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Basic microscopic plasma physics from N-body mechanics

A tribute to Pierre-Simon de Laplace
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1Aix-Marseille Université, CNRS, PIIM, Marseille, France

2CEA, DAM, DIF F-91297 Arpajon, France

Computing is not understanding. This is exemplified by the multiple and discordant inter-

pretations of Landau damping still present after seventy years. For long deemed impossible,

the mechanical N -body description of this damping, not only enables its rigorous and simple

calculation, but makes unequivocal and intuitive its interpretation as the synchronization of

almost resonant passing particles. This synchronization justifies mechanically why a single

formula applies to both Landau growth and damping. As to the electrostatic potential, the

phase mixing of many beam modes produces Landau damping, but it is unexpectedly essen-

tial for Landau growth too. Moreover, collisions play an essential role in collisionless plas-

mas. In particular, Debye shielding results from a cooperative dynamical self-organization

process, where “collisional” deflections due to a given electron diminish the apparent number

of charges about it. The finite value of exponentiation rates due to collisions is crucial for the

equivalent of the van Kampen phase mixing to occur in the N -body system. The N -body

approach incorporates spontaneous emission naturally, whose compound effect with Landau

damping drives a thermalization of Langmuir waves. O’Neil’s damping with trapping typical

of initially large enough Langmuir waves results from a phase transition. As to Coulomb

scattering, there is a smooth connection between impact parameters where the two-body

Rutherford picture is correct, and those where a collective description is mandatory. The

N -body approach reveals two important features of the Vlasovian limit: it is singular and it

corresponds to a renormalized description of the actual N -body dynamics.

Keywords N -body dynamics, Debye shielding, Landau damping, wave-particle interaction,

spontaneous emission, Coulomb scattering
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I. INTRODUCTION

This review deals with the microscopic physics of plasmas, mainly collisionless ones. Its main

purpose is to improve the foundations of this physics by laying out, in a pedagogic and elementary

manner, a systematic exposition of its approaches using N -body classical mechanics. These ap-

proaches enable in particular: (i) a short, yet explicit and rigorous, derivation of Landau damping

and growth, (ii) an associated intuitive, yet rigorous, interpretation of these phenomena, (iii) an-

other derivation showing Landau damping to result from phase mixing, as originally proved by van

Kampen in a Vlasovian setting, (iv) a third derivation recovering the usual Vlasovian dielectric

function and unifying Landau damping and Debye shielding (or screening), (v) unveiling how the

microscopic mechanism of Debye shielding is intimately connected to collisions, (vi) a unification

of the derivations of spontaneous emission and of Landau damping, (vii) proving the depletion of

nonlinearity when there is a plateau in the tail distribution function, (viii) proving that damping

with trapping results from a phase transition, (ix) a calculation of Coulomb scattering describing

for the first time correctly all impact parameters with no ad hoc cut-off.

Item (ii) is important, since the lack of mechanical interpretation prevented the plasma commu-

nity from accepting the reality of Landau damping from its publication in 1946 [88] till 1964 when

Malmberg and Wharton’s celebrated experiment proved its existence (see e.g. [115] for a historical

sketch). Unfortunately, more than seven decades after Landau’s publication, textbooks still pro-

pose discordant physical interpretations of the effect, invoking trapping, surfing, or synchronization

of almost resonant passing particles. As to item (v), the new approach elucidates a longstanding

mystery: how can a given particle be shielded by all other particles, while contributing to their

individual shieldings? Finally, we stress that the mechanical approach of this review does not aim

at challenging the Vlasovian one, as far as efficiency or convenience is concerned to perform kinetic

calculations in plasma physics.

For macroscopic classical systems, the N -body description by classical mechanics was deemed

impossible. This led to the development of thermodynamics, of fluid mechanics, and of kinetic

equations to describe various macroscopic systems made up of particles like electrons, gas atoms

or molecules, stars, or microorganisms. When plasma physicists had to address the microscopic

description of their state(s) of matter, they did not consider using N -body classical mechanics,

but directly derived kinetic analogues of the Boltzmann and Liouville equations, in particular

Vlasov with his celebrated equation. This trend has been dominant till nowadays. However, the

theoretical approach presented in this review shows that, actually, N -body classical mechanics is
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a practical tool both for solving important linear and nonlinear problems in microscopic plasma

physics: Laplace’s dream1 was not a mere utopia, since the calculation of classical orbits starting

from prescribed initial conditions can genuinely describe and explain non-trivial aspects of the

macroscopic dynamics of a many-body system. This is the reason why this review is “A tribute to

Pierre-Simon de Laplace”. A second reason is the important role of the Laplace transform in the

present N -body approach.

While deemed impossible to use, N -body classical mechanics is generally considered as the

ultimate reference for the description of the microscopic physics of classical plasmas. However,

if attempted, the corresponding ultimate description may a priori run into difficulties. Indeed,

as shown in Chibbaro, Rondoni, and Vulpiani’s book “Reductionism, Emergence and Levels of

Reality” [30] with various examples in statistical mechanics, in chaotic systems, and in chemistry,

the relations between different levels of description of physical phenomena are not simple. As

stated by Michael Berry in the foreword to this book, “It is far from straightforward to derive

the formula relating the object and image of a simple lens by starting from the field operators of

quantum optics supposedly the deepest of our current pictures of light. [...] The resolution of these

difficulties starts from the observation that the theories of physics are mathematical, and relations

between them involve limits as some parameter vanishes: wave optics ‘reduces to’ geometrical

optics when the wavelength is negligibly small, quantum physics ‘reduces’ to classical physics when

Planck’s constant can be neglected, etc. Therefore understanding relations between levels must

involve the study of limits, that is, mathematical asymptotics. And the central reason why ‘reduces

to’ is so problematic is the fact that the limits involved are usually singular.” Plasma physics would

be exceptional if it would escape this problem. It does not.

1 The sentence defining what was called afterwards Laplace’s demon is well known : “Une intelligence qui, pour un

instant donné, connâıtrait toutes les forces dont la nature est animée et la situation respective des êtres qui la

composent, si d’ailleurs elle était assez vaste pour soumettre ces données à l’analyse, embrasserait dans la même

formule les mouvements des plus grands corps de l’univers et ceux du plus léger atome : rien ne serait incertain

pour elle, et l’avenir, comme le passé, serait présent à ses yeux.” [Essai philosophique sur les probabilités (1814)

[89]] English translation : “An intellect, which at a certain moment would know all forces that set nature in

motion, and all positions of all items of which nature is composed, if this intellect were also vast enough to submit

these data to analysis, it would embrace in a single formula the movements of the greatest bodies of the universe

and those of the tiniest atom; for such an intellect nothing would be uncertain and the future just like the past

would be present before its eyes.” However, the genuine Laplace’s dream is reasonable, since a few sentences later

he states: “Tous ses efforts dans la recherche de la vérité tendent à rapprocher [l’esprit humain] sans cesse de

l’intelligence que nous venons de concevoir, mais dont il restera toujours infiniment éloigné.” English translation

: “All its efforts in the quest of truth tend at moving [the human spirit] closer to the intelligence we have just

conceived, but from which it will always stay infinitely distant”.
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Indeed, this issue is already present in the derivation of the kinetic equations of plasmas. De-

riving the Vlasov equation by the BBGKY hierarchy assumes the two-point correlation function

to be small. Because of the singularity of the Coulomb force at vanishing distances, this is not

true when two particles come close to each other, and the singularity must be cured by imposing

a short-range cut-off, but this works only for a uniform plasma, without waves in particular (see

section 5.2 of [105]). The usual way to obtain a vanishing correlation function is the “pulveriza-

tion procedure” : one cuts each particle into M equal pieces, and one lets M and the number of

particles in the Debye sphere (defined in section II A) go to infinity (see section 4.3 of [105]). How-

ever, this entails the loss of the actual correlations provided by the genuine two-point correlation

function of the plasma of interest. Furthermore, the issue of the short-range cut-off is important

to evaluate Coulomb scattering. The general practice is to take this cut-off equal to the classical

distance of closest approach for the lower range of temperatures, and the quantum uncertainty on

the electron’s position for temperatures high enough for the latter to be larger than the former.

The singularity of the Coulomb force at vanishing distances is also a problem (see [118] and

references therein for a discussion) in the mean-field derivation of the Vlasov equation [20, 23, 32,

46, 80, 101, 102, 118]. This derivation requires a smoothing of this singularity at a length scale

about N−α, for some α > 0 [75, 84]. However, even so, the equation is proved to be accurate only

over a time of the order of the inverse of the largest Lyapunov exponent of the N -body system.

This derivation of Vlasov equation deals with a distribution describing a single realization of the

plasma, while the BBGKY derivation deals with a function describing an ensemble of plasmas.

These two cases indicate that the issue of singular limits is likely to come about in approaches

using N -body classical mechanics too. It does, as we will see.

This paper was initially meant as a mere review of results already published on the description

of microscopic plasma physics by N -body mechanics. However, this endeavour rapidly ran into a

difficulty: a part of these results were derived for three-dimensional plasmas described as sets of

particles coupled by the Coulomb force, while another part came from a one-dimensional wave-

particle description. This induced an artificial separation in the presentation of concepts and

opposed logical continuity. This was an incentive to reformulate some of the one-dimensional

results in three dimensions. When doing so for the proof of the average synchronization of particles

at work in Landau damping, it proved useful to extend somewhat the calculation with respect to

the one-dimensional case, to make it more intuitive. Unexpectedly, this eventually led to a very

simple and rigorous description of Langmuir waves analogous to that published by Kaufman in

a Vlasovian setting in 1972. Because of its simplicity, this new description is the first presented
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in this review2. Paradoxically, going to the more realistic three dimensions brought a simplified

theory! The new description is followed by a reformulation in three dimensions of a previous van

Kampen-Dawson-like description of Langmuir waves.

This review is organized as follows. Section II introduces the basic scales, the equations of

motion of the present N -body approach, and a class of granular distributions close to being spatially

uniform. Then, the first half of this review provides three different derivations of Landau damping.

First, section III deals with Langmuir waves by using a technique introduced by Kaufman in a

Vlasovian setting, which provides a very short, though rigorous, derivation of Landau damping

together with the interpretation of this effect as an average synchronization of particles. Then,

section IV introduces a fundamental equation for the electrostatic potential which is reminiscent of

the one obtained by the calculation à la Landau starting with the Vlasov equation. This equation

is the basis of the next two derivations of Landau damping. First, section V deals with Langmuir

waves in a way reminiscent of both van Kampen’s and Dawson’s works: phase mixing is at work

in Landau damping. Second, section VI takes a singular limit of the fundamental equation for the

electrostatic potential; it recovers simultaneously Debye shielding and the classical expression for

Langmuir waves obtained by dealing à la Landau with Vlasov equation. Section VII shows the

Vlasovian limit to be a singular one providing a renormalized description of the plasma.

The second half of this paper reviews a series of previously published results. In section VIII

a calculation using Picard technique shows that the acceleration of a particle due to another one

is mediated by all other particles. This unveils the microscopic mechanism of Debye shielding to

be intimately connected to collisions, and explains how a given particle can be shielded by all

other particles, while contributing to their individual shieldings. Section IX is devoted to wave-

particle interaction. First one derives from the N -body dynamics a Hamiltonian describing the

self-consistent motion of M waves with N ′ particles in the tail of the velocity distribution. On

this basis, a simple statistical calculation derives both spontaneous emission and Landau damping,

and the corresponding quasilinear friction and diffusion coefficients. Then, the saturation of the

weak warm beam instability and the dynamics with a single wave are discussed. Finally section X

deals with a problem completely out of reach of a Vlasovian description: it provides a calculation

of Coulomb scattering describing correctly all impact parameters b, with a convergent expression

reducing to Rutherford scattering for small b. Nonlinear issues are dealt with in sections IX and X.

2 This rigorous derivation is accessible to students knowing Newton’s second law of motion and the Fourier transform,

but neither analytic functions, nor the Laplace transform. It also provides a correction to the lowest order expression

of Landau damping. In a second step, the calculation is extended to the corresponding particle dynamics, showing

that it produces an average synchronization of almost resonant passing particles with the wave.
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Finally, section XI discusses in a self-contained way the new physical picture of basic microscopic

plasma physics provided by the N -body approach and the new insight into the Vlasovian limit

resulting from this approach. The reader might benefit from reading this last section first.

II. ONE COMPONENT PLASMA MODEL

This section defines the basic scales and equations of the One Component Plasma model used up

to and including section IX, and introduces a class of granular distributions close to being spatially

uniform. Since each new charged species brings new elements of complexity to the system, for the

sake of simplicity we focus on the dynamics due to electrons, while neglecting that of ions because

of their higher inertia. We also neglect any magnetic effect. More specifically, we deal with the

One Component Plasma (OCP) model [1, 9, 116], which considers the plasma as infinite with

spatial periodicity L in three orthogonal directions with coordinates (x, y, z), and made up of N

electrons in each elementary cube with volume L3. Ions are present only as a uniform neutralizing

background, enabling periodic boundary conditions.

A. Basic scales

The number density is n = N/L3. It enables the definition of a fundamental length scale of the

system,

λid = n−1/3, (1)

which is the average inter-particle distance. At this scale, the plasma looks granular. The number

density also enables the definition of a fundamental frequency of the system, the plasma (angular)

frequency

ωp =

[
e2n

ε0m

]1/2

, (2)

where m is the electron mass, e is the proton charge, and ε0 is the vacuum permittivity. In solid

state physics, since ~ωp � T , where T is the plasma temperature (T stands for kBT , where kB

is the Boltzmann constant), it is very hard to excite oscillations at the plasma frequency; these

oscillations are quantized and are called plasmons. For the plasmas of interest here, the density

and temperature are such that the opposite ordering holds. Therefore, there are many plasmons

already at the thermal level, and they may be described through their coherent states, i.e. classical

electrostatic waves.
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If the plasma has a temperature T measured in units of energy, two new fundamental length

scales may be defined. First, the classical distance of closest approach

λca =
e2

4π ε0T
(3)

is the minimum distance of two electrons in a Rutherford collision, since e2/(4π ε0λca) = mv2
T,

where vT = [T/m]1/2 is their thermal velocity3.

The second length scale involves both the density and the temperature, and is the Debye length

λD =
vT

ωp
=

[
ε0T

ne2

]1/2

. (4)

This length will turn out to be the typical distance where the Coulomb potential of a point charge

is shielded out (see section VI). For the plasma to be quasineutral, we impose L� λD.

We define the plasma parameter

Λ = nλ3
D =

[
λD

λid

]3

=

[
λid

4πλca

]3/2

, (5)

which is about one fourth of the number of particles in the Debye sphere, a sphere of radius λD.

A large value of Λ implies λca � λid � λD. This ordering is represented in figure 1 using a

logarithmic scale, for a plasma with a density n = 1019 m−3 and a temperature T = 1 keV. It rules

out strongly coupled and/or degenerate plasmas.

By definition, λca is the typical distance where the electrostatic potential of a pair of electrons

balances their kinetic energy. Since for Λ� 1, λca � λid, particles typically interact weakly with

one another, which corresponds to weakly coupled plasmas.

B. Equations of motion

Because of the spatial periodicity of our One Component Plasma model, we write the potential

created by the N particles as a Fourier series

ϕ(r) =
1

L3

∑
m, kmbsmooth≤1

ϕ̃(m) exp(ikm · r), (6)

where km = 2π
L m, and where we restrict the Fourier expansion to km’s such that kmbsmooth ≤ 1,

where

bsmooth � λD, (7)

3 Many textbooks multiply this expression by
√

2.
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FIG. 1: View in logarithmic scale of the different scale lengths discussed in this section.

in order to avoid the 1/r singularity of the Coulomb potential4. The coefficients of the series are

ϕ̃(m) =
∫
ϕ(r) exp(−ikm · r) d3r. We choose ϕ̃(0) = 0. For m 6= 0, they are readily obtained from

the Poisson equation 4ϕ = e
ε0

∑N
j=1 δ[r− rj(t)] with periodic boundary conditions, and are given

by

ϕ̃(m) = − e

ε0k2
m

N∑
j=1

exp[−ikm · rj(t)], (8)

where rj(t) is the position at time t of particle j acting as a source, and km = ‖km‖. Since the self-

field due to the smoothed Coulomb potential vanishes, it is not necessary to exclude self-interaction

in the equations of motion.

Newton’s second law of motion for particle j reads

r̈j =
e

m
∇ϕ(rj). (9)

The N -body dynamics is defined by equations (6) and (9) written for the N particles.

C. Spatially uniform granular distribution of particles

We introduce a class of spatially uniform granular distributions, which will be perturbed in the

next sections. In the case of a cold plasma, such a distribution can be obtained by setting particles

4 This smoothing is similar to the one performed in the mean-field derivation of the Vlasov equation, which was

recalled in the introduction.
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with a vanishing velocity over a cubic array. For a multi-velocity distribution, we take a set of

monokinetic beams where each beam is a simple cubic array of particles whose elementary cube

has its edges along the three orthogonal directions with coordinates (x, y, z). Such a set is called

multi-beam-multi-array. Figure 2 displays such a distribution of particles for a one-dimensional

plasma.

