theorem 2 of [18]) uses cliques, stars and particular graphs called cycles
of transitive tournaments that have clique-width at most 4 (by Proposition 4.16
of [8]). We will not use this difficult notion. We will describe directed graphs by
directed graph-labelled trees, either canonical or not. Our results will be valid
even if some components are not connected.

Examples 5.7 : (1) Figures 4 shows a directed graph-labelled tree T and
Figure 5 the corresponding graph G(T). The double arrow in the components
Hx and Hu indicate pairs of opposite directed edges. For a comparison with
Figure 1, there is no alternating path between 2 and 7, in either direction.
Hence, these two vertices are not adjacent in G(T).

28

Figure 5: The graph defined by T of Figure 4

(2) A directed graph-labelled tree may define a disconnected graph although
its components are connected. As a small example, consider S(T) defined as
x − z′ −→ z − u ←− u′ − y: its internal components are z′ −→ z and u ←−
u′. Then G(T) consists of the two isolated vertices x and y. Eliminating the
edge between the two internal components yields a component consisting of two
isolated vertices u′ and z′.

Proposition 5.8 : Let G be defined by a directed graph-labelled tree T
whose components are strongly connected.

(1) For each vertex x of S(T), we have A+(x) ∩ LT �= ∅ and A−(x) ∩ LT
�= ∅.

(2) If xy is an edge of Hu, then zz′ ∈ EG for all z ∈ A+(x) ∩ LT and
z′ ∈ A

_

(y)∩LT . Conversely, if x = ρu(uv) and y = ρu(uw) are distinct vertices
of Hu, if z ∈ LT ∩NT,u\v, z

′ ∈ LT ∩NT,u\w and zz′ ∈ EG, then z ∈ A+(x)∩LT ,
z′ ∈ A−(y) ∩ LT and xy is an edge of Hu.

(3) G is strongly connected.

Note that T has at least two leaves and so, that G has at least two vertices.

Proof : (1) Let x be a vertex of a component Hu. Hence, x = ρu(uv) for
some node v. We use induction on the cardinality of NT,u\v (cf. the proof of
Lemma 4.4(1)). If it is 1, then v is a leaf and A+(x)∩LT = A−(x)∩LT = {v}.

Otherwise, we have in Hv an edge zy such that y = ρv(uv) and z = ρv(vw)
for some edge vw of T . We have NT,v\w ⊂ NT,u\v, hence, by induction, A+(z)∩
LT �= ∅ and A+(z) ∩ LT ⊆ A+(x) ∩ LT which proves A+(x) ∩ LT �= ∅. The
proof that A−(x) ∩ LT �= ∅ is similar.

(2) Just consider alternating paths, as in the proof of Lemma 4.4.
(3) The node-joining operation preserves the strong connectedness of the

components as one checks from Definition 5.6(d). By repeating this operation,
one obtains a directed graph-labelled tree that defines G and consists of one

29

"central" strongly connected component and leaves. This component is isomor-
phic to G, hence G is strongly connected. �

Proposition 5.9 : Let G be defined by a graph-labelled tree T . Then G
is strongly connected if and only if all components of T are strongly connected.

Proof : The "if" direction is proved in the previous proposition. For the
converse, let x and y be distinct vertices of a component Hu. Let s ∈ A+(x)∩LT
and t ∈ A

_

(y) ∩ LT . There is a path in G from s to t. Each edge of this path
corresponds to an alternating path in S(T) whose directed edges are oriented
from s to t. The concatenation of these paths is a walk28 in S(T). It is not
necessarly a path because some undirected edges may be traversed twice. (In
the example of Figure 4 the path 2 −→ 6 −→ 7 −→ 4 comes from a walk that
traverses twice the edge between Hu and Hw). This walk must enter Hu first
via x and exit it last via y. Its edges belonging to Hu form a directed path from
x to y. Hence, Hu is strongly connected. �

Remark 5.10 : Even if G(T) is strongly connected, some components of
T may not be isomorphic to induced subgraphs of G(T) (by contrast with
Lemma 4.4(2)). Consider for an example a directed graph-labelled tree having

two internal components isomorphic to the directed cycles
−→
C 3. It defines

−→
C 4

that does not contain
−→
C 3 as an induced subgaph. We will compare below the

clique-widths of a graph and its components.

Directed graph-labelled trees and substitution operations.

We will use the set of labels D := {⊥,+,−,⊤}.

Definitions 5.11 : Rooted graph-labelled trees and related notions.
(a) Let T be a directed graph-labelled tree, with underlying tree T and

G := G(T). Let us select a node r ∈ NT − LT and make it a root for T . If
u ∈ NT , then Vu is as in Definition 4.9.

(b) The leader of a component Hu such that u is not the root is the vertex
ρu(wu) denoted by u, where w is the father of u. If u ∈ NT − LT , we define a
D-graph H ′

u as the follows :

if u = r, then H ′
r := Hr, and all its vertices are dead ;

otherwise, we define H ′
u := Hu− u where a vertex x is labelled as

follows : its label is ⊤ if xu, ux ∈ EHu
, it is + if xu ∈ EHu

and
ux /∈ EHu

, it is − if ux ∈ EHu
and xu /∈ EHu

, and it is ⊥ if xu and
ux are not in EHu

.

28A vertex may occur several times on a walk.

30

Note that the graphs H ′
u depend on the chosen root r.

(c) If u ∈ NT , we define Gu := G[Vu] labelled as follows:
If u = r, all vertices of Gu = G are dead.
Otherwise, a vertex x has label ⊤ if there are alternating paths from x to u

and from u to x; it has label + if there is an alternating path from x to u and
no such path from u to x; it has label − if there is an alternating path from u
to x and no such path from x to u and label ⊥ if there are no alternating paths
between x and u. �

The following lemma extends Lemma 4.10.

Lemma 5.12 : If u ∈ NT − LT has sons u1, ..., up and the corresponding
p vertices of H ′

u are x1, ..., xp (that is, xi := ρu(uui)), then we have Gu =
H′
u[Gu1/x1, ...,Gup/xp].

Proof : Let K := H ′
u[Gu1/x1, ..., Gup/xp]. As in Lemma 4.10, the vertex

sets of Gu and K are the same and the edges of Gui are the same as in Gu and
K.

We consider x in Gui and y in Guj , j �= i. If xy is an edge of G, there is
an alternating path from x to y. It must go through Hu (and not through its
leader) via the (directed) edge ρu(uiu)ρu(uju) = xixj in H ′

u. This path goes
through the leader ρui(uiu) of Hui . Hence, x is live in Gui . More precisely, it
has label + or ⊤. Similarly, y has label − or ⊤ in Guj . Hence xy is an edge of
K.

Conversely, if xy ∈ EK , then xixj is an edge of H ′
u, x has label + or ⊤

in Gui and y has label − or ⊤ in Guj . Going back to definitions, we have an
alternating path from x and y built from alternating paths from x to xi, and
xj to y and the edge xixj . Hence, xy is a edge of G, hence of Gu.

It remains to compare the vertex labels in K and in Gu.
Let x be a vertex of Gui labelled by + in Gu. There is an alternating path

from x to the leader u of Hu and no such path from u to x. Hence, there is an
alternating path from x to ui and an edge in Hu from ρu(uui) to u. Hence the
label of ρu(uui) is either + or ⊤. The label of x in Gui is either either + or ⊤,
hence its label in K is either + or ⊤. If it would be ⊤, we would have an edge
in Hu from u to ρu(uui) and an alternating path from u to x and x would have
label ⊤ in Gu. Hence x has label + in K.

The proofs are similar for the other labels. �

Theorem 5.13 : Let G be defined by directed graph-labelled tree T whose
components have clique-width at most k. Then cwd(G) ≤ 8k + 1.

Proof: From Proposition 5.5 and Lemma 5.12, along the lines of Theorem
4.11. �

One can define a graph-labelled tree T that has components of arbitrary
large clique-width but defines a graph without edges, hence of clique-width 1.