We first focus on a given beam. It is convenient to consider the index j of its particles as a

three-dimensional vector p whose each integer components run from 1 to nedge. Since its particles

have the same velocity vj , in equation (9) combined with equation (8), the part of the sum due to

the particles of this beam bears on exp[ikm · rj0] only, where rj0 = L
nedge

p is the initial position of

particle j (L/nedge is the edge length of the elementary cube). Due to the periodicity of the rj0’s,

the corresponding sum vanishes unless the three components of m are on the simple cubic lattice

(nedgeZ)3 with mesh length nedge. Therefore, the sum vanishes for km 6= 0, if we assume

πbsmoothnedge/L > 1. (10)

This condition can be satisfied provided the inter-particle distance is such that it fulfills the con-

dition

λid � bsmooth. (11)

This and condition (7) imply λid � λD, which implies a large value of Λ as a consequence of

equation (5). As the contribution of each beam vanishes, the total Coulomb force for this set of

beams vanishes identically. Therefore, the system of beams is force-free, and their distribution is

invariant in time. We notice that, for this set of beams, both collisions and Debye shielding do not

work. As is shown in section VIII, the fact that these two mechanisms fail simultaneously is natural,

because the former produces the latter. For kinetic/collisionless plasmas, the position distribution

corresponding to this set of beams is very atypical, and Debye shielding can generically set in.

In contrast, cold plasmas take on a crystalline structure where particles vibrate about positions

corresponding to the nodes of perfect lattices, and do not experience shielding.

In the following, it will be useful to consider continuous limits of multi-beam-multi-arrays with

bounded velocities related to very large numbers of particles in the Debye sphere (Λ � 1). We

consider the beam velocity distributions to be a granular approximation of a spatially uniform

smooth velocity distribution f0(v). One can deal in this limit with a large number of beams whose

velocities are on a three-dimensional grid becoming tighter and tighter in this limit. These tight

grids may be taken as cubic arrays with an orientation arbitrary with respect to the spatial frame.



10

x

v

0

f(v)

FIG. 2: One-dimensional multi-beam-multi-array.

When dealing with wavevector km, the calculations are simpler when the velocity cubic array

has an edge parallel to km and one of its points is at the origin of velocities. Then, we consider

the beam velocity distribution to be a granular approximation of a smooth velocity distribution

f0(v) whose integral perpendicular to km is g(v) (we omit the index m to simplify notations). We

assume
∫
f0(v)d3v =

∫
g(v)dv = 1. When Λ increases, f0(v) and g(v) are split over a growing

number of beams whose velocities lie on grids with a mesh size going to 0.

III. LANGMUIR WAVES À LA KAUFMAN

This section deals with Langmuir waves by using a technique introduced by Kaufman in a

Vlasovian setting [83]. The calculation provides a very short and rigorous derivation of Landau

damping together with the intuitive interpretation of this effect5.

5 In the similar spirit of considering a wave with a slowly varying amplitude, but by using smooth distribution

functions, references [14, 15] derive not only Landau damping, but also its equivalent in the nonlinear regime.
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A. Landau damping

We now consider the case where all particles have their initial positions slightly perturbed with

respect to those of a multi-beam-multi-array; this choice will provide useful cancellations in the

following. Let rj0 be the initial position of the unperturbed beam particle with index j, and vj be

its velocity. Let δrj be the smooth amplitude of modulation at t = 0 of the positions of the particles

belonging to the same beam as particle j, and ∆rj(t) = rj(t)−rj0−vjt be the mismatch of particle

j with respect to its ballistic position. We now assume that the beam particles have their initial

positions sinusoidally modulated with the wavevector km according to ∆rj(0) = δrj sin(km · rj0),

while keeping the same velocity6. Setting these positions in the expression of ϕ̃(l) provided by

equation (8), shows that if the δrj ’s are of order ε, because of condition (10), ϕ̃(l) is of order ε2 or

higher for l 6= ±m. In contrast, ϕ̃(m) is7 of order ε. This limits the number of terms to be taken

into account when computing ϕ̃(m, t) to this order. However, the excitation of other wavevectors

at order ε2 is important physically, since it corresponds to spontaneous emission enabling the

excitation of a wave with an initially vanishing amplitude. This emission will be described in a

statistical setting in section IX B.

We consider the linearized motion of the OCP about the multi-beam-multi-array distribution,

and we look for a solution of the type ϕ̃(m, t) = A(t) exp(−iωt), where ω is real and A(t) is a

complex amplitude of order ε varying on the scale τA � 1/|ω| (its dependence on m is not shown

to simplify the notations). Retaining only the contribution of the wave of interest, the equation of

motion of particles is

r̈j = αkmA(t) exp[i(km · rj(t)− ωt)] + c.c., (12)

where “c.c.” means complex conjugate, and

α = ie/(mL3). (13)

Integrating formally twice in time the equation of motion for particle j up to first order in ε, and

changing the order of integrations yields

∆rj1(t) = δrj sin(km · rj0) + αkm

∫ t

0
τA(t− τ) exp[i(Ωj(t− τ) + km · rj0)]dτ + c.c. , (14)

6 An arbitrary phase should be present in the sine, but it is set to 0, since it is not important for the derivation.

The case with a concomitant small velocity modulation can be dealt with in a similar manner, but with longer

expressions. Then a ∆vj t sin(km · rj0 + ψj) contribution must be added to ∆rj(t), where ψj and ∆vj are

respectively the phase and the amplitude of modulation of the velocities of the particles belonging to the same

beam as particle j.
7 The same property would hold as well for other types of interactions than Coulombian ones.
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where Ωj = km · vj − ω, and both contributions of ϕ̃(m, t) and of its complex conjugate ϕ̃(−m, t)

are taken into account; we stress that the resonant component of the particle position (and velocity)

is along the considered wavevector. Setting this into the definition (8) of ϕ̃(m), and approximating

exp[−ikm ·∆rj(t)] by 1− ikm ·∆rj(t) yields to order ε

A(t) =
e

2ε0k2
m

N∑
j=1

[
km · δrj exp(−iΩjt)

−2αk2
m

∂

∂Ωj

∫ t

0
A(t− τ) exp(−iΩjτ)dτ

]
, (15)

where we took advantage of cancellations resulting from condition (10) and from the fact that beam

particles sit on arrays. In the spirit of the continuous limits of multi-beam-multi-arrays introduced

in section II C, we now substitute the discrete sum over particles with the integral over a smooth

distribution function f(v) whose integral perpendicular to the km axis is a function g(v) of the

type introduced in section II C (this substitution is justified below equation (22)). This yields

A(t) =

∫
f(v)

Ne

2ε0k2
m

km · δr(v) exp[−i(km · v − ω)t] d3v

−iω2
p

∫
g(v)

∂

∂Ω

∫ t

0
A(t− τ) exp(−iΩτ)dτdv, (16)

where δr(v) is the equivalent of δrj in the continuous limit, Ω = kmv − ω with km = ‖km‖,

g(v) =
∫
f(v)d2v⊥, with v and v⊥ the components of v respectively parallel and perpendicular to

km. Then, a Taylor expansion of A(t− τ) to first order in τ yields

A(t) =

∫ [
Ne

2ε0k2
m

h(v) exp(−iΩt) + ω2
pA(t)g(v)

∂

∂Ω

exp(−iΩt)− 1

Ω

]
dv

− iω2
pȦ(t)

∫
g(v)

∂2

∂Ω2

exp(−iΩt)− 1

Ω
dv, (17)

where h(v) =
∫
f(v) km ·δr(v) d2v⊥. This truncated Taylor expansion makes sense since, as shown

in Appendix A, A(t) is an entire function, and the successive contributions in the expansion decay

like powers of (τAkmvT)−1. After integrating by parts, this becomes

A(t) =

∫ [
Ne

2ε0k2
m

h(v) exp(−iΩt) +
ω2

p

km
A(t)g′(v)

1− cos(Ωt) + i sin(Ωt)

Ω

]
dv

− i
ω2

p

k2
m

Ȧ(t)

∫
g′′(v)

cos(Ωt)− i sin(Ωt)− 1

Ω
dv, (18)

where g′(v) and g′′(v) are respectively the first and the second derivative of g(v).
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For t = 0, this equation defines A(0). When t grows, the first exponential and the cosine terms

in equation (18) produce a phase mixing8 leading asymptotically to the expression9

A(t) =
ω2

p

km
A(t)P

∫
g′(v)

1

Ω
dv + i

πω2
p

k2
m

g′(
ω

km
)A(t) + i

ω2
p

k2
m

Ȧ(t)P

∫
g′′(v)

1

Ω
dv, (19)

where P stands for the Cauchy principal value, and only the dominant real and imaginary terms

are kept; the other ones are at most of order (kmvTτA)−1, where τA � 1/|ω| is the time scale of

variation of A(t). The typical time scale for phase mixing to become strong is τmix = (kmvT)−1.

Equation (19) is a homogeneous, linear ordinary differential equation with constant coefficients.

Its general solution thus reads A(t) = A0 exp(γt), where γ is the solution to the algebraic equation

εr(m, ω)− i
πω2

p

k2
m

g′(
ω

km
) = γ i

ω2
p

k2
m

P

∫
g′′(v)

1

Ω
dv (20)

where we define

εr(m, ω) = 1−
ω2

p

km
P

∫
g′(v)

1

Ω
dv. (21)

The unique solution of the problem is obtained by requiring εr(m, ω) = 0, which provides the usual

definition of ωmr, the real part of the frequency in the Landau calculation of Langmuir waves.

Assuming g is regular enough (e.g. with a uniformly continuous second derivative), integrating

by parts under the principal value shows that the right-hand side in equation (20) is −iγ ∂ωεr, and

equation (20) reduces to γ = γL(km) where

γL(km) =
πω2

p

k2
m
∂εr
∂ω

g′(
ωmr

km
) (22)

8 Phase mixing is a classical concept in the theory of kinetic plasma waves, and especially in the van Kampen-Case

approach to Landau damping [28, 81, 82]. Intuitively, it corresponds to the idea that the integral of a rapidly

oscillating function is close to zero. Mathematically, it is grounded on the fact that
∫

dνF (ν) exp(−iνt) is the

Fourier transform of F (ν), which decays for large t’s in various cases. This occurs in particular, at least on

average, if F (ν) is an L2 function; also if F (ν) has an integrable derivative of order at least one. Having one of

such properties is natural for h(v), g′(v), and g′′(v), especially if g(v) is analytic, as assumed in Landau’s derivation

of Landau damping [96].
9 Phase mixing works here in the following way: because of the integration over v, the first exponential and the

cosine terms in equation (18) produce the Fourier transforms of h(v), g′(v) and g′′(v). For t large, the vanishing

values of the tails of these transforms are involved, and thus neglected. For t large, in the integrals involving

sin(Ωt)/Ω, this factor has non vanishing values over a vanishing domain in v. This enables extracting g′( ω
km

) out

of the integral. The similar contribution involving g′′(v) is neglected, since it is of higher order in (τAkmvT)−1.

We stress that we do not use Plemelj formula, in contrast with what was done in reference [83].
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is the Landau damping/growth rate to lowest order in γL(km)(kmvT)−1, whose sign is10 the one

of g′(ωmr
km

). The above calculation is performed to all orders in Appendix A, and yields exactly

Landau’s complete formula if g(v) is analytic. The latter property is not necessary for the present

calculation.

In practice, for the Landau effect to be observable, ωmr
km

must stay close to vT. Then the relevant

mixing time is close to a plasma period. If the considered multi-beam-multi-array corresponds in

v to a series of adjacent equidistant monokinetic beams with a mismatch δ in velocity, the passage

to a smooth distribution function in equation (16) makes sense provided km δt� 1. Therefore, to

be observable, Landau damping requires11 kmδ |γL(km)|−1 � 1. Also γL(km) � kmvT for phase

mixing to occur faster than the damping time. This condition is well satisfied in a Maxwellian

plasma, when using the Bohm-Gross dispersion relation12. We notice that, in the present derivation

of Landau damping, phase mixing corresponds to the transients related to the terms complementing

those of Landau poles when inverting the Laplace transform in the usual Vlasovian derivation.

The relevance of transients, depending on the way the self-consistent electrostatic field has been

generated, is further discussed in Appendix B.

Finally, since A(t) is entire, the above Taylor expansion is converging for all τ ’s. Therefore we

may compute the real part of the dispersion relation and the damping rate to arbitrary order in

γL(km)(kmvT)−1. This only requires g(v) to be infinitely differentiable, not analytic. The next

order terms in equation (19) give perturbatively13 a modified εr(m, ω)

εr2(m, ω) = εr(m, ω) +
πγL(km)ω2

p

k3
m

g′′(
ωmr

km
), (23)

and a more precise expression of Landau damping

γL2(km) = γL(km)[1−
γ2

L(km)

2k2
m

g′′′(ωmr
km

)

g′(ωmr
km

)
]. (24)

If g(v) is a Maxwellian, this becomes

γL2(km) = γL(km)[1 +
γ2

L(km)

2(kmvT)2
(3− ω2

mr

(kmvT)2
)] (25)

10 At this point, we notice that the derivation of Landau damping in the mechanical N -body setting is more accessible

to students than Landau’s derivation: the number of pages is divided by three (see for instance sections 6.3 to 6.5

of [105]), the mathematics is elementary, and there is no need to introduce Vlasov equation.
11 Because of the Floquet exponents introduced in Appendix A and computed in Appendix C, the actual condition

(63) is somewhat stronger.
12 The Bohm-Gross dispersion relation is ω2 = ω2

p + 3k2v2T.

13 Using again phase mixing, but going to next order in (kmvTτA)−1 in equation (19), adds
πω2

p

k3m
g′′( ω

km
)Ȧ(t) −

i
πω2

p

2k4m
g′′′( ω

km
)Ä(t) in the right hand side of this equation. The next orders can be obtained from equations (108)-

(109).



15

and

γL2(km) = γL(km)[1− (γL(km)ωp)2

2(kmvT)4
] (26)

by using the Bohm-Gross dispersion relation.

B. Average synchronization of particles with waves

After introducing Landau damping, we now consider the corresponding dynamics of particles.

To this end, we compute the sum of the r̈j ’s for the particles considered at the beginning of the

previous subsection whose position is slightly perturbed with respect to monokinetic beams. This

sum vanishes, since the system is isolated (multiplying this sum by m corresponds to the time

derivative of the total momentum of the system, which is conserved). Using equation (14) to

express rj(t) in equation (12) to second order in A, and changing the order of integrations, we

obtain

0 =−αA(t)km

N∑
j=1

km · δrj exp(iΩjt) + c.c.

+
N∑
j=1

2i|α|2k2
mA(t)km

∫ t

0
τA∗(t− τ) exp(iΩjτ) dτ + c.c. , (27)

where A∗(t) is the complex conjugate of A(t), α is defined in equation (13), and where we took

again advantage of cancellations resulting from the fact that beam particles sit on arrays and from

condition (10). For t � τA, the integral term and its complex conjugate combine to produce

a term scaling like |A(t)|2
∫ t

0 τ sin(Ωjτ)dτ . For |Ωj |t < π, it has the sign of Ωj , which implies

an acceleration with the opposite sign. This corresponds to an average synchronization of the

particles with the wave. Such a synchronization was observed experimentally for the particles of a

monokinetic beam in a travelling wave tube [36]. Equation (27) may also be written

0 =−αA(t)km

N∑
j=1

km · δrj exp(iΩjt) + c.c.

+
N∑
j=1

2|α|2k2
mA(t)km

∂

∂Ωj

∫ t

0
A∗(t− τ) exp(iΩjτ) dτ + c.c. . (28)

Using again Taylor expansion in τ , and following the procedure leading to equation (17), equa-

tion (28) becomes

0 =−αA(t)km

N∑
j=1

km · δrj exp(iΩjt) + c.c.



16

+

N∑
j=1

4|α|2k2
mkm

[
|A(t)|2 ∂

∂Ωj

sin(Ωjt)

Ωj

+ A(t)Ȧ∗(t)
∂2

∂Ω2
j

exp(iΩjt)− 1

2Ωj
+ c.c.

]
. (29)

As in the previous subsection, we use the continuous limit of multi-beam-multi-arrays introduced

in section II C to introduce a smooth distribution function, and we integrate again by parts, which

yields

0 =−NαA(t)km

∫
h(v) exp[iΩjt] dv + c.c.

−4N |α|2k2
mkm

(
|A(t)|2

km

∫
g′(v)

sin(Ωt)

Ω
dv

−A(t)Ȧ∗(t)

k2
m

∫
g′′(v)

cos(Ωt)− 1 + i sin(Ωt)

2Ω
dv + c.c.

)
. (30)

For t = 0, the three contributions vanish identically. Moreover, since cos(Ωt)−1
Ω vanishes when Ω

goes to 0, this factor cannot provide a contribution of nearly-resonant particles (those with Ω ' 0).

On the contrary, since sin(Ωt)
Ω does not vanish when Ω goes to 0, this factor provides a contribution

of nearly-resonant particles. However, this factor eventually provides a vanishing contribution of

the third integral, because it involves the factor A(t)Ȧ∗(t) − A∗(t)Ȧ(t), which vanishes since γ

was found to be real in the previous subsection. Therefore, when t grows, equation (30) becomes

asymptotically

0 = −4πN |α|2kmg
′(
ω

km
)|A(t)|2 + 2N |α|2km

k2
m

ω2
p

∂εr
∂ω

d|A(t)|2

dt
, (31)

where the first term corresponds to the contribution of particles nearly-resonant with the wave,

while the second one is the contribution of non-resonant particles. Multiplying by the electron

mass m yields

dPres

dt
+

dPwave

dt
= 0, (32)

where

dPres

dt
= −

4πε0ω
2
p

L3
g′(

ω

km
)|A(t)|2km (33)

may be interpreted as the derivative of the momentum of particles nearly-resonant with the wave,

and

Pwave =
2ε0k

2
m

L3

∂εr(m, ω)

∂ω
|A(t)|2km (34)
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is the total wave momentum in the volume L3 (we recover the conservation of the total momentum

indicated at the beginning of this subsection). Equation (32) can also be written as

d|A(t)|2

dt
= 2γL(km)|A(t)|2, (35)

giving again Landau growth or damping to lowest order.