31

We build T with any connected graph H as "root" component. Attach to each
vertex x of H a path of the form x − vx −→ v′x − w′x ←− wx − �x. Then G(T)
consists of the isolated vertices �x. For strongly connected graphs, we have a
better situation.

Proposition 5.14 : There is a function f such that cwd(H) ≤ f(cwd(G))
whenever G is strongly connected andH is a component of some directed graph-
labelled tree that defines it.

We need some definitions. An edge xy of a graph G is special if x has out-
degree 1 and y has indegree 1. Let F be a set special edges. A path with all its
edges in F is called an F -path. The graph G\F, obtained from G by contracting
the edges of F is defined as follows, where X is the set of terminal ends of the
edges of F :

VG\F := VG −X,

xy ∈ EG\F if and only if x, y /∈ X and, either xy ∈ EG or there exist
a vertex z such that zy ∈ EG and an F -path from x to z.

If F forms a directed cycle (necessarly disconnected from G − X), then
VG\F = G−X.

Lemma 5.15 : There is a function f such that cwd(G\F) ≤ f(cwd(G)) for
every directed graph G and every set F of special edges.

Proof : There exists a monadic second-order transduction (not using edge
set quantifications) that maps the pair (G,X) of a graph G and a set X that
is the set of terminal ends of the edges of a set F of special edges (uniquely
determined from X) to G\F . Its definition is a straightforward translation from
the definition.

The existence of f follows from of Corollary 7.38(2) of [14]. �

However, the proof does not give a good bound29 for f . It is an open question
whether cwd(G\F) ≤ cwd(G) or even30 cwd(G\F) = O(cwd(G)).

Proof of Proposition 5.14: Let G be strongly connected defined by
some graph-labelled tree T . Let Hu be any component not reduced to a single
vertex. We claim that there exists an induced subgraph G′ of G such that Hu

is isomorphic to G′\F for some set F of special edges.
Let x := ρu(uv).

29For a comparison, if an undirected graph H is obtained from G by erasing degree 2 vertices,
that is by contracting a set of edges that have all an end vertex of degree 2, then cwd(H) ≤
2cwd(G)+1 − 1 (Proposition 2 of [10]). However, we prove in [17] that cwd(H) > 2cwd(G)/4

in some cases.
30We can prove that clique-width is not increased when a path of special edges from x to y

is contracted into an edge xy. Otherwise, we can bound cwd(G\F) by using f(k) =: k2.3k−1

[17].

32

Case 1 : There exists a vertex z of G belonging to A+(x)∩A−(x)∩LT . We
choose one that we denote by �x := z.

Case 2 : Otherwise, Hv has at least 3 vertices. Let x′ := ρu(uv). Then Hv

contains a directed cycle going through x′ that does not consist of two opposite
edges incident to x′, otherwise we are in Case 1. Hence there are edges x′y,
y′x′ and a directed path from y to y′ that avoids x′. Let z ∈ A−(y) ∩ LT
and z′ ∈ A+(y′) ∩ LT . There is a path in G from z to z′. Each of its edges
corresponds to an alternating path in S(T). By concatenating these paths, one
gets an alternating walk, all vertices of which are in NT,u\v. We let Px be such
a path in G and we denote z by �x1 and z′ by �x2. The paths Px are pairwise
disjoint.

Let X be the union of the vertex sets of the paths Px for x ∈ VHu
together

with the vertices �x. Let G′ := G[X] and F be the set of edges of the paths Px.
They are special edges of G′ because the paths are pairwise disjoint.

Let H := G′\F . The two end vertices �x1 and �x2 of a path Px get fused into
a single vertex that we denote by �x. The vertex set of H is thus {�x | x ∈ VHu

}.

Claim: The bijection x �−→ �x is an isomorphism H → Hu.
Proof of the claim:
Let xy be an edge of Hu. Assume x is in Case 1 and y in Case 2. We have

alternating paths from �x to x and from y to �y1, and one from �x to �y1. Hence
we have an edge in G from �x to �y1. We have the edge �x�y in H. The proofs are
similar for the three other cases (x in Case 2, y in Case 2 etc.).

Conversely, assume that we have an edge �x�y inH. Then, we have x = ρu(uv)
and y = ρu(uw) with v �= w. There are four cases, e.g., x is in Case 1 and y in
Case 2. Then, we get easily that xy is an edge of Hu by considering alternating
paths. �

This completes the proof of the proposition because cwd(G′) ≤ cwd(G).�

Remarks 5.16 : (1) By the recent result in [17], we can use the mapping
f(k) =: k2.3k−1 to bound the clique-widths of components.

(2) The proof of Proposition 5.14 given in [8] (as Proposition 4.16) is incor-
rect: Lemma A.2.3 shows (correctly) that cwd(H) ≤ 4cwd(G) if H is obtained
from G by fusing two vertices. But, in order to prove the statement, one must
fuse the vertices of several pairs (as we do above to define H from G′), hence,
one does not obtain a bounding function f as claimed. �

An alternative split decomposition for directed graphs.

Kanté and Rao have defined in [33] the displit decomposition of a directed
graph. For an undirected graph, it is the same as the split decomposition. It is
incomparable to the split decomposition of [18] because the prime components
are different. However, every connected directed graph has a unique decompo-
sition.

33

Furthermore, for an appropriate notion of rank-width for directed graphs
[32], they obtain that the rank-width of a graph is the least upper-bound of the
rank-widths of the components of its displit decomposition (cf. Remark 4.16).
They also characterize the directed graphs of rank-width at most 1 in a way
that generalizes the various characterizations of distance-hereditary graphs (in
particular that of [35]).

We think that the results of this section and of [8] (the existence of monadic
second-order transformations between directed graphs and their canonical split
decompositions) can be extended to displit decompositions.

6 Conclusion

Our purpose was to clarify the relations between split-decompositions for di-
rected and undirected graphs, substitutions and the related graph grammars,
and to obtain good bounds on the clique-widths of the defined graphs. For
doing that we had to generalize the notion of substitution used in the theory of
modular decomposition (cf. Definitions 2.1 and 5.1).

Our open questions concern bounds on the clique-widths of graphs defined by
edge-contractions : see Lemma 1.3, Theorem 4.15 and Theorem 5.13. (Results
will appear in [17]).

References

[1] H.-J. Bandelt and H. Mulder, Distance-hereditary graphs, Journal of Com-
binatorial Theory, Series B, 41 (1986) 182—208.

[2] H. Bodlaender and A. Koster, Treewidth computations I. Upper bounds.
Inf. Comput. 208 (2010) 259-275.

[3] T. Bouvier, Graphes et décompositions, Doctoral dissertation, Bordeaux
University, 2014.

[4] A. Brandstädt and V.B. Le, Structure and linear time recognition of 3-leaf
powers. Inf. Process. Lett. 98 (2006) 133-138.

[5] M.S. Chang, S.Y. Hsieh and G.H. Chen, Dynamic programming on
distance-hereditary graphs, Proceedings of ISAAC 1997, Algorithms and
Computation, Lec. Notes Comput. Sci 1350, Springer, 1997, 344-353.

[6] S. Cicerone and G. Di Stefano, On the extension of bipartite to parity
graphs. Discrete Applied Mathematics 95 (1999) 181-195.

[7] B. Courcelle, An axiomatic definition of context-free rewriting and its ap-
plication to NLC graph grammars. Theor. Comput. Sci. 55 (1987) 141-181.

34

[8] B. Courcelle, The monadic second-order logic of graphs XVI : Canonical
graph decompositions. Logical Methods in Computer Science 2 (2006).

[9] B. Courcelle, On the model-checking of monadic second-order formulas
with edge set quantifications, Discrete Applied Mathematics 160 (2012)
866-887.

[10] B. Courcelle, Clique-width and edge contraction. Inf. Process. Lett. 114

(2014) 42-44.

[11] B. Courcelle, From tree decompositions to clique-width terms,
https://hal.archives-ouvertes.fr/hal-01398972, Discrete Applied Mathemat-
ics, 2018, to appear, https://doi.org/10.1016/j.dam.2017.04.040.