We now focus on the term of equation (29) involving sin(Ωt)
Ω , calling it 〈r̈sec1〉. As indicated after

equation (31), it corresponds to the contribution of particles close to being resonant with the wave.

Since the derivative in Ω of sin(Ωt)
Ω is B = [Ωt cos(Ωt)− sin(Ωt)]Ω−2, the component of 〈r̈sec1〉 along

km has the sign of B. For |Ω|t� 1, B ' −Ωt3/3 , which implies a stronger average synchronization

when |Ω| grows at fixed t. This also shows this synchronization to vanish with |Ω|, which rules out

any role of trapped particles in Landau damping or growth14. One easily sees that B keeps the

sign of −Ω for Ωt of the order of a few units. Therefore, since Landau damping occurs over a time

scale γ−1
L (km), synchronization occurs for |Ω| up to the order of |γL|. For |Ω| � |γL|, B scales

like t/|Ω| over the time scale γ−1
L (km). Consequently, the average synchronization is maximum for

|Ω| of the order of |γL|. More precisely, B performs decreasing oscillations between positive and

negative values when |Ω| grows at fixed t.

The previous discussion is illustrated in figure 3, where the behaviour of B as a function of t/Ω

is plotted for a given t. The left panel shows that B indeed increases with |Ω| and therefore also

does the synchronization. For |Ω| large enough, the behaviour B ∼ t/Ω is also illustrated in the

magnified view, which highlights the oscillations with decreasing amplitude between positive and

negative values of B.

The average synchronization for small times can be intuitively understood by computing the

velocity modulation of the particles having the same parallel velocity to the wave at t = 0. Indeed,

those whose absolute differential velocity to the wave is increasing at t = 0 (blue line in figure 4)

have an average velocity which is higher than that of particles with an initially decreasing absolute

differential velocity (red line in figure 4). Since the former have a smaller velocity modulation than

the latter, the desynchronization of the former is smaller than the synchronization of the latter,

which yields an average synchronization.

As just shown, synchronization is mostly experienced by the particles whose absolute differential

velocity to the wave scales as |γL|/km. When |γL|/km is small enough, these particles are quasi-

resonant. Consequently, there is a net loss of particles momentum when g′(ωmr
km

) > 0, and a net

14 Actually, a possible role of trapping is a priori excluded since the bounce period is unbounded in the linear regime

of Langmuir waves.
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FIG. 3: (Left) B as a function of t/Ω for t = 103, showing the decreasing amplitude when

|Ω| → 0. (Right) Magnified view of the rectangle indicated on the left panel, showing the linear

dependence on t/Ω, as well as the decreasing oscillations when |Ω| grows.

FIG. 4: Phase space plot displaying the average synchronization of two particles with a wave, one

starting at the position of the X-point of the separatrix (blue line), another one starting at the

O-point of the trapping domain (red line).

gain of momentum in the opposite case, in agreement with equation (33). Equation (32) shows

that this momentum is exchanged with the wave momentum.

If the initial distribution of particles is meant to approximate a smooth distribution g(v), this

means that the length L of the system is taken large enough to fulfill the condition “there are many

particles with parallel velocities in the range (ω− |γL|)/k < v < (ω+ |γL|)/k”. However, whatever

L, for ω
k large enough, this condition is unfulfilled. Therefore, one should not use εr(m, ω), but its
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discrete counterpart computed with the N -body distribution function: Landau damping will not

occur, but only the beam modes to be described in section V B.

Several textbooks, when trying to provide an intuitive explanation of Landau damping computed

by a Vlasovian approach, make mechanical calculations similar to the above ones, in particular

Nicholson’s one in section 6.7 of [105]. Here, the calculation is performed with the N -body mechan-

ical model used to compute Landau damping itself. This calculation involves a smooth velocity

distribution g(v) at the end of the calculation only, while the Vlasovian approach deals with the

dynamics of g(v) from the outset.

The fact that both Landau damping and instability result from the same synchronization mech-

anism of particles with waves, is the fundamental reason why there is a single formula for the rates

of Landau growth and damping. While this comes naturally in Kaufman’s derivation and in section

III A, growth and damping look very different in the van Kampen-Case [28, 81, 82] approach and

in the germane one of section V, since growth involves an eigenmode and damping only a phase-

mixing instead; very different also in Landau’s derivation where damping requires an analytic

continuation, but not growth.

IV. FUNDAMENTAL EQUATION FOR THE ELECTROSTATIC POTENTIAL

This section derives a fundamental equation for the electrostatic potential [61, 62, 64], which is

reminiscent of the one obtained by the calculation à la Landau starting with the Vlasov equation.

This equation is introduced in a specific section, because it is the basis for the description of

Langmuir waves of the next two sections. The derivation parallels completely the one in textbooks

using the Vlasov-Poisson system: the motion is linearized with respect to the ballistic motion of

particles of the system with a uniform density, as well as the electrostatic potential, and the Laplace

transform in time is applied to the linearized equations.

We consider a given multi-beam-multi-array defined in section II C. Let rj0 be the initial position

of the unperturbed beam particle with index j, and vj be its velocity, and let ∆rj(t) = rj(t) −

rj0−vjt be the mismatch of the actual position of particle j with respect to the unperturbed beam

particle with the same index. We define the ballistic approximation ϕ̃(bal)(m, t) to ϕ̃(m, t) which

is computed from equation (8) on setting rj(t) = rj0 + ∆rj(0) + [vj + ∆ṙj(0)]t for all j’s in the

latter

ϕ̃(bal)(m, t) = − e

ε0k2
m

N∑
j=1

exp
(
−ikm · [rj0 + ∆rj(0) + (vj + ∆ṙj(0) ) t]

)
. (36)



20

If all ∆rj(0)’s and ∆ṙj(0)’s are small, so is ϕ̃(bal)(m, t) since ϕ̃(m, t) vanishes identically for the

particles of a multi-beam-multi-array. We define the two mismatches to ballistic values

δrj(t) = ∆rj(t)−∆rj(0)−∆ṙj(0)t, (37)

δϕ̃(m, t) = ϕ̃(m, t)− ϕ̃(bal)(m, t). (38)

We now compute a linearized solution of the full N -body dynamics about the chosen multi-

beam-multi-array15, and the resulting Fourier components of the potential. We assume ‖∆rj(t)‖ �

bsmooth for all j’s. To this end, we replace δϕ̃ with its expansion to first order in the ∆rj(t)’s

δϕ̃(m, t) = i

N∑
j=1

e

ε0k2
m

exp[−ikm · (rj0 + vjt)] km · δrj(t), (39)

whose Laplace transform in time16 is17

δϕ(m, ω) = i

N∑
j=1

e

ε0k2
m

exp[−ikm · rj0] km · δrj(ω − km · vj)], (40)

where the Doppler shift −km ·vj comes from the linear dependence on t of the exponent of equation

(39).

To compute δrj(ω−km ·vj), we use Newton’s equation (9) for the particles. Since m runs over

the finite domain such that kmbsmooth ≤ 1, the self-field due to ϕ vanishes, and it is not necessary

to exclude self-interactions. Therefore, one may use the harmonics of the electrostatic potential

due to all particles defined by equation (8), which yields

ϕ(rj , t) =
1

L3

∑
m, kmbsmooth≤1

ϕ̃(m, t) exp(ikm · rj), (41)

where ϕ̃(m, t) = ϕ̃(bal)(m, t) + δϕ̃(m, t). Using equation (39), the linearized particles dynamics

defined by equation (9) is then given by

δr̈j =
ie

L3m

∑
n, knbsmooth≤1

kn ϕ̃(n, t) exp[ikn · (rj0 + vjt)]. (42)

The Laplace transform in time of this equation is

−ω2δrj(ω) =
ie

L3m

∑
n, knbsmooth≤1

kn exp(ikn · rj0) ϕ(n, ω + kn · vj), (43)

15 This derivation is close to that in [62], but takes advantage of the simplification of [61]. The derivation of [64] was

convenient only when taking right away the singular limit of section VI.
16 The Laplace transform in time maps a function g(t) to ĝ(ω) =

∫∞
0
g(t) exp(iωt)dt (with ω complex).

17 Since the arguments of functions are spelled explicitly, from now on we omit diacritics for the Laplace (or Fourier)

transformed quantities.
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where the Doppler shift kn ·vj comes from the linear dependence on t in the exponent of equation

(42), and where we take into account that δrj(0) = δṙj(0) = 0. Computing δrj(ω − k · v) in

equation (40) from the expression of δr(ω) given by equation (43) yields

k2
mϕ(m, ω)−

ω2
p

N

∑
n, knbsmooth≤1

km · kn

×
N∑
j=1

ϕ(n, ω + kn · vj − km · vj)
(ω − km · vj)2

exp[i(kn − km) · rj0]

= k2
mϕ

(bal)(m, ω), (44)

with

ϕ(bal)(m, ω) =
N∑
j=1

ϕ
(bal)
j (m, ω), (45)

where

ϕ
(bal)
j (m, ω) = − ie

ε0k2
m

exp[−ikm · rj(0)]

ω − km · ṙj(0)
, (46)

is the ballistic potential related to particle j. Note that assumption kmbsmooth ≤ 1 (equation

(6)), with bsmooth � λD (equation (7)) excludes scales which are irrelevant to Debye shielding and

Landau damping, since these phenomena involve scales larger than, or of the order of λD.

Because of equation (10), if n 6= m, for each beam the corresponding values of exp[i(kn−km)·rj0]

are uniformly distributed on the unit circle, and their global contribution to the non-diagonal term

in equation (44) vanishes. Therefore, equation (44) becomes

εd(m, ω)ϕ(m, ω) = ϕ(bal)(m, ω), (47)

where

εd(m, ω) = 1−
ω2

p

N

N∑
j=1

1

(ω − km · vj)2
. (48)

This is the fundamental equation for the potential, which is going to be used for the description

of the Langmuir waves à la van Kampen-Dawson and à la Landau. Since bsmooth � λD, bsmooth

is an intermediate scale between λid and λD, which exists provided Λ is large enough (see section

II A). Then, equation (47) describes the response of the plasma to the initial perturbation defined

by ϕ(bal)(m, ω), and εd(m, ω) is the dielectric function of the granular plasma.

The truncated Coulomb potential cannot correctly describe the encounters between particles

with impact parameters smaller than bsmooth, which makes our description of the dynamics relevant



22

for times shorter than the collision time τcoll = 3(2π)3/2Λ/(ωp ln Λ), as happens for the Vlasovian

description. Both descriptions are relevant for Langmuir waves, since conditions Λ � 1 and

ωpτcoll � 1 are equivalent.

As a result of equations (45-48), the part of ϕ(m, ω) generated by particle j is

δϕj(m, ω) = ϕ
(bal)
j (m, ω)/εd(m, ω). (49)

By inverse Fourier-Laplace transform, after some transient discussed later, the potential due to

particle j is the sum of two parts : one due to the zeros of εd(m, ω) and one to the pole ω =

km · ṙj(0). These two contributions are computed in the next two sections: “Landau damping à la

van Kampen-Dawson” and “Langmuir waves and Debye shielding à la Landau”.

V. LANDAU DAMPING À LA VAN KAMPEN-DAWSON

This section deals anew with Langmuir waves by keeping the discrete summation in the expres-

sion of εd(m, ω). Such a dielectric function was considered by Dawson in 1960 for a one-dimensional

plasma made up of many fluid monokinetic beams [31] whose velocities are successive multiples of

a small velocity δ. He showed that εd(m, ω) brings two beam modes per beam. Their eigenfre-

quencies are pairs of complex conjugate values for ω, whose imaginary parts tend to vanish when

δ decreases : this makes these modes analogous to the van Kampen modes.

Here, Landau damping is recovered by phase mixing of these modes by following a procedure

similar to that used in section 3.8 of [44]. The spacing of the beam velocities is kept finite, but

the limit of a vanishing spacing is used at the end of the calculation to approximate finite sums

by integrals. Most of this section deals with Φjm(r, t), the part of the potential due to particle j,

provided by the zeros of εd(m, ω) in equation (49). A final subsection shows that the part of the

potential coming from the pole ω = km · ṙj(0) vanishes.

A. Granular dielectric function

The calculation of the zeros of εd(m, ω) is simpler when the cubic array has an edge parallel to

km and one of its points is at the origin of velocities. In this section, we make this choice, and show

that, in this limit, the contribution of these zeros to Φjm(r, t) corresponds to two Langmuir waves,

and that the chosen discretization of the beams is absent in the final expression of Φjm(r, t). One

of these waves propagates in the direction of km and the other one in the direction of k−m = −km.

In the following, we consider only the first type of wave, and we associate the other one to k−m.
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Let δ be the mesh size of the grid, 1̂ be the unit vector parallel to km, and 2̂ and 3̂, be the other

two unit vectors. We index a beam by three integers (σ, τ, υ) corresponding to its position on the

grid, so that its velocity is wσ,τ,υ = (σ1̂ + τ 2̂ + υ3̂)δ. Let Nσ,τ,υ be its number of particles. Then

equation (48) becomes

εd(m, ω) = 1−
ω2

p

N

∑
σ,τ,υ

Nσ,τ,υ

(ω − σkmδ)2

= 1−
ω2

p

N

∑
σ

Mσ

(ω − σkmδ)2
, (50)

where Mσ =
∑

τ,υNσ,τ,υ.

We consider again the beam velocity distribution to be a granular approximation to a spatially

uniform smooth velocity distribution whose integral perpendicular to the 1̂ axis is g(v). Then Mσ

is taken equal to the integer part of Ng(σδ)δ. When the number of particles in the Debye sphere

increases, g(v) is split over an increasing number of beams (∼ δ−1) whose velocities lie on grids

with mesh size δ going to 0. The dielectric function of the granular plasma is now expressed with

the one-dimensional distribution function g(v) and reads

εd1(m, ω) = 1− ω2
p

∑
σ

g(σδ)δ

(ω − σkmδ)2
. (51)

Subsection V C shows that at most two zeros of εd1(m, ω) have a finite imaginary part when

δ goes to zero. The other zeros have an imaginary part vanishing in the limit where δ goes to

zero. Dawson introduced in 1960 a very clever technique to compute them, when he considered a

one-dimensional plasma made up of many fluid beams [31]. He decomposed the sum in equation

(51) into a regular part converging to

ε1(m, ω) = 1− ω2
p

∫
g(v)

(ω − kmv)2
dv

= 1 +
ω2

p

km

∫
g′(v)

(ω − kmv)
dv, (52)

and a singular part, which is summed exactly using classical summation formulas for trigonometric

functions (see Appendix C). The conjugate zeros of εd1(m, ω) have real parts between the frequen-

cies of the beams σkmδ, and their imaginary part scales like δ | ln(δ/vT) | (see equations (123)-(124)

of Appendix C). We write these zeros as νσ,µ = ασ + µiβσ, where µ = ±1.
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B. Phase mixing

We now follow a procedure similar to that used in section 3.8.3 of [44] (see also [40]). The zero

of εd1(m, ω) with index (σ, µ) brings to Φjm(r, t) a contribution

Φjmσ µ(r, t) = − e

ε0k2
mL

3 ε′σ µ

exp[i(km · (r− rj(0))− νσ,µt)]
νσ,µ − km · ṙj(0)

+ c.c. , (53)

where

ε′σ,µ =
∂εd1

∂ω
(m, νσ,µ) = 2ω2

p

∑
σ

g(σkmδ)δ

(νσ,µ − σkmδ)3
. (54)

The sum over j of the Φjmσ µ(r, t)’s yields

Φm,σ,µ(r, t) = −exp ikm · r
ε0k2

mL
3
eN

∫
f(m,v)

νσ,µ − km · v
d3v

exp(−iνσ,µt)

ε′σ,µ
+ c.c. , (55)

where f(r,v) = N−1
∑

j δ(r−rj(0)) δ(v− ṙj(0)), and f(m,v) is its spatial Fourier transform (δ(•)

stands for the Dirac distribution).

Using again a decomposition into a regular part and a singular one, for small δ, the expression

of ε′σ,µ is shown in Appendix C to converge toward

ε′σ,µ ' −iµ
2π

kmδ

(
1 + P

∫ ∞
−∞

ω2
pg
′(v)

km(ασ − kmv)
dv − i

πµω2
p

k2
m

g′(
ασ
km

)

)
. (56)

The sum of the first two terms in the bracket of this equation is the real part of ε1(m, νσ,µ)

defined by equation (21). Since ε1(m, ωm) = 0, this implies that the νσ,µ’s bring a contribution to

Φm,σ,µ(r, t), which is resonant in the vicinity of ωm. Then, in the summation over (σ, µ), we may

take

ε′σ,µ ' −
2π

kmδ
ε′m(γL(km) + iµ(ασ − ωmr)), (57)

where ε′m = ∂ε1
∂ω (m, ωm), and where the definition (22) of γL(km) was used18. This yields

Φm(r, t) =
exp ikm · r
ε0k2

mL
3ε′m

eN

∫
f(m,v)

ωmr − km · v
d3v S + c.c. , (58)

where

S =
kmδ

2π
Σσ,µ

exp(−iνσ,µt)

γL(km) + iµ(ασ − ωmr)

=
kmδ

π
Σσ exp(−iασt)

γL(km) cosh(βσt)

γ2
L(km) + (ασ − ωmr)2

' sgn(γL(km)) exp[−(|γL(km)|+ iωmr)t], (59)

18 We stress that the derivation of Landau damping in this section is completely independent of that in section III

though.



25

where the last expression makes cosh(βσt) = 1, since βσ goes to zero in the continuous limit, and

uses a Fourier transform identity in this limit. Equations (58) and (59) yields a contribution to

the wave

Φm(r, t) = sgn(γL(km))
exp[i(km · r− ωmt)− |γL(km)|t]

ε0k2
mL

3 ε′m
×

eN

∫
f(m,v)

ωm − km · v
d3v + c.c. . (60)

We notice that the initially chosen discretization of the beams is absent in this expression.

C. Vlasovian zero of the granular dielectric function

When δ goes to 0, εd1(m, ω) as defined by equation (51) converges toward its continuous limit

ε1(m, ω) defined by equation (52), provided that Imω 6= 0 or g′(v) vanishes in a finite domain

about ω/km. In (52) one recognizes the Vlasovian expression of the dielectric function.

We first look for the zeros ωmr + iωmi of εd1(m, ω) having a non vanishing ωmi when δ goes to

zero. Since |ωmi| does not vanish, the convergence of εd1(m, ω) toward ε1(m, ω) implies that the

considered zero of the former converges to a zero of the latter. If the zero of the former has a positive

ωmi when δ goes to zero, its limit value corresponds to a Vlasovian zero with the same property,

which requires g′(ωmr/km) > 0. Indeed, the corresponding Vlasovian growth rate is Landau’s one

and is given by equation (22). Since εd1(m, ω) has zeros coming in conjugate pairs, there is also a

zero with the damping rate −γL(km). This zero will be important to recover the correct Landau

instability when g′(ωmr/km) > 0. This is surprising for people used to the Vlasovian setting, where

only an unstable root is present.

If g′(ωmr/km) < 0, εd1(m, ω) cannot have the corresponding Vlasovian root when δ goes to zero,

since its existence would imply that of the complex conjugate zero, which itself would reduce this

case to the previous one, implying a contradiction. In the usual Vlasovian approach [96], finding

this zero results from continuing analytically19 g′(v) outside the real axis, which is nonsense for a

derivation involving the sum of Dirac distributions corresponding to the many-beam distribution.

Therefore, there is no zero of εd1(m, ω) having a non-vanishing imaginary part when δ goes to

zero. We now show that the missing Vlasovian Landau damping is compensated by the damping

resulting from the phase mixing of the many beam modes defined by the zeros of εd1(m, ω).

19 Actually, the analysis of Cauchy integrals, a more advanced topic in mathematics (section VIII.12 of [71]), allows

wilder g(v)’s. There, the analyticity of the integrals with respect to ω, not v, in the upper or lower complex half-

planes mirrors the use of Laplace transform. The relevant g(v)’s are such that their absolute values are integrable,

as well as that of their Fourier transforms.
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D. Landau damping

As just explained, if γL(km) < 0, all zeros of εd1(m, ω) have an imaginary part vanishing in

the limit where δ goes to zero. Therefore, the only contribution to the potential of the wave is

provided by equation (60), which is the Vlasovian result for the Langmuir wave with wavevector

km propagating in the direction of the wavevector, except for the granular character of the initial

distribution in space and velocity. Φm(r, t) is exponentially damped, because of the phase mixing

of the beam modes, which makes these modes analogous to the van Kampen modes [28, 81, 82] (see

also section 6.14 of [105]). However, while van Kampen modes and those in section 3.8.3 of [44, 59]

are eigenmodes, the Laplace transformed quantities of the present derivation are not. Finally, we

stress that the phase mixing of this derivation is different from that in section III. Indeed the latter

corresponds to the transients related to the terms complementing those of Landau poles when

inverting the Laplace transform in the present derivation.

E. Landau instability

For γL(km) > 0, one must add to the expression of Φm(r, t) provided by equation (60) the

contributions of the two roots with the finite imaginary parts20 ±γL(km). This yields the sum of

three exponentials

e−iωmrt
(

eγL(km)t + e−γL(km)t − e−γL(km)t
)

= e−iωmrt+γL(km)t, (61)

where the first two come from the two roots with finite imaginary parts, and the last one comes

from equation (60). Then, the above phase mixing term cancels the contribution of the damped

root and one finally obtains again the Vlasovian expression (60)21. It is therefore of paramount

importance that the single root of ε1(m, ω) yields two conjugate roots of εd1(m, ω). In section 3.8.3

of [44], a similar calculation was done by using normal modes, and not the Laplace transform. An

equation similar to equation (61) was obtained where the third exponential was e−γL(km)|t| instead;

this brings the cancellation of the second exponential for positive times, and of the first one for

negative ones, because of the time-reversible character of the dynamics.

To illustrate the previous discussion, we have numerically calculated the zeros of the granular

dielectric function (50). This was done for the following realistic plasma parameters: ne = 1019 m−3,

20 In the limit where δ vanishes, the absence of these two roots does not modify equation (60), since they bring an

infinitesimal contribution to the result.
21 Without the phase mixing term, a wave with an initial amplitude 1 would have only half the amplitude eγL(km)t

after a long enough time. This remark by Dr A. Samain was at the origin of the development of the van Kampen-like

calculation in section 3.8.3 of [44].
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T = 1 keV and L = 30λD. We performed the calculation for the mode number m = 1. To model

the distribution of particles in velocity space, we considered a thermal population modelled by a

Maxwellian distribution and an energetic tail modelled by a shifted Maxwellian

Mσ ∼ fthe−
v2σ
2 + fte

− (vσ−v0)
2

2 (62)

where, for educational reasons in order to give a clear example of the Landau instability, we have

chosen the values ft = 0.15, fth = 0.85 and v0 = 4. Velocities are normalised to the thermal

velocity vth and frequencies in equation (50) are normalised to (2π/L)vth. The velocity space

is discretised to form the grid vmin ≤ vσ = δσ ≤ vmax, where vmin = −5 and vmax = 7, both

normalised to the thermal velocity, and σ is used to parametrise the distribution of particles as in

the previous discussion. The zeros of the granular dielectric function are plotted in figures 5b and

5d for two values of δ, namely δ = 0.5 and δ = 0.1, respectively22. Figures 5a and 5c represent the

distribution of particles in velocity space, where the inversion of the slope is clearly visible around

v ≈ 3 < v0 = 4. It can also be observed that the imaginary part of the zeros decreases when δ

decreases, and only two zeros emerge from the whole set of zeros, leading to the Landau instability.

The wave echo experiment [5] proved beam modes to be the actual support of Landau damped

Langmuir waves excited by grids in a magnetized plasma column. In such a plasma, they would

exist in a Landau unstable case too, but the above result shows their phase mixing contribution

would be cancelled by a damped eigenmode.

For a wave with phase velocity vw, as in section III B, the above passage to the smooth velocity

distribution g(v) implicitly assumes that there are many particles with parallel velocities in the

typical range [vw − |γL|/k, vw + |γL|/k], where γL is the Landau growth or damping rate of the

wave, and k the modulus of its wavevector. Indeed, this range is the one where the phase mixing

à la van Kampen is occurring, as shown in section V B, and where the synchronization of particles

with the wave brings the change of particle momentum inducing Landau damping or growth of this

wave, as shown in section III B. If the number of particles in the range [vw − |γL|/k, vw + |γL|/k] is

not large enough, the system behaves as a multi-beam in this range.

F. Collisions at work

We now comment on the nature of the unstable modes of the above many-beam system. When

a cold beam with a high enough density is added to a Maxwellian plasma, it triggers the cold beam-

22 These two figures represent actually the poles of 1/|εd(m, ω)|, which are nothing else but the zeros of εd(m, ω).

Identifying the poles of a function of complex variable is easily done by identifying the closed contours in the

complex plane.
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FIG. 5: (Left) Distribution function. The position of the phase velocity is indicated by a vertical

arrow. (Right) Contour plots of the modulus of the granular dielectric function. The calculations

are done for δ = 0.5 (top panels) and δ = 0.1 (bottom panels). The poles identified as Van

Kampen poles get closer to the real axis as δ decreases. Only two poles, identified as Landau poles

and responsible for the Landau instability, exhibit a finite imaginary part when δ → 0.

plasma instability whose growth rate is defined by the beam and plasma densities (see for instance

[107]). When the beam becomes warmer and warmer, the beam-plasma instability becomes kinetic

and its growth rate is given by Landau’s formula [107]. At some moment, the velocity spreading

of the beam becomes so large that the slope of the global velocity distribution of the beam-plasma

system becomes negative everywhere: the instability is quenched. Therefore, in the case of a
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kinetically stable distribution, the unstable modes of the above many-beam system cannot be

interpreted as beam-plasma ones. Indeed, their growth rate (124) is mainly defined by global

features of the plasma like the slope of g(v), and depends weakly on the beam density through a

logarithm of g(nδ)/δ.

Actually, the instability is due to what is traditionally called collisions, and will be described in

section X. Indeed, section II C showed the distribution of the pure many-beam system is invariant in

time. Therefore, it is insensitive to collisions. However, a typical perturbation to this distribution

evolves because of collisions, and exponentially diverges from the many-beam distribution with

the many-beam growth rates. What is traditionally called collisions involves scales up to the

Debye length. This explains why the present derivation keeps a “collisional” contribution, while

using a smoothed version of the Coulomb potential. Because of the cutoff at bsmooth, the collision

frequency23 involves a Coulomb logarithm ln(λD/bsmooth) instead of the usual one ln(λD/λca).

The whole derivation of section V B heavily relies on the fact that the βσ’s are larger than

kmδ, i.e. that collisions are strong enough. Therefore, not only collisions make Landau damping

irreversible [24], but they are necessary for the effect to exist. Furthermore, in the second equality of

equation (59), for a finite δ, the exp(−iασt)’s might produce a recurrence of S after a time (kmδ)
−1.

However, the cosh(βσt)’s grow on the smaller time-scale [kmδ | ln(δ/vT) |]−1, which prevents the

recurrence24. The last equality of equation (59) makes sense over a time |γL(km)|−1 only if condition

kmδ | ln(δ/vT)γL(km) |−1 � 1 (63)

is fulfilled.

G. Vanishing contribution of the ballistic poles

We now consider the part of the potential due to particle j coming from the pole ω = km · ṙj(0).

It is

Φj d(r, t) = Φd(r− rj(0)− ṙj(0)t, ṙj(0)), (64)

where

Φd(r,u) = − e

L3ε0

∑
m 6=0

exp(ikm · r)

k2
m εd(m,km · u + iε)

(65)

23 It was recently noted that the collisional damping rate of Langmuir waves is much smaller than the one provided

by the collision frequency [121, 127].
24 This property is the signature of the Floquet exponents mentioned in Appendix A.
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with the usual iε prescription resulting from inverting the Laplace transform, as εd(m, ω) diverges

for some real ω’s. We again compute the limit of the contribution of component km in this

expression by using the convenient grid of the previous subsection. By taking the limit ε → 0 for

a fixed δ, the first term in the bracket of equation (118) diverges when δ goes to zero. This implies

that εd(m,km · v + iε) becomes infinite, which cancels the contribution of the pole ω = km · ṙj(0)

in equation (49). Therefore, apart from transients, δϕj(r, t) is a superposition of waves only.

VI. LANGMUIR WAVES AND DEBYE SHIELDING À LA LANDAU

The Vlasovian limit recovers the Landau damping/growth predicted by the N -body dynamics,

by substituting εd(m, ω) in equation (47) with ε(m, ω) defined by

ε(m, ω) = 1− ω2
p

∫
f0(v)

(ω − km · v)2
d3v

= 1 +
ω2

p

k2
m

∫
km · ∇vf0(v)

(ω − km · v)
d3v, (66)

where f0(v) is the smooth approximation of the velocity distributions of the multi-beam-multi-

arrays defined in section II C. This section considers the solutions of equation (47) when this

substitution is made, which corresponds to a singular limit of the problem. It becomes

ε(m, ω)ϕ(m, ω) = ϕ(bal)(m, ω). (67)

This singular limit was taken in [61, 62, 64]. Then, Φjm(r, t), the part of the potential due to

particle j obtained by inverse Fourier-Laplace transform, was shown to comprise of two parts:

one provided by the zeros of ε(m, ω) corresponding to the usual Vlasovian expression of Langmuir

waves, and one provided by the pole ω = km ·ṙj(0) corresponding to the shielded Coulomb potential

of the particle [7, 70, 114] (see for instance section 9.2 of [105])25. For particle j, this potential is

Φjm(r, t) = Φ(r− rj(0)− ṙj(0)t, ṙj(0)), (68)

where

Φ(r,v) = − e

L3ε0

∑
m 6=0

exp(ikm · r)

k2
m ε(m,km · v + iε)

(69)

with the usual iε prescription resulting from inverting the Laplace transform, as the integral in

equation (52) is undefined for the real-valued ω = km · v.

25 Therefore, taking this singular limit is a way to bring to students a rapid derivation of both Landau damping and

Debye shielding.
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Using the smoothed version of Coulomb potential recovers the shielded Coulomb potential of

equations (68)-(69) down to a distance ∼ bsmooth from the particle of interest. Since bsmooth � λD,

a part of the 1/r dependence of the genuine Coulomb potential is recovered, and can be matched

with the central 1/r dependence for closer distances.

The Vlasovian derivation of shielding requires a test particle to be added to the Vlasovian

plasma (see for instance section 9.2 of [105]). Similarly, the N -body approach requires εd(m, ω)

to be substituted with its Vlasovian analog. In the standard Vlasovian calculation, ϕ(bal)(m, ω) is

replaced by its continuous limit for Imω finite

Φ(bal)(m, ω) = − ie

ε0k2
m

∫
f(m,v)

ω − km · v
d3v, (70)

which is the smoothed version of the actual shielded potential in the plasma. Unfortunately, this

quantity has no obvious interpretation. Therefore, generally textbooks do not dwell upon it, and

just use it as the term of initial condition for the calculation of Langmuir waves. The N -body

description reveals that it is the continuous limit of a granular source term bringing not only the

excitation of Langmuir waves, but also the Debye-shielded potential of the particles.

The Debye shielded potential is one of the simplest examples of a renormalized potential [98].

This potential is a mean-field potential produced by the Coulomb deflections of the particles,

as will be explained in section VIII. Vlasov equation deals also with a mean-field potential, as

obvious from its mean-field derivation recalled in the introduction. This is also the case for the

BBGKY derivation, because of its statistical aspect. Therefore, ε(m, ω) may be interpreted as a

renormalized version of εd(m, ω). When using ε(m, ω) = 0 as the dispersion relation, one Langmuir

wave is actually the renormalized version of a set of beam modes of the N -body system. As will be

shown in section VIII, similarly the Debye shielded potential of a particle j is its Coulomb potential

dressed with all the modifications of the potential of the other particles due to their deflections

by j. Analytically, it is the renormalized potential provided by equations (68) and (69) by using

the renormalized dielectric function ε(m, ω). Therefore, it is natural to recover both the Vlasovian

Langmuir waves and the Debye shielded potentials of the particles, when using ε(m, ω) = 0 as

dispersion relation.

Equation (67) can be introduced intuitively by the following simple argument. An almost uni-

form distribution of particles, written as a perturbation of a multi-beam-multi-array distribution

related to a given grid, may be also written as a perturbation for many other nearby multi-beam-

multi-array distributions; actually a continuum set. While εd(m, ω) depends on the choice of the

grid, the time evolution of the un-linearized dynamics is independent of it, and all the linearized
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dynamics corresponding to these various grids stay close to it for some time. This almost invari-

ance of the linearized N -body dynamics under the above continuous set of distributions suggests

approximating this dynamics by a coarse-grained version of it, where εd(m, ω) is substituted with

ε(m, ω), the Vlasovian expression of the dielectric function, which is present in equation (67).

Appendix D describes a coarse-graining leading to this equation. As shown in Appendix E, the

shielded Coulomb potential can also be recovered by a singular limit of the many-beam description.

VII. THE VLASOVIAN LIMIT: A SINGULAR ONE

The singularity of the Vlasovian limit is mathematically visible in the dielectric function. Indeed,

finding the zeros of εd(m, ω) corresponds to finding those of a polynomial of degree 2nb with real

coefficients (nb is the number of beams). While when increasing nb, the number of zeros of εd(m, ω)

keeps increasing, this number is fixed for ε(m, ω). Even more singular is the transition from a finite

increasing number of poles for εd(m, ω) to a cut for ε(m, ω)26.

The results of sections III and V show that the Vlasovian limit is also singular from a physical

point of view. Indeed, the mechanical description of the plasma as a granular system shows that, as

to the electrostatic potential, Landau damping is due to a phase mixing, and that Landau growth

involves a phase mixing too. As already mentioned, the wave echo experiment [5] proved the

existence of the beam modes in a genuine (granular) plasma. In contrast, in the usual Vlasovian

setting, the derivation of Landau damping requires an analytic continuation, which is, though

powerful, far from physically intuitive. While section III B shows that Landau growth and damping

are due to the same average synchronization of particles nearly-resonant with the wave, the fate

of individual particles is usually eluded in a Vlasovian setting27. As recalled in the introduction

of this paper, this lack of physical intuition made it hard for the plasma community to accept the

reality of this damping, and is the origin of still discordant physical interpretations of the effect,

some invoking trapping or surfing of the particles, which is wrong mechanically.