[12] B. Courcelle and I. Durand, Automata for the verification of monadic
second-order graph properties, J. Applied Logic 10 (2012) 368-409.

[13] B. Courcelle and I. Durand, Computations by fly-automata beyond
monadic second-order logic, http://hal.archives-ouvertes.fr/hal-00828211,
Theor. Comput. Sci, 619 (2016) 32-67. Short version in Proc. Conference
on Algebraic Informatics, Lecture Notes in Computer Science 8080 (2013)
211-222.

[14] B. Courcelle and J. Engelfriet, Graph structure and monadic second-order
logic, a language theoretic approach, Volume 138 of Encyclopedia of math-
ematics and its application, Cambridge University Press, June 2012.

[15] B. Courcelle, P. Heggernes, D. Meister, C. Papadopoulos and U. Rotics, A
characterisation of clique-width through nested partitions, Discrete Applied
Maths, 187 (2015) 70-81.

[16] B. Courcelle, J. Makowsky and U. Rotics, Linear-time solvable optimization
problems on graphs of bounded clique-width, Theory Comput. Syst. 33

(2000) 125-150.

[17] B. Courcelle and M. Raskin, Article in preparation, 2018.

[18] W. Cunningham, Decomposition of directed graphs, SIAM. J. on Algebraic
and Discrete Methods, 3 (1981) 214—228.

[19] R. Diestel, Graph theory, Springer, 2006.

[20] R. Downey and M. Fellows, Fundamentals of parameterized complexity,
Springer-Verlag, 2013.

[21] I. Durand, TRAG: Term Rewriting Automata and Graphs, software devel-
opped since 2015, http://dept-info.labri.u-bordeaux.fr/~idurand/trag

[22] I.Durand and M.Raskin, TRAG-WEB: Term Rewriting Automata
and Graphs (online), Web interface under development, 2018,
https://trag.labri.fr

35

[23] M. Fellows, F. Rosamond, U. Rotics and S. Szeider, Clique-width is NP-
complete. SIAM J. Discrete Math. 23 (2009) 909-939.

[24] E. Fischer J. Makowsky and E. Ravve, Counting truth assignments of for-
mulas of bounded tree-width or clique-width. Discrete Applied Mathematics
156 (2008) 511-529.

[25] E.Gioan and C. Paul, Split decomposition and graph-labelled trees: Char-
acterizations and fully dynamic algorithms for totally decomposable graphs.
Discrete Applied Mathematics 160 (2012) 708-733.

[26] E. Gioan, C. Paul, M. Tedder and D. Corneil, Practical and efficient split
decomposition via graph-labelled trees. Algorithmica 69(2014): 789-843.

[27] M. Golumbic and U. Rotics: On the Clique-Width of Some Perfect Graph
Classes. Int. J. Found. Comput. Sci. 11 (2000) 423-443.

[28] F. Gurski, The behavior of clique-width under graph operations and graph
transformations. Theory Comput. Syst. 60 (2017) 346-376.

[29] M. Habib and C. Paul, A survey of the algorithmic aspects of modular
decomposition. Computer Science Review 4 (2010) 41-59.

[30] P. Heggernes, D. Meister and C. Papadopoulos, Characterising the linear
clique-width of a class of graphs by forbidden induced subgraphs, Discrete
Applied Mathematics 160 (2012) 888-90.

[31] P. Hlinený, S. Oum, D. Seese and G. Gottlob, Width parameters beyond
tree-width and their applications. Comput. J. 51 (2008) 326-362.

[32] M. Kanté and M. Rao, The rank-width of edge-coloured graphs. Theory
Comput. Syst. 52 (2013) 599-644.

[33] M. Kanté and M. Rao, Directed rank-width and displit decomposition.
Proceedings of WG 2009, pp. 214-225.

[34] D.Meister, Clique-width with an inactive label. Discrete Mathematics 337

(2014) 34-64.

[35] S. Oum, Rank-width and vertex-minors, Journal of Combinatorial Theory,
Series B, 95 (2005) 79—100.

36