Adding a test particle to the N -body system, induces a mere modification of the calculations

of section IV: one more term is added to the ballistic potential (36), but the remaining of section

IV stays the same. Therefore, equation (47) stays the same except for the contribution of the test

particle in the ballistic term. The calculation of section V G also applies to this contribution, which

26 However, this has no practical consequence, since the time scale over which the system is observed, or measured,

introduces a natural granularity in frequency space below which the actual continuum (or singular) limit and the

discretized system should not be distinguishable.
27 In contrast, the global exchange of energy and momentum between waves and particles is easily available in a

Vlasovian setting.
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does not provide the shielded potential of this test particle. This is in contrast with the Vlasovian

case, another symptom of the singularity of the Vlasovian limit.

The reason, why the derivation of Landau damping in a Vlasovian setting does not correspond to

an eigenmode, is deeply rooted in mechanics. Indeed, imagine Landau damping would correspond

to a zero of εd(m, ω): since the above polynomial has real coefficients, its complex solutions come in

conjugate pairs, and the damped eigenmode would come with a growing companion, which would

dominate for a typical initial condition of the system. This contradicts observation. Therefore,

Landau damping cannot correspond to a zero of εd(m, ω), and section V B showed that, for the

genuine granular system, Landau damping occurs by phase mixing of beam modes.

As a matter of fact, this reductio ad absurdum can be done without any calculation. Indeed,

since the N -body system is a Hamiltonian one, its Lyapunov exponents come in pairs: consistently

with the preservation of phase space areas, a damped eigenmode comes with a growing companion.

Therefore, while Landau damping corresponds to a zero of ε(m, ω), it cannot for εd(m, ω). This

issue does not exist for the unstable case.

Furthermore, while introducing the van Kampen modes was a creative contribution in the

Vlasovian case, they are spontaneously present in the N -body approach, because the multi-beam-

multi-array distribution is a natural way to deal with a “uniform” plasma. The van Kampen

modes are beam modes recovered with ε(m, ω), which is a renormalized dielectric function, as

was shown in section VI. As was explained in section V F, the instability of the beam modes

is the signature of Coulomb collisions. If a collision operator is added in Vlasov equation, the

continuous spectrum of the Van Kampen-Case modes is eliminated and replaced by a discrete

spectrum, even in the limit of zero collision, and these discrete eigenmodes form a complete set of

solutions [103, 104]. This is similar to the N -body case. However, the Landau-damped solutions

are recovered as true eigenmodes, which they are neither in the collisionless Vlasovian theory, nor

in the N -body approach. Finally, we notice that in the N -body approach, Landau damping occurs

without requiring g(v) to be analytically continuable like in the usual Vlasovian approach, which

is better for the experimental observability of the phenomenon.
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VIII. MEDIATED INTERACTIONS IMPLY DEBYE SHIELDING

In this section28, Picard’s iteration technique29 is applied to the full equation of motion of a

particle j due to the Coulomb forces of all other ones for any Λ, i.e. by using equation (6) without

the restriction kmbsmooth ≤ 1. It stresses that, for Λ � 1, a part of the effect on particle j of

another particle j′ is mediated by all other particles (equation (75)) and reduces the direct part.

Indeed, particle j′ modifies the motion of all other particles, implying that the action of the latter

ones on particle j is affected by particle j′. This will be shown to provide an intuitive picture of

Debye shielding.

We consider the dynamics in real time of the particle with index l defined by equation (9) with

the full OCP Coulomb potential of equation (6). To this end we use Picard’s iteration technique.

From equation (9), r
(n)
l , the n-th iterate for rl, is computed from

r̈
(n)
l =

e

m
∇ϕ(n−1)(r

(n−1)
l ), (71)

where ϕ(n−1) is obtained by the inverse Fourier transform of equation (8) with the rj ’s substituted

with the r
(n−1)
j ’s. The iteration starts with the ballistic approximation of the dynamics r

(0)
m =

rm0 + vmt, where rm0 and vm are respectively the initial position and velocity of particle m. The

actual orbit of equation (9) corresponds to n→∞. Let ξ
(n)
m = r

(n)
m − r

(0)
m be the mismatch of the

position of particle m with respect to the ballistic one at the n-th iterate, viz. the effect of Coulomb

interactions to that order of iterations ; because of the initial conditions, ξ
(0)
m ’s and ξ̇

(0)
m ’s vanish

identically for all m’s. It is convenient to write equation (71) as

ξ̈
(n)
l =

∑
j∈S;j 6=l

ξ̈
(n)
lj , (72)

with S denoting the set of integers from 1 to N labeling particles, and

ξ̈
(n)
lj = aC(r

(n−1)
l − r

(n−1)
j ) (73)

and

aC(r) =
ie2

ε0mL3

∑
m 6=0

k−2
m km exp(ikm · r). (74)

28 For completeness, most of this section follows closely section 5 of [62].
29 Picard’s iteration technique is one of the standard methods to prove the existence and uniqueness of solutions to

first-order equations with given initial conditions. It uses the fact that the exact solution of equation dX
dt

= f(X)

is the fixed point of the iterative process starting from n = 0, and providing Xn+1 from Xn by equation
dXn+1

dt
=

f(Xn) with any choice of X0(t). This iteration technique is very convenient, in particular to alleviate the algebra

of perturbation calculations.
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Let ξ
(n)
lj =

∫ t
0

∫ t′
0 ξ̈

(n)
lj (t′′) dt′′dt′ =

∫ t
0 (t− t′′) ξ̈(n)

lj (t′′) dt′′. For n ≥ 2, one finds

ξ̈
(n)
l =

∑
j∈S;j 6=l

[ξ̈
(1)
lj + M

(n−1)
lj + 2∇aC(r

(0)
l − r

(0)
j ) · ξ(n−1)

lj ] +O(a3), (75)

where a is the order of magnitude of the total Coulombian acceleration, and

M
(n−1)
lj = ∇aC(r

(0)
l − r

(0)
j ) · [ξ(n−1)

l − ξ(n−1)
j − 2ξ

(n−1)
lj ] (76)

= ∇aC(r
(0)
l − r

(0)
j ) ·

∑
i∈S;i 6=l,j

(ξ
(n−1)
li + ξ

(n−1)
ij ), (77)

where the second expression takes into account that aC(r) is anti-symmetrical in r. The latter

expression displays ξ
(n−1)
ij which is the deflection of particle i by particle j. It shows how the bare

Coulomb acceleration of particle l due to particle j is modified by the following process : particle

j modifies the motion of all other particles, so that the action of the latter ones on particle l is

modified by particle j. Therefore M
(n−1)
lj is the acceleration of particle l due to particle j mediated

by all other particles. The last term in the bracket in equation (75) accounts for the fact that both

particles j and l are shifted with respect to their ballistic positions. Both M
(n−1)
lj and this last

term are anti-symmetrical with respect to the labels j and l, since ∇aC(r) is an even function of r.

The full Coulombian dynamics of the plasma includes the relaxation to a thermal state. If the

corresponding temperature is low enough, the particles have a vanishing mean velocity. In order

to describe such an equilibrium, it is advisable to take vm = 0 for all m’s for a faster convergence

of the iterative process toward the equilibrium solution.

Since the shielded potential of section VI was found by first order perturbation theory, it is

felt in the acceleration of particles computed to second order. This acceleration is provided by

equation (75) for n = 2. Therefore, its term in brackets is the shielded acceleration of particle l

due to particle j. As a result, though the summation runs over all particles, its effective part is

only due to particles j typically inside the Debye sphere (with radius λD) about particle l. Starting

from the third iterate of the Picard scheme, the effective part of the summation in equation (75)

ranges inside this Debye sphere, since the ξ
(n−1)
lj ’s are then computed with a shielded acceleration.

In equation (77), the compound effect of the ξ
(n−1)
ij ’s, the deflections of particle i by particle j, is

to diminish the negative charge inside a sphere centered on particle j.

This calculation yields the following interpretation of shielding. At t = 0, consider a set of

uniformly distributed particles, and especially particle j. At a later time t, the latter has deflected

all particles which made a closest approach to it with a typical impact parameter b . vTt, where

vT is the thermal velocity. This part of their global deflection due to particle j reduces the number
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of particles inside the sphere Sj(t) of radius vTt about it. Therefore, according to Gauss’ theorem,

the effective charge of particle j as seen out of Sj(t) is reduced : the charge of particle j is shielded

due to these deflections. This shielding effect increases with t, and thus with the distance to

particle j. It becomes complete at a distance on the order of λD. Since the global deflection

of particles includes the contributions of many other ones, the density of the electrons does not

change, at variance with the shielding at work next to a probe (see e.g. section 2.2.1 of [110]). This

interpretation explains how a given particle can be shielded by all other particles, while contributing

to their individual shieldings. The Debye shielding of a test particle can be computed by using

explicitly the just described Coulombian deflections [99].

When starting from random particle positions, the typical time-scale for shielding to set in is

the time for a thermal particle to cross a Debye sphere, i.e. ω−1
p , where ωp is the plasma frequency.

Furthermore, shielding, though very fast a process, is a cooperative dynamical one, not a collective

(viz. coherent) one : it results from the accumulation of almost independent repulsive deflections

with the same qualitative impact on the effective electric field of particle j (if point-like ions were

present, the attractive deflection of charges with opposite signs would have the same effect). So,

shielding and Coulomb scattering are two aspects of the same two-body repulsive process. For

Λ� 1, this transport is negligible on fairly long time scales. However, collisions are of paramount

importance to provide shielding over the plasma period ω−1
p . We now understand that Debye

shielding cannot work for a multi-beam-multi-array, because it does not experience collisions, as

anticipated in section II C. Finally, in contrast to what occurs if electron j is substituted with a

Langmuir probe, this does not change the density of charges of the plasma, because the deflections

due to j are compensated by those of the other electrons.

This approach clarifies the mechanical background of the calculation of shielding using the

equilibrium pair correlation function, which shows shielding to result from the correlation of two

particles occurring through the action of all the other ones (see e.g. section 12.3 of [22]). As

discussed in section VI, the derivation of Debye shielding using Vlasov equation plus a test particle

takes advantage of the renormalization involved in the Vlasovian dielectric function. However,

rigorously speaking, the derivation of Debye shielding using fluid equations is not justified in a

collisionless plasma, since these equations are not justified, especially in a non magnetized plasma

(see chapter 3 of [76]).
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IX. WAVE-PARTICLE INTERACTION: LINEAR AND NONLINEAR EFFECTS

This section introduces a wave-particle description of Langmuir waves. This is done by splitting

the set of particles into a bulk, which cannot resonate with Langmuir waves, and a tail. Then,

amplitude equations are derived for the Fourier components of the potential where tail particles

provide a source term. These equations, together with the equations of motion of the tail particles,

provide a Hamiltonian description of the dynamics of tail particles coupled with Langmuir waves.

This description is well fitted to statistical descriptions unifying Landau damping and spontaneous

emission, or showing that the transition from Landau damping to O’Neil’s damping with trapping

is a second order phase transition. This description is also amenable for studying the nonlinear

saturation of various regimes of the beam-plasma instability, and to prove the nonexistence of

Bernstein-Greene-Kruskal (BGK) modes corresponding to traveling-wave solutions. Finally, this

description enables the use of modern tools of nonlinear dynamics and chaos available for finite

dimensional systems.

This section first derives the Hamiltonian ruling the self-consistent dynamics of tail particles

with Langmuir waves. On this basis, a statistical analysis shows Langmuir waves evolve under

the compound action of Landau damping and of spontaneous emission. Then, these two effects

are shown to have their counterpart in the diffusion and friction coefficients of the quasilinear

Fokker-Planck equation ruling the dynamics of particles in a broad spectrum of waves. This sets

the ground to face the controversial issue of the saturation of the weak warm beam instability.

The remaining of the section deals with the single wave Hamiltonian both in the unstable and the

damped case.

A. Self-consistent Hamiltonian

Till now, we described Langmuir waves by a fully linear theory. Following the analysis of

section 6 of [62], we now generalize the analysis of section IV to afford the description of both

linear and nonlinear effects in wave-particle dynamics. Indeed, resonant particles may experience

trapping or chaotic dynamics, which imply km ·∆rj ’s of the order of 2π or larger for wave km’s.

For such particles, it is not appropriate to make the linearizations leading to equations (39) and

(42). However, these linearizations may still be justified for non-resonant particles over times

where trapping and chaos show up for resonant ones. In order to keep the capability to describe

the latter effects, we now split the set of N particles into bulk and tail, in the spirit of references
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[4, 44, 59, 108, 109]. The bulk is defined as the set of particles which are not resonant with Langmuir

waves. We then perform the analysis of section IV for these Nbulk particles, while keeping the exact

contribution of the remaining Ntail particles to the electrostatic potential. To this end, we number

the tail particles from 1 to Ntail, the bulk ones from Ntail + 1 to N = Nbulk + Ntail, and we call

these respective sets of integers Stail and Sbulk. Then, equation (44) is substituted with

εd(m, ω)ϕ(m, ω) = ϕ(bal)(m, ω) + U(m, ω), (78)

where εd(m, ω) is defined by equation (48), and ϕ
(bal)
bulk (m, ω) is defined by equation (45), where the

sums over j runs over Sbulk only, and where

U(m, t) = − e

ε0k2
m

∑
j∈Stail

exp(−ikm · rj(t)), (79)

for Nbulk � 1.

Since Langmuir waves are not resonant with the bulk, the singularities of εd(m, ω) do not

show up, and in the limit of large numbers of particles in the Debye sphere, this quantity may be

approximated by ε(m, ω), or more precisely by εbulk(m, ω) defined by

εbulk(m, ω) = 1− ω2
p

∫
f0(v)

(ω − km · v)2
d3v

= 1 +
ω2

p

k2
m

∫
km · ∇vf0(v)

(ω − km · v)
d3v, (80)

where f0(v) is the bulk distribution only, and ωp is computed with the bulk particles only. Then,

equation (78) becomes

εbulk(m, ω)ϕ(m, ω) = ϕ
(bal)
bulk (m, ω) + U(m, ω). (81)

For the scales much larger than λD, the electric potential for the bulk is a superposition of

Langmuir waves. The presence of tail particles slightly modifies these waves. Therefore, as shown

in section 6.1 of [62], one can derive an amplitude equation for the potential ϕ(m, t) of the wave

with wavevector km in a way similar to references [108, 109]

dϕ(m, t)

dt
+ iωmϕ(m, t) =

ie

ε0k2
m
∂εbulk
∂ω (m, ωm)

∑
j∈Stail

exp(−ikm · rj), (82)

where ωm is the eigenfrequency solving εbulk(m, ωm) = 0 corresponding to the wave propagating

in the direction of km ; this frequency is real, since it is not resonant with the support of the bulk

distribution function (indeed, we assumed f0(v) = 0 for all v’s such that km ·v = ωm). We notice

that εbulk(m, ωm) = 0 is a Bohm-Gross type dispersion relation associated with plasma oscillations

of the bulk.
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The self-consistent dynamics of M Langmuir waves and of the tail particles is ruled by equation

(82) written for each wave and by the equation of motion of these particles due to the M waves,

r̈j =
ie

L3m

∑
n∈M

knϕ(n, t) exp(ikn · rj), (83)

where M is the set of the indices of the M waves, and the tail-tail interactions were neglected

owing to the low density of the tail particles. These two sets of equations generalize to three

dimensions the self-consistent dynamics defined in references [4, 44, 100] for the one-dimensional

N -body dynamics.

We now write ϕ(n, t) as an
√

2In exp(−iθn), where In and θn are real, and where

an =
[ L3

2ε0k2
n
∂εbulk
∂ω (n, ωn)

]1/2
. (84)

Then equations (82)-(83) can be cast as the canonical equations related to the self-consistent

Hamiltonian

Hsc =

Ntail∑
j=1

p2
j

2m
+
∑
n∈M

ωnIn

− ε
Ntail∑
j=1

∑
n∈M

k−1
n κn

√
2In cos(kn · rj − θn) (85)

where κn = [∂εbulk(n, ωn)/∂ω]−1/2, and ε = ωp[2m/N ]1/2 is the coupling parameter ruling the

intensity of the wave-particle interaction. The conjugate variables for Hsc are (pj , rj) for the

particles and (In, θn) for the waves. Hsc is the sum of the kinetic energy of particles, of the energy

of waves (harmonic oscillators described in action-angle variables), and of a coupling term. It may

be useful to write Hsc by using the “Cartesian” coordinates of the harmonic oscillators instead of

their intensity-phase (or action-angle) components. To this end we write ϕ(n, t) as an(Xn + iYn),

where Xn and Yn are real. This yields

Hsc =

Ntail∑
j=1

p2
j

2m
+
∑
n∈M

ωn
X2

n + Y 2
n

2

− ε
Ntail∑
j=1

∑
n∈M

k−1
n κn[Xn cos(kn · rj)− Yn sin(kn · rj)]. (86)

For Ntail/N fixed, the coupling parameter ε scales like N
−1/2
tail when N goes to infinity. This

keeps constant the typical size of the coupling term for random phases and/or particle positions in

this limit. It can be checked that, on top of the total energy Esc = Hsc, the total momentum

Psc =

Ntail∑
j=1

pj +
∑
n∈M

Inkn, (87)
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is conserved, which is natural since the system is isolated. The total momentum is made of a

wave contribution and of a particle one, while the total energy has a coupling contribution on top

of these two. This invalidates the interpretations of Landau damping using energy conservation,

while neglecting this coupling. We further notice that waves are now explicit degrees of freedom,

while the electric potential is slaved to the particles in the One Component Plasma.

In references [4, 44] the one-dimensional analog of Hsc was obtained by a direct mechanical

reduction of degrees of freedom starting with the one-dimensional N -body problem30. This deriva-

tion had been introduced in [47, 48]. In chapter 2 of reference [44], this derivation was performed

rigorously by making error estimates involving three small parameters. These parameters control

the slow evolution of the wave amplitudes, the slow evolution of the average velocity of a given

bulk particle in presence of the waves, and ensure that the bulk particles are in the linear regime

of oscillation. Such a Hamiltonian was first introduced by Mynick and Kaufman [100], and derived

in a consistently Hamiltonian way from the Vlasov–Poisson system of equations by Tennyson et

al. [119]31.

B. Spontaneous emission and Landau damping

For the sake of brevity, we do not develop here the full generalization of the one-dimensional

analysis in Refs [44, 59] ; it is lengthy, but straightforward. However, since this analysis uni-

fies spontaneous emission with Landau growth and damping, we provide the generalization to

three dimensions of the result of [59] and of section 4.1.4 of [44] ruling the evolution of the am-

plitude of a Langmuir wave. It is provided by perturbation calculations where the right hand

sides of equations (82)-(83) are considered small (of first order). This is natural for equation (82)

since Ntail � Nbulk, and for equation (83) if the Langmuir waves have a low amplitude. Let

J(m, t) = 〈ϕ(m, t)ϕ(−m, t)〉, where the average (mathematical expectation) is over the random

initial positions of the tail particles (their distribution being spatially uniform and pairwise inde-

pendent). Then a calculation to second order in ϕ yields

dJ(m, t)

dt
= 2γL(km)J(m, t) + Sm spont, (88)

30 This was the starting point of the one-dimensional N -body approach.
31 We notice that the derivations of the self-consistent dynamics starting with a Vlasovian description [108, 109, 119]

perform kind of a zigzag with respect to the N -body description, since they go back to a finite number of degrees

of freedom after going through the continuous Vlasovian description.
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where γL(km) is the Landau growth or damping rate defined by equation (22), and Sm spont is

given by32

Sm spont =
2πNe2

ε2
0[∂εbulk∂ω (m, ωm)]2k5

m

g
(ωmr

km

)
. (89)

Sm spont corresponds to the spontaneous emission of waves by particles and induces an exponential

relaxation of the waves to the thermal level in the case of Landau damping (the three-dimensional

analogue of what was found in [44, 59]). This spontaneous emission was already present for a

given realization of the N -body system in the beginning of section III A, by terms enabling the

excitation of a wave with an initially vanishing amplitude. It was implicitly present in the sum

of the shielded potentials of equation (68). Indeed, the space-time average of the square of the

corresponding electric field provides the estimate of spontaneous emission [10].

C. Diffusion and friction coefficients

This subsection and the next ones deal with the one-dimensional case and review, in particular,

the main results of [59] and of chapters 4, 8, and 9 of [44]. The corresponding Hamiltonians are

given by equations (85) and (86), where pj , rj ,n,kn are scalars. In order to go to the limit of a

continuous wave spectrum, we define an interpolating function J(k) such that

J(kn) = In
L

2π
. (90)

Then the continuous spectrum limit reads∑
j

Ij0• →
∫
•Ij

L

2π
dk =

∫
•J(k)dk. (91)

In the case of a broad spectrum of Langmuir waves, a second order perturbation calculation for

the particles (see [59] and sections 4.1.3 of [44]), similar to the above one for the waves, yields the

diffusion and friction coefficients of a Fokker-Planck equation ruling the particle dynamics. This

equation can be written in the compact way

∂f

∂t
=

∂

∂p

(
DQL(p)

∂f

∂p

)
− ∂

∂p
(Fcf), (92)

with

DQL(p) =
πk(p)ε2κ2(k(p))

ωp
J(k(p)), (93)

Fc(p) = −k
2(p)Lε2κ2(k(p))

4ωp
, (94)

32 This expression corrects equation (46) of [62].
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where κ(k) and k(p), are respectively κn and kn with n chosen such that respectively |k− kn| and

|p− ωn/kn| are minimum. The Fokker-Planck equation displays two terms on the right hand side.

The first one involves only the wave amplitude through the diffusion coefficient, and the second

one is a friction term due to the previously introduced spontaneous, or Cherenkov, emission. The

former is the so-called quasilinear diffusive term [38, 125]. The latter accounts for the dynamical

friction due to the spontaneous emission responsible for Sj in equation (89).

Equation (92) is coupled to a wave evolution equation, which is the analogous of equation (88)

in one dimension

dJ(k, t)

dt
= 2γL(k)J(k, t) + Sspont(k), (95)

with

Sspont(k) =
Ne2κ2(k)

ε0L2k3
g
(ωr(k)

k

)
. (96)

The second order perturbation calculations leading to the quasilinear results make sense only

over time scales ∆t such that τc � ∆t� τspread, where τc and τspread are respectively the correlation

time of the wave potential and the time over which the particle positions spread over k−1, where

k is a typical wave number, because of the diffusion of velocities. These two times are defined as

τc = (k∆u)−1 (97)

with ∆u the spread in particle and phase velocities, and

τspread = 4
(
k2DQL0

)−1/3
, (98)

with DQL0 a typical value of DQL(p).

When particles diffuse, the local momentum conservation underlying Landau damping and

growth no longer corresponds to the synchronization with a single wave. Therefore, this effect

corresponds to a coherent mechanism for isolated waves and to a (quasilinear) diffusive one for a

broad spectrum.

The coupled equations (88) and (92) may be used to describe the nonlinear evolution of the

kinetic beam-plasma instability, as long as the above perturbation theory remains correct. They

are called the quasilinear equations in the literature when the Cherenkov terms are omitted, which

occurs naturally in a Vlasovian setting.

The latter equations imply that the initial bump (corresponding to the beam) in the distribution

function flattens into a plateau (so that ∂f/∂v = 0 over the corresponding velocity interval). The
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presence of the Cherenkov term implies a relaxation toward a distribution function with a negative

slope on a longer time scale. This is the prelude to the relaxation toward a new thermal equilibrium

for the whole plasma.33

The system (92), (95), without the terms due to spontaneous emission, was first introduced in

1962 in the framework of the Vlasov-Poisson description of the saturation of the weak warm beam

instability, by Vedenov, Velikhov, and Sagdeev [125], and by Drummond and Pines [38]. These

two works dealt with the plasma in a quasilinear way, as they neglected mode coupling for the

wave growth and considered the particle evolution to be close to a ballistic one34. This enabled

the introduction of the quasilinear diffusion coefficient long before chaos became fashionable in

physics. Furthermore, this introduction was first done for the self-consistent problem.

D. Saturation of the weak warm beam instability

The theory of the saturation of the weak warm beam instability is at the origin of the N -body

approach of this review paper. This is why we briefly recall the corresponding historical background

in the next paragraph. The following one summarizes results about the chaotic transport of a

particle in a prescribed spectrum of waves, which are needed to tackle the full self-consistent

problem. The next one shows there is a depletion of nonlinearity when the distribution is a

plateau, and the last one summarizes the results of numerical simulations of the instability.

a. Historical background Quasilinear theory shows that the weak warm beam instability sat-

urates by the formation of a plateau in the distribution function [38, 125]. This agrees with

experimental observation [111].

During the above defined spreading time τspread, the velocity diffuses by the amount ∆vspread =

4(DQL0/k)1/3, whose size is defined by the turbulent wave spectrum, which contains an energy

bounded by the weak beam energy. Therefore, ∆vspread is typically a quantity much smaller than

the width of the plateau. This implies that the saturation time is much longer than τspread, which

turns out to be also the (Lyapunov) time of separation of nearby orbits in the chaos induced by the

waves (see for instance section 6.8.2 of [44]). Therefore, the formation of the plateau can be proved

without quasilinear theory: it comes from the chaos induced by the unstable Langmuir waves among

the resonant particles, whatever be the precise description of the corresponding chaotic transport.

33 This further relaxation cannot be described by the self-consistent Hamiltonian, since the latter corresponds to a

given bulk.
34 Rigorously speaking, the quasilinear equations had already been mentioned in 1961 by Romanov and Filippov [112].

This reference makes the Ansatz of a Fokker-Planck equation for particle evolution and computes the corresponding

diffusion coefficient; it describes the evolution of the Langmuir wave amplitude as the result of spontaneous and

stimulated emission of quanta and estimates the corresponding coefficients.
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When the motion of particles is chaotic, the perturbative approach used in the usual derivations,

in particular in section IX C, of the quasilinear equations cannot be justified. Indeed, waves scatter

the particle positions far away from their ballistic value. At time τspread, when the corresponding

spreading of positions becomes on the order of the wavelength, the perturbative approach fails.

Since leveling out the beam distribution function needs a time much longer than τspread, one may

doubt the validity of quasilinear equations to describe the saturation of the instability.

The validity of quasilinear theory was first questioned in 1979 by Adam, Laval, and Pesme [3]

when accounting for nonlinear wave coupling, but the importance of this coupling was denied by

Galeev et al. in 1980 [69]. In 1981, Krivoruchko et al. performed a beam-plasma experiment

in a plasma column, which confirmed the quasilinear predictions to be correct, but displaying

the non-quasilinear onset of field correlations (formation of coherent packets) and particle-motion

correlation (formation of tails of accelerated particles and acceleration of the energy exchange

between the waves and the particles) [86]. However, in 1983, Laval and Pesme proved the exis-

tence of a renormalization of the growth rate and of the diffusion coefficient during the growth

of the instability [90], and the inconsistency of quasilinear theory due to mode coupling [91]. In

1984, they proposed a new Ansatz to substitute the quasilinear one, and predicted that when-

ever γLandauτspread � 1 both the wave growth rate and the velocity diffusion coefficient should be

renormalized by a factor 2.2 [92]35.

This motivated Tsunoda, Doveil, and Malmberg to perform a new experiment with a traveling

wave tube in order to have a much lower noise than in a magnetized plasma column [122–124].

It brought a surprising result: quasilinear predictions looked right, while quasilinear assumptions

were completely violated. Indeed no renormalization was measured, but mode-mode coupling was

not negligible at all, while it is neglected in the quasilinear approach. These results were further

documented in an extension of the experiment [72]. This sets the issue: is there a rigorous way to

justify quasilinear estimates in the chaotic regime of the beam-plasma instability?

Tackling this issue in a Vlasovian setting sounded formidable. However, the theory of chaos for

finite number of degrees of freedom Hamiltonian systems had been developing in the plasma physics

community for more than a decade [51, 52], and this was an incentive to address the weak warm

beam-plasma instability by generalizing [48, 119] a model originally introduced for the numerical

simulation of the cold beam-plasma instability [108, 109]. There the beam was described as a set

of particles, while the wave was present as a harmonic oscillator. If one considers a wave-particle

interaction occurring in a finite range of velocities [vmin, vmax], then it is sufficient to include in

35 More information about this controversy can be found in [37, 93].
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the Hamiltonian the waves with phase velocities in this interval, which defines their number M

when the length L of the system is defined. This leads to the self-consistent Hamiltonian (85). In

retrospect, in a system where the transport due to short range interactions (“collisions”) is weak,

it is natural to think about plasma dynamics by working directly with classical mechanics, and by

taking into account that the collective field dominates over the graininess field.

Before embarking in the study of the chaotic dynamics of the self-consistent Hamiltonian cor-

responding to the weak warm beam instability, three preliminary investigations sounded useful:

deriving the self-consistent Hamiltonian from the underlying N -body dynamics, recovering Lan-

dau damping/growth from this Hamiltonian, and studying the chaotic transport of a particle in

a prescribed spectrum of waves, which was propaedeutic to the self-consistent case. The first in-

vestigation led to the derivations of the one-dimensional version of the self-consistent Hamiltonian

recalled at the end of section IX A. The second one led to the one-dimensional version of the

van Kampen-Dawson approach presented in section V. The third one brought a series of results

concerning chaotic transport in a prescribed spectrum of waves, which are now briefly recalled36.

b. Chaotic transport While for uncorrelated phases, it is natural to expect the diffusion coef-

ficient to converge to its quasilinear estimate from below when the resonance overlap of the waves

increases, for intermediate values of the overlap, unexpectedly the diffusion coefficient turns out

to exceed its quasilinear value by a factor about 2.5 [26]. This further suggested the possibility

of a renormalization for the self-consistent case. Nevertheless, the diffusive picture for the chaos

due to waves needed to be substantiated. It was shown to be right, provided adequate averages

are performed on the dynamics; however, this picture is wrong if one averages only over the initial

positions of particles with the same initial velocity [12] (see also section 6.2 of [44], and [57, 58]).

These results were completed by mathematical results: individual diffusion and particle decorrela-

tion were proved for the dynamics of a particle in a set of waves with the same wavenumber and

integer frequencies if their electric field is gaussian [45], or if their phases have enough randomness

[43]. The randomness of amplitudes also affects significantly the overal diffusion [42].

The intuitive reason for the validity of the diffusive picture is given in [12]: it is due to the

locality in velocity of the wave-particle interaction, which makes the particle to be acted upon

by a series of uncorrelated dynamics when experiencing large scale chaos. This locality of the

wave-particle interaction was rigorously proved by Bénisti in [13]. On taking into account that the

36 Experimentally, studying the chaotic transport of particles in a prescribed spectrum of waves was propaedeutic

to the self-consistent case too. This led to the experimental observation of resonance overlap [35], and of the

transition from stochastic diffusion in a large set of waves to slow chaos associated to a pulsating separatrix [33].

Nonlinear resonances excited by injected waves were both observed as a “devil’s staircase” [97] and cancelled to

build a barrier to transport [29].
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effect of two phases on the dynamics is felt only after a long time when there is strong resonance

overlap, it can be approximately proved that the diffusion coefficient is larger than quasilinear, but

converges to this value when the resonance overlap goes to infinity [12, 53] (see also [55, 56], and

section 6.8.2 of [44]).

c. Depletion of nonlinearity when the distribution is a plateau When the plateau forms in

velocity during the saturation of the weak warm beam instability, density becomes also almost

uniform spatially in this range of velocities. Indeed, chaos tends at equidistributing particles all

over the chaotic domain in (r, v)-space. Actually, KAM tori, bounding the chaotic domain defined

by a prescribed spectrum of waves, experience a sloshing motion due to the waves. This brings

a small spatial modulation to the particle density which provides a source term for the Langmuir

waves. However, if the plateau is broad, the source term in equation (82) almost vanishes, since the

particles are equidistributed spatially, and the waves keep a fixed amplitude : the self-consistency

of equations (82)-(83) is quenched and the wave spectrum is frozen, even when particle dynamics is

strongly chaotic in the plateau domain37 (see sec. 2.2 of [19]). Clumps of particles may experience

a strong temporary trapping, but the distribution function stays flat. As a result, the plateau

dynamics is almost the same as in a prescribed field of Langmuir waves38. This is an instance where

nonlinear effects increase the symmetry of the system, and lead to a depletion of nonlinearity39.

Then, it is possible to use the tools of 1.5 degree-of-freedom Hamiltonian chaos mentioned in the

above paragraph “Chaotic transport” to compute the diffusion of particle velocities.

In a Vlasovian description, the bump-on-tail instability saturates with the previous plateau

substituted with a very jagged distribution in both space and velocity, resulting from the chaotic

stretching and bending of the initial beam-plasma distribution. Indeed, since the initial distribution

f0(v) is conserved along particle motion, there is no finite range in velocity where f0(v) has the

amplitude of the plateau. This plateau can be obtained only by coarse-graining (local averaging)

of the Vlasovian distribution of the saturated state.

37 Equations (82)-(83) are used here to avoid writing their one-dimensional analog, which is the relevant one for this

discussion.
38 For a plateau with a finite width, the small remaining source brings a further evolution of the wave-particle system

toward a state where the wave spectrum collapses toward small wavelengths together with the escape of initially

resonant particles towards low bulk plasma thermal speeds [68]. This corresponds to a further step toward a new

thermal equilibrium of the N -body system corresponding to the initial beam-plasma system. The description of

the subsequent steps toward thermal equilibration require to use a full N -body model.
39 This phenomenon, also called depression of nonlinearity, was introduced in fluid mechanics [85]. In Navier-Stokes

turbulence, the mean-square value of the nonlinear term of the equation was found significantly depressed, i.e.

smaller than the same quantity in the Gaussian field with the same energy distribution. This was identified to

result from the emergence of long-lived vortices where the enstrophy cascade is inhibited. It also exists in systems

with quadratic nonlinearities [21, 85].
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In the above paragraph “Chaotic transport”, we recalled that, in the chaotic regime, D/DQL

may cover a large range of values [26, 44]. In particular D ' DQL is obtained for random phases

of the waves and strong resonance overlap [26, 41–45]. The plateau regime corresponds to γL = 0

and therefore to γLτspread = 0. Since D/DQL may cover a large range of values in this regime,

γLτspread � 1 does not imply per se any renormalization or non-renormalization of D/DQL (nor of

γ/γL by wave-particle momentum conservation). This contradicts previous works using γLτspread �

1 to try and prove the validity of quasilinear theory [44, 54, 94, 95] along with the “turbulent

trapping” Ansatz aiming at the contrary [92]. The value of D/DQL in the plateau regime of the

bump-on-tail instability depends on the kind of wave spectrum the beam–plasma system reaches

during the saturation of the instability, and not only on condition γLτspread � 1, as assumed by

these works.

d. Numerical simulations The difficulty of dealing analytically with the strongly nonlinear

regime of the Vlasov-Poisson system led from 1989 to the development of the finite number of

degrees of freedom approach using the self-consistent Hamiltonian (85). This enabled numerical

simulations of the self-consistent dynamics to be performed [27, 37].

Let τw be the typical time for the growth of the wave amplitudes. In the regime τw � τspread the

system (94)-(96) was found to be correct, but for one realization the wave spectrum appeared to

be jagged with respect to the average one, each wave having a temporal behaviour strongly marked

by nonlinear wave coupling. This confirmed the behaviour found by Theilhaber, Laval and Pesme

[120], and Berndtson [17] with Vlasovian codes. The simulation of Doxas and Cary [37] indicated

a possible renormalization, but the wave spectrum was not dense enough for this to be completely

convincing. Furthermore, the renormalization factor was much smaller than the one proposed by

[92].

In 2011, taking advantage of the increased power of computers, more precise numerical simula-

tions were performed using a semi-Lagrangian code for the Vlasov–wave model [19]. This model

is the mean-field limit of the granular dynamics defined by the self-consistent Hamiltonian: waves

are still present as M harmonic oscillators, but particles are described by a continuous distribution

function (which is discretized in the numerical scheme, though). The simulations were bench-

marked in various ways. In particular, the conservation laws were checked, as well as the above

depletion of nonlinearity when the distribution is a plateau. They were repeated for a large num-

ber of random realizations of the initial wave phases for a fixed initial spectrum of amplitudes.

As shown by previous simulations, the final wave spectrum was found to be quite jaggy, and not

smooth as that predicted by QL theory [38, 125].
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For each of the realizations, one computed the spreading of the velocities of test particles when

acted upon by the final set of waves. The first four even moments of this spreading were compared

with those of the solution to the quasilinear Fokker-Planck equation for velocity diffusion, using the

velocity-dependent diffusion constant DQL computed with the final wave spectrum. The agreement

was found to be excellent: the plateau verified the predictions of QL theory. However, as found

in previous numerical simulations and experimentally, mode-mode coupling was found to be very

strong during the saturation, which invalidated the QL assumptions. Similar results were obtained

in [126] with a code using the dynamics of the self-consistent Hamiltonian.

At this point, the validity of QL predictions while QL assumptions are wrong sounded still like

a mystery. However, the simulations brought an unexpected clue to elucidate it: the variation

∆φ(t) = φ(t)−φ(0) of the phase φ(t) of a given wave, was found to be almost non fluctuating with

the random realizations of the initial φ(0)’s of the waves [18]40. Since ∆φ(t) does not depend on

φ(0), the randomness of the final wave phases is the same as that of initial phases. As a result,

the self-consistent dynamics was shown to display an important ingredient for the validity of a

quasilinear diffusion coefficient for the dynamics in a prescribed spectrum. Some analytic support

was brought to this finding by using a third order Picard iterate of the dynamics [60].

E. Dynamics with a single wave

The single wave case is relevant to two kinds of situation. First, in the unstable beam-plasma

system, one wave may have a larger growth rate than the others, so that it soon dominates over

these and the single wave approximation is reasonable : this is the case for a cold beam. Second,

the physical device of interest, because of its finite length, may have a single wave being resonant

with a beam, even a warm one.

If a single wave interacts with all particles, the locality in velocity of the wave-particle interaction

is particularly important. In the nonlinear regime of the beam-wave system, it appears that only

particles with velocities close to the wave phase velocity, up to the resonance width, interact

significantly with the wave, and that the relevant velocities thus depend on the instantaneous wave

intensity (see chapter 8 of [44]).

Numerical simulations considered the growth and saturation of a single wave whose phase

velocity lies in the range with positive slope of the velocity distribution function of a warm beam

40 This is reminiscent of the fact that the initial correlations were not disturbed in the course of the relaxation in the

beam-plasma experiment [86].
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[34, 67]. They showed that the dynamics with a finite number N of particles leads to a long-time

evolution of a single wave qualitatively distinct from the numerical integration of the kinetic Vlasov

model. Indeed, while the latter integration leads the amplitude to saturate with an amplitude A,

the dynamics with a finite number N of particles brings a slow second growth of the amplitude

after an apparent saturation at the value A.

This occurs despite the fact that the limit N →∞ formally reduces the many-particle evolution

equation to the Vlasov kinetic equation (see section G.1.2 of [44]), but there is no contradiction.

Kinetic limit theorems show that the limitN →∞ commutes with the dynamics over any finite time

interval 0 ≤ t ≤ t∗, but the discrepancy between both evolutions may well diverge exponentially as

t∗ →∞, especially because the wave-particle system has dynamical instabilities [65]. Then, in the

long term, given a finite number of particles, there is a time beyond which the smooth solution to

the kinetic model (approximating the finite N system initially) may evolve significantly differently

from the physical finite-N system : the limits t→∞ and N →∞ need not commute [47].

In short, in its evolution, the plasma eventually reminds the physicist of its microscopic granular

nature, so that the Vlasov equation cannot accurately describe it over long times [47], another

symptom of the singular Vlasovian limit. In the above single wave simulations, the granular nature

of the plasma induces fluctuations of the width of the separatrix of the single wave in the apparent

saturated state. This enables the wave to exchange almost trapped particles with average velocities

smaller and higher than the phase velocity of the wave. However, when the wave reaches amplitude

A, the beam distribution is not globally flattened, and there are still more faster particles than

slower particles. Therefore, the exchange of almost trapped particles provides momentum to the

wave, i.e. further growth.

Stating this result in a different way, the BGK equilibrium corresponding to the saturated

Vlasovian mode does not exist because of the fluctuations induced by the granular nature of the

plasma. In reality, this problem is for all Vlasovian travelling-wave BGK equilibria, as shown

in [39] : they cannot exist for the dynamics ruled by the single wave finite-Ntail self-consistent

Hamiltonian, because they would come with singularities in complex time, which are inconsistent

with the travelling-wave assumption.

F. Damping with trapping results from a phase transition

As was shown by O’Neil in 1965, when the initial amplitude of a Landau damped Langmuir wave

is increased, there is a threshold above which the wave amplitude enters an oscillatory regime after
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a small initial damping [106]. This oscillatory regime results from the trapping of particles inside

the wave. The description of this phenomenon by the self-consistent dynamics enables proving

that this transition is a second order phase transition [66]. This is shown in a series of steps:

(i) In the many-particle limit N → ∞, the self-consistent system is described by an invariant

distribution over (r, v)-space, and explicit forms can be found for several physical observables in a

Gibbsian setting. (ii) For a single wave, the partition function can be computed analytically, and

one distinguishes two regimes separated by a phase transition. The two thermodynamic phases are

linked to the different dynamical evolutions of the system. In particular, the two regimes of wave

damping (Landau damping and damping with trapping) are recovered in connection with the two

phases41.

A striking property of the one-dimensional One Component Plasma is that it undergoes no

phase transition. A phase transition in the wave-particle model was thus unexpected. However,

the two systems are very different thermodynamically. Indeed, the thermodynamic treatment

of the binary interaction assumes that all particles reach a “global” equilibrium, whereas the

thermodynamic treatment of the wave-particle system applies to a reduced system, in which only

the faster, more efficient interactions are taken into account.

G. Dynamics with two waves

The dynamics of Hsc defined by equation (86) are extremely rich, and do not at all reduce

to those of the single or of the many waves cases described above. In particular, a work with

the one-dimensional analog of this Hamiltonian involving two waves coupled to many particles

displays the emergence of long-lived quasi-stationary states (QSS) [25]. Motivated by the problem

of α-particle thermalization in a burning thermonuclear plasma, this work focuses on the case

where ωn � 1 for the two waves, which endows them with vanishing phase velocities, and yields a

dramatic importance to the coupling term. Spatially, one of the two waves is the second harmonic

of the other one. In numerical simulations, at t = 0 particles are spread uniformly spatially and in

velocity in the interval [−p0, p0]. A threshold value of p0 is found, such that below this threshold

the system responds to the beam injection by the emergence of long-lived QSS: the clustering of

the beam particles into resonant rotating clumps. This threshold is also present for the case of a

single wave. The values of the two coupling constants select a leading harmonic, and the passage

41 The envelope equation of an electron plasma wave has a sudden variation when going from the linear to the

trapping regimes, in a way similar to a first order phase transition [11]. Furthermore, there are other aspects of

non collisional damping for a wave having trapped electrons [16].
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from a leading one to the other one corresponds to a first-order phase transition. This transition

can be described analytically by applying Lynden-Bell’s technique to the Vlasovian limit of the

problem [25].

X. COULOMB SCATTERING

This section reviews the theory developed in [63], which shows that anN -body model where elec-

trons interact through their Debye shielded Coulomb potential, enables the calculation of Coulomb

scattering describing correctly all impact parameters b, with a convergent expression reducing to

Rutherford scattering for small b. This derivation explains why a two-body calculation yields a

correct estimate of Coulomb scattering, while most of this transport is due to the simultaneous

action of many particles with impact parameters between the inter-particle distance and the Debye

length.

The word “collision” is borrowed from the physics of gases where it qualifies the close encounter

of two particles. However, the interaction of particles in a plasma corresponds seldom to two-

body collisions, even when taking into account Debye shielding : in the plasmas considered here,

where the interparticle distance λid is much smaller than the Debye length λD, a particle j feels

the simultaneous unshielded short-range action of many particles. Except for those particles very

close to j, this action produces a slow and simultaneous deflection of j. Rigorously speaking, one

should speak about “short range induced interactions”, “unshielded Coulomb interactions”, or so,

and not “collisions”. Such a designation is a result of the development of plasma physics after

that of gases, which made natural for the former to borrow concepts and tools from the latter. In

particular, the unshielded interactions of particles in kinetic plasmas were considered as collisions.

These interactions, occurring at scales λD or smaller, set a bound to the Vlasovian description,

and require another specific one.

About sixty years ago, two groups at UC Berkeley’s Radiation Laboratory simultaneously stud-

ied transport due to collisions in non-magnetized plasmas, and they quoted each other’s results

in their respective papers : one in 1956 by Gasiorowicz, Neuman and Riddell [70] and, in 1957,

one by Rosenbluth, MacDonald and Judd [113]. The second group of authors used the Rutherford

picture of two-body collisions, while the first group of authors dealt with the mean-field part of

the interaction by using perturbation theory in electric field amplitude42. Later on, within the

42 Their derivation suggested to the first author of the present review that a direct N -body approach might be

possible.
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same approximations as [70], a more elegant derivation of the Coulomb scattering coefficients was

provided, in a “post-Vlasovian” approach, by taking the limit “infinite number of particles in the

Debye sphere” of the Balescu–Lenard equation (see section 8.4 of [8] and sections 7.3 and 7.4 of

[77]), though the rigorous foundation of this equation is still a challenge [87, 118].

Each of the above works on Coulomb scattering has a difficulty in describing the interactions

at distances of the order of the typical interparticle distance λid. Indeed, the mean-field approach

cannot describe the graininess of these scales, and the Rutherford picture cannot describe the si-

multaneous collisions with several particles. Consequently, the mean-field approach is suited to

describing scales larger than λid, and should be used with a corresponding ultraviolet cutoff, while

the Rutherford picture holds for scales smaller than λid, and should be used with a corresponding

infrared cutoff. Fortunately, in both approaches the transport coefficients depend only logarith-

mically on these cutoffs. Furthermore, forgetting about the latter ones, and considering in both

cases the scales typically between λca and λD, the two results are found to agree [70, 113]. This

provided confidence in these complementary extrapolations, which were for long the basis of the

description of Coulomb scattering in plasmas, as presented in many plasma physics textbooks.

However, till 2015 a calculation of the contribution of scales about λid to Coulomb scattering

had been missing, and no theory provided a calculation of this transport covering all scales between

λca and λD. This gap was filled by reference [63], which computes the trace TD of the velocity

diffusion tensor of a given particle by a convergent expression including the particle deflections for

all impact parameters. The main ideas of the new derivation are (i) the substitution of the Coulomb

potential of a particle with its Debye-shielded potential, i.e. the substitution of the bare potential

with its “dressed” one defined by equation (68), (ii) the computation of Coulombian deflections by

first order perturbation theory in the total electric field, except for those due to close encounters,

(iii) the contribution to TD of the former ones is matched with that of the latter ones computed

by [113]. The detailed matching procedure includes the scale of the inter-particle distance, and is

reminiscent of that of [78], however without invoking the cancellation of three infinite integrals. It

leads to the same expression as [113], except for the Coulomb logarithm which is modified by a

velocity dependent quantity of the order of 1. More precisely, the computation of the deflection of

particle l is performed in four steps.

The first step uses first order perturbation theory in the electrostatic potential, which shows

the total deflection to be the sum of the individual deflections due to all other particles. Indeed,
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to this order

δṙl(t) =
∑

j∈S;j 6=l
δṙlj(t), (99)

where S denotes the set of integers from 1 to N labeling particles, and δṙlj(t) is the contribution

of particle j to the change of velocity of particle l. This yields

〈‖δṙl(t)‖2〉 =
∑

j∈S;j 6=l
〈‖δṙlj(t)‖2〉, (100)

where the average is performed over the initial random positions of particles, which kills the

terms involving the contributions of two different particles. Therefore, though being due to the

simultaneous scattering of particle l with the many particles inside its Debye sphere, 〈‖δṙl(t)‖2〉

turns out to be the sum of individual two-body deflections for impact parameters such that first

order perturbation theory is correct.

For an impact parameter b much smaller than λD, the main contribution of the acceleration

due to particle j to the deflection of particle l comes from times when this acceleration takes on its

bare Coulombian value. Therefore, δṙlj(t) is a first order approximation of the effect on particle

l of a Rutherford collision with particle j. The perturbative calculation is seen to be correct for

λD � b � λca. This explains why the contribution to 〈‖δṙl(t)‖2〉 of this range of b’s can be

computed as if it would result from successive two-body collisions, as was done by [113] and in

many textbooks.

The second step of the computation of the deflection of particle l proves that for a close encounter

with particle j, the deflection of particle l is exactly the one it would undergo if the other N − 2

particles were absent. The contribution of such collisions to 〈‖δṙl(t)‖2〉 was calculated by [113].

Now, since the deflection of particle l due to particle j as computed by the above perturbation

theory is an approximation to the Rutherford deflection for the same impact parameter, one may

conversely approximate the perturbative deflection with the full Rutherford one, and obtain an

obvious matching of the theories for λid � b ∼ λca and for λD � b ∼ λid : one may thus use the

estimate of [113] in the whole domain b� λD.

The third step shows that the deflection for an impact parameter of the order of λD is given by

the Rutherford expression multiplied by some function of the impact parameter reflecting shielding.

This enables a good matching of the deflections for large impact parameters with those for smaller

ones.

The final and fourth step obtains an analytic expression for deflection whatever the impact

parameter, by taking advantage of the fact that the individual deflections due to impact parameters
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b exceeding λD decay rapidly with b. One finds that the Coulomb logarithm ln(λD/λca) of the

second equation (14) of [113] becomes ln(λD/λca)+C where C is of order unity. The same approach

can provide the calculation of the other elements of the diffusion tensor and of dynamical friction,

the latter requiring second order perturbation theory. The tensors corresponding to electron-ion

collisions and to ion-ion collisions can be computed likewise.

As was shown in section VIII, Debye shielding results from the Coulombian deflections of par-

ticles usually called “collisions”. In turn, the resulting Debye shielded effective potential yields

a description of pair interaction which provides a direct calculation of particle deflections, viz. of

Coulomb scattering. Shielding and collisions are thus intimately linked, and the present ability of

a thorough calculation of Coulomb scattering rests on this link.

A startling aspect of collisions in plasmas is that, although each particle interacts simultaneously

with many other ones on the Debye length scale (suggesting the need for a collective description),

the transport effect of these interactions is well approximated by a sum of independent binary

estimates, because the deflections are so weak that they can be treated perturbatively.

XI. DISCUSSION

A. New physical picture of microscopic plasma physics

The N -body approach brings a new physical picture of microscopic plasma physics. First, it

shows that collisions play an essential role in collisionless plasmas. In particular, Debye shielding

is a direct consequence of collisions (section VIII). Indeed, the Coulombian deflections of electrons

by a given electron P decrease the number of electrons about P, which decreases its apparent

charge, according to Gauss’ theorem. In contrast to what occurs if electron P is substituted

with a Langmuir probe, this does not change the density of charges of the plasma, because the

deflections due to P are compensated by those of the other electrons. Debye shielding results

from a cooperative dynamical self-organization process, produced by the accumulation of almost

independent Coulomb deflections over a time-scale ω−1
p . It is now clear how a given particle can

be shielded by all other particles, while contributing to their individual shieldings. Unexpectedly

on the basis of the implicit picture of most basic textbooks, shielding and Coulomb scattering are

two aspects of the same two-body repulsive/attractive process. The N -body approach to Coulomb

scattering shows there is a smooth connection between impact parameters where the two-body

Rutherford picture is correct, and those where a collective description is mandatory (section X).
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The essential role of collisions was also exemplified in section II C for distributions of particles

corresponding to a set of monokinetic beams where each beam is a simple cubic array of particles:

multi-beam-multi-arrays. Indeed, such distributions correspond to invariant states of the dynamics

where neither collisions, nor waves are present. When perturbing the positions of particles of a

multi-beam-multi-array with a dense enough set of velocities, they exponentially diverge from

their initial positions, because of collisions (section V F). The finite value of the corresponding

exponentiation rates is crucial for the equivalent of the van Kampen phase mixing to occur in the

N -body system (section V B). Finally, Landau damping occurs after a phase mixing time (section

III A), which is longer than ω−1
p , the time necessary for collisions to establish Debye shielding.

Therefore, this damping occurs in a plasma already organized by collisions.

The N -body approach shows unequivocally that Landau damping results from the simultaneous

average synchronization of almost resonant passing particles with the wave (section III B). It is

because this synchronization is the same for Landau growth and damping, that a single formula

applies to both phenomena (section III B). The phase mixing of many beam modes produces Landau

damping, which cannot correspond to a damped eigenmode because of Hamiltonian mechanics

(section VII). This phase mixing is also active for Landau growth (section V E). If there is a too

low number of particles in a range of velocities proportional to the damping rate, about the phase

velocity of a wave, the system behaves as a multi-beam in this range, and no Landau damping

occurs (section V E). When particles diffuse, Landau damping and growth no longer correspond to

the synchronization with a single wave, but result from this diffusion (see section IX C). If there is a

plateau in the distribution function and the waves with phase velocities in the range of this plateau

make particle dynamics chaotic in this range, these waves have a stationary amplitude because

of a depletion of nonlinearity due to the chaotic dynamics of particles: there is no component of

the electron density resonating with these waves (section IX D). This implies that the case with

a plateau is very different from one where there is a vanishing number of particles in the same

velocity interval, while Landau damping vanishes in both case in a Vlasovian setting.

The N -body approach incorporates spontaneous emission naturally (sections III A and IX B).

When this emission is taken into account, Landau damping is nothing but a relaxation mechanism

to the thermal level of Langmuir waves (section IX B). This emission prevents a plateau on the

tail of the velocity distribution to be stationary, and triggers the walk toward the eventual thermal

distribution (section IX C).

The travelling-wave BGK equilibria of the Vlasovian case do not exist in the N -body one, be-

cause of the fluctuations induced by the granular nature of the plasma (section IX E). In particular,
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a beam-plasma system with a single unstable wave, after reaching the equivalent of the Vlasovian

saturation, evolves on a longer time-scale toward a saturated state where the wave has a larger am-

plitude (section IX E). O’Neil’s damping with trapping typical of initially large enough Langmuir

waves results from a phase transition (section IX F).

B. New insight into the Vlasovian limit

The N -body approach reveals two important features of the Vlasovian limit: it is singular and

it corresponds to a renormalized description of the actual N -body dynamics.

The singularity of the Vlasovian limit shows up: (i) in the dielectric function: that of a multi-

beam-multi-array does not converge toward the Vlasovian expression when the density of the beam

velocities increases, since both zeros and poles do not match (section VII), (ii) in the importance

of phase mixing for Landau growth in the N -body approach (section V E); van Kampen’s theory

displays a view of the dynamics of a plasma closer to the genuine one than Landau’s, (iii) in the

impossibility to give a physical interpretation to the term of initial conditions (70) in Landau’s

calculation of Langmuir waves, which is nothing but the continuous limit of the sum of the ballistic

potentials of the N electrons, (iv) in the fact that adding a test particle to the N -body system

does not provide the shielded potential of this particle (section V G), in contrast with the Vlasovian

case, (v) in the usual requirement of an analytically continuable velocity distribution function too

(see section V C; also its footnote, which shows that a softer requirement is possible).

One of the simplest examples of a renormalized potential is the Debye shielded potential [98].

It is a mean-field potential produced by the Coulomb deflections of the particles (section VIII).

Both its mean-field and BBGKY derivations show that Vlasov equation deals with a mean-field

potential (section VI). Therefore, the Vlasovian dielectric function is a renormalized version of that

of a multi-beam-multi-array, and a Vlasovian Langmuir wave is the renormalized version of a set

of beam modes of the N -body system (section VI). The renormalized dielectric function enables

the calculation of the shielded potentials of the N particles of the granular plasma considered here,

or of a test particle added to a Vlasovian plasma (section VI).

XII. CONCLUSION

Laplace’s dream was not a mere utopia, since the calculation of classical orbits starting from

prescribed initial conditions can genuinely describe and explain many phenomena of microscopic
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plasma physics : Landau damping and growth, Debye shielding, Coulomb scattering, etc... Many

of the calculations can be done for a single realization of the plasma by using standard tools of

elementary mechanics, calculus and no probabilistic setting. This provides a stronger ground to

face the complexity of plasmas, a difficult issue [49, 50]. An alternative title of this review paper

might be “Mechanical foundations of microscopic plasma physics”.

Vlasov equation and calculations à la Landau have proved to be very efficient tools of theoret-

ical plasma physics. However, computing and understanding are very different, as shown by the

almost two decades the plasma physics community took to accept the reality of Landau damping.

To introduce basic microscopic plasma phenomena, the N -body approach is short, since it avoids

the introduction of a kinetic equation, and provides a clear-cut interpretation of the derived phe-

nomena. So, Landau damping can be taught or given as an exercise to students knowing Newton’s

second law of motion, Fourier series, but neither Vlasov equation, nor Laplace transform; in partic-

ular, to students studying Newtonian mechanics. The additional knowledge of Laplace transform

makes Debye shielding accessible too. Since it is rigorous and starts from first principles, the N -

body approach could make plasma physics more attractive to colleagues in other disciplines and

to prospective students who are fundamentally minded — even more so, because of the issues of

singular limits, of cooperative self-organization, of renormalization, and of the depletion of non-

linearity. Furthermore, basic microscopic plasma physics has both a description corresponding to

a singular limit, the Vlasovian one, and a non-singular one, the N -body approach: exceptionally,

reductionism works for this physics.

Plasma physicists might enjoy the intuitive mechanics, the unifications and simplifications of

the N -body approach, and the new insight into the Vlasovian limit it provides. Retrospectively,

Landau’s derivation of his damping was the first, but is the less physically intuitive; indeed, the

Vlasovian limit is a singular and renormalized one. The N -body approach is also the occasion to

consider the many facets of what is usually called “the distribution function”. Most theoretical

calculations do not specify which aspect of this function is considered. In particular, is it thought

in a statistical setting describing an ensemble of plasmas, or as an idealization of a single granular

distribution [46]? In the N -body approach, this distribution is introduced at the end of the me-

chanical calculations. Finally, plasma physicists might enjoy the full description of the contribution

of all impact parameters to Coulomb scattering (section X). In particular, most of this contribution

corresponds to a sum of independent binary estimates, while each particle interacts simultaneously

with many other ones on the Debye length scale.

It would be useless to rewrite the whole of plasma physics in an N -body setting. However, some
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extensions might turn useful. In particular, to clarify the issue of Debye shielding in a magnetized

plasma. Indeed, in the direction perpendicular to the magnetic field, the repulsive electric field due

to a particle provides an E×B drift of the “colliding” ones. What is the corresponding shielding

in the direction perpendicular to B? Is it the same as in a non-magnetized plasma where Coulomb

deflections are present43?
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Appendix A. RIGOROUS DERIVATION À LA KAUFMAN

a. A(t) is entire The dynamics considered in section III corresponds to the linearized mo-

tion of the N electrons with respect to a given multi-beam-multi-array, when a single wave with

wavevector km is excited at t = 0. Let rj0 be the initial position of the unperturbed beam particle

with index j, and vj be its velocity, and let ∆rj(t) = rj(t) − rj0 − vjt be the mismatch of the

actual position of particle j with respect to the unperturbed beam particle with the same index.

Setting rj = rj0 + vjt + ∆rj(t) in equation (8), we replace ϕ̃ with its expansion to first order in

the ∆rj(t)’s

ϕ̃(m, t) = −
N∑
l=1

e

ε0k2
m

exp[−ikm · (rl0 + vlt)] [1− ikm ·∆rl(t)]. (101)

43 The conspicuous modification of relaxation processes by magnetic fields [6, 73, 74, 79, 117], suggests that shielding

might be modified too. They also suggest the importance of the relative ordering of spatial scales, such as Larmor

radius versus the Debye length.
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Using equations (8) and (101), the linearized particle dynamics defined by equation (9) is then

given by

∆r̈j =
ie

L3m
km ϕ̃(m, t) exp[ikm · (rj0 + vjt)] + c.c. . (102)

Because of ordering (10), for each beam the corresponding values of exp[ikm · rl0] are uniformly

distributed on the unit circle, and their global contribution to the 1 factor in the last bracket of

equation (101) vanishes. Therefore equation (102) yields the compact expression

∆r̈j = −
2ω2

p

Nk2
m

km

N∑
l=1

cos[km · [rj0 − rl0 + (vj − vl) t ] km ·∆rl(t). (103)

This defines a system of N linear differential equations whose coefficients are entire functions of t.

Therefore, the ∆rl(t)’s are entire functions. Through equation (101), this property is transferred

to ϕ̃(m, t) and to the amplitude A(t) = ϕ̃(m, t) exp(iωt) for ω real : A(t) is an entire function.

If the km ·vj ’s are multiples of a given number, equation (103) has coefficients with some period

T , and belongs to the Floquet class of differential equations. Then its solutions are of the type

U(t) = V (t)eαt, (104)

where V (t) is a vector of period T , and α a complex number. The corresponding Floquet exponents

are the βσ’s introduced at the end of section V C. A similar equation was met in the self-consistent

wave-particle approach introduced in section IX A (section 3 of [44]). Its full solution turned out to

be a superposition of wave-like and ballistic solutions. This is remarkable, since such equations are

generally not explicitly solvable with elementary functions, even for the simplest one, the Mathieu

equation.

b. Solution to all orders By expanding A(t− τ) in Taylor series, the second term of equation

(16) becomes (with k = km and vφ = ω/k))

S = −iω2
p

+∞∑
n=0

dnA(t)

dtn

∫
∂

∂Ω

∫ t

0
(−1)n

τn

n!
exp(−iΩτ) dτ g(v)dv

= −iω2
p

+∞∑
n=0

dnA(t)

dtn

∫
∂

∂Ω

∫ t

0

i3n

n!

∂n

∂Ωn
exp(−iΩτ) dτ g(v)dv

= ω2
p

+∞∑
n=0

i3n

n!

dnA(t)

dtn

∫
∂n+1

∂Ωn+1

exp(−iΩt)− 1

Ω
g(v)dv

= ω2
p

+∞∑
n=0

i3n

n!kn+1

dnA(t)

dtn

∫
(−1)n+1g(n+1)(v)

exp(−iΩt)− 1

Ω
dv

= −ω2
p

+∞∑
n=0

in

n!kn+1

dnA(t)

dtn

∫
g(n+1)(v)

exp(−iΩt)− 1

Ω
dv
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∼t→+∞ ω2
p

+∞∑
n=0

in

n!kn+1

dnA(t)

dtn

[
P

∫
g(n+1)(v)

Ω
dv + i

π

k
g(n+1)(vφ)

]
. (105)

The time evolution of A(t), and the frequency ω, are then derived from

1 =
ω2

p

A

+∞∑
n=0

in

n!kn+1

dnA(t)

dtn

[
P

∫
g(n+1)(v)

Ω
dv + i

π

k
g(n+1)(vφ)

]
. (106)

Looking for a solution A(t) = A(0)eνt with ν real, equation (106) reads

1 = ω2
p

+∞∑
n=0

in

n!kn+1
νn

[
P

∫
g(n+1)(v)

Ω
dv + i

π

k
g(n+1)(vφ)

]
, (107)

whose real part is

1 = ω2
p

+∞∑
p=0

(−1)p

(2p)!k2p+1
ν2p

[
P

∫
g(2p+1)(v)

Ω
dv − πν

(2p+ 1)k2
g(2p+2)(vφ)

]
, (108)

and imaginary part is

0 =

+∞∑
p=0

(−1)pν2p

(2p+ 1)!k2p

[
νP

∫
g(2p+2)(v)

Ω
dv + π(2p+ 1)g(2p+1)(vφ)

]
. (109)

Since g(n+1)(v) ∼ v−nT g′(v), equations (108) and (109) may be seen as expansions in the small

parameter ε ≡ ν/(kλDωp). Then, these equations may be solved order by order. The first two

orders were used in section III A.

It is also noteworthy that, when g(v) is analytic, equation (107) reads

1 =
ω2

p

k

[
P

∫
g′(v + iν/k)

Ω
dv + i

π

k
g′(vφ + iν/k)

]
, (110)

which is exactly the formula obtained by Landau.

Appendix B. RELEVANCE OF TRANSIENTS BEFORE LANDAU DAMPING

In this Appendix, we discuss the relevance of transients that would occur before the self-

consistent electrostatic field may experience Landau damping. To do so, we have to specify how

the self-consistent electrostatic field has actually been generated, an issue that is usually eluded.

This implies that we do account for the external drive (e.g. a laser, a polarized grid, electrodes. . . )

used to induce the self-consistent field in the plasma, when calculating the electron motion. The

calculation is, therefore, slightly more general than that leading to Eqs (14)-(18). Such a gener-

alization has already been performed in Ref. [14] when the self-consistent field was slowly driven.

An important point of Ref. [14] was to prove that a wave may be considered as slowly varying,
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provided that its complex amplitude did not change much during a time interval of the order of

τmix = (kvT)−1. More precisely, the typical wave growth rate, γ, had to be such that |γ|τmix < 0.1.

We now further discuss the importance of the product |γ|τmix in terms of the transients. For the

sake of simplicity, the discussion is restricted to the situation when the electrons only feel the effect

of the drive during a finite time interval, namely when 0 < t < τd (see Ref. [14] for a calculation

that does not make use of this hypothesis). We also assume that the total force, including the

effect of the self-consistent field and the drive, derives from an effective potential which reads

ϕ = A(t) exp[i(km.r−ωt)]+c.c. (which has been proved to be correct in Ref. [14] when the plasma

wave was laser driven). Because we include the effect of the drive, we can now integrate the

electrons motion from the time when they are at equilibrium, rj = rj0 when t = 0. Then, Eq. (14)

is changed into

∆rj1(t) = αkm

∫ t

0
τA(t− τ) exp[i(Ωj(t− τ) + km · rj0)]dτ + c.c. (111)

If the wave is slowly driven, A(t) is a slowly-varying function, and one may stop the Taylor

expansion of A(t− τ) at first order, which yields

A(t) =

∫
ω2

p

km
A(t)g′(v)

1− cos(Ωt) + i sin(Ωt)

Ω
dv

− i
ω2

p

k2
m

Ȧ(t)

∫
g′′(v)

cos(Ωt)− i sin(Ωt)− 1

Ω
dv, (112)

which is the same as Eq. (18) except that the term proportional to h(v) no longer appears, since the

calculation has been performed with δrj = 0. Hence, unlike in Eq. (18), no transient is expected

from this term. Now, when t > τd it is clear that A(t) is nothing but the amplitude of the self-

consistent potential, since the electrons no longer feel the effect of the drive. Moreover, because it

is slowly driven, only when τd � τmix may the self-consistent field reach a significant amplitude,

and may effectively be Landau damped. Hence, when t > τd, Eq. (112) leads to Eq. (19). This

means that, if the wave is slowly driven, it is Landau damped just after the drive has been turned

off, and there is no transient.

Let us now investigate the situation when the wave may no longer be considered as slowly-

varying when t < τd. Then, Eq. (112) is no longer valid, and we have to pay a specific attention to

the electron motion during the driving phase (t ≤ τd). To do so, we still assume that the electrons

are at equilibrium when t = 0. Moreover, we use Eq. (111), which is exact, to calculate the shift

in their positions at t = τd, induced by the drive and the self-consistent electric fields. This yields

∆rj1(t) = αkm

∫ τd

0
τA(τd − τ) exp[i(Ωj(τd − τ) + km · rj0)]dτ + c.c.

≡ δrj sin(km · rj0 + ψ0). (113)
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As noted in Section III A, the phase ψ0 has no importance in the derivation, and we henceforth

drop it. Using the result of Eq. (113), we now calculate the shift in position when t > τd, which

will let us conclude about the evolution of the wave amplitude. Using again Eq. (111), we find

∆rj1(t) = δrj sin(km · rj0) +

{
αkm

∫ t

τd

τA(t− τ)dτ

+ αkm

∫ τd

0
τ [A(t− τ)−A(τd − τ)] dτ + c.c.

}
, (114)

where we introduced

A(t) ≡ A(t) exp[i(Ωjt+ km · rj0)]. (115)

In Section III A, the limit τd → 0 was considered, which yields Eq. (14). In this Appendix, we

specify how small τd has to be for the results of Section III A to be valid. First, we want the third

term in the right-hand side of Eq. (114) to be negligible, which is only true if t � τd and if A(t)

does not abruptly vanish within a time interval smaller than τd. The first condition implies that

the results of Section III A are only valid when t� τd. The second condition is only true provided

that γLτd � 1.

Neglecting the third term of Eq. (114) and following the same steps as in Section III A, one

finds that Eq. (18) is changed into

A(t) =

∫ [
Ne

2ε0k2
m

h(v) exp(−iΩt)

+
ω2

p

km
A(t)g′(v)

e−iΩτd − cos(Ωt) + i sin(Ωt)

Ω

]
dv

− i
ω2

p

k2
m

Ȧ(t)

∫
g′′(v)

cos(Ωt)− i sin(Ωt)− e−iΩτd

Ω
dv. (116)

Then, Eq. (18) is recovered only in the limit Ωτd → 0. Hence, this equation is only valid provided

that the wave could reach a significant amplitude, due to the external drive, during a time much

smaller than τmix and the plasma period. When the latter condition is fulfilled, Eq. (18) implies

that, once the drive is turned off, one has to wait for a time of the order of τmix before Landau

damping is effective.

Therefore, we recover here the usual difference in a system’s response to a sudden excitation

compared to an adiabatic one. When a system is subjected to a sudden change, it usually rapidly

oscillates before entering a stationary, or slowly-varying, regime. These transient oscillations do

not exist under an adiabatic-like external force, and the system keeps on varying in a smooth way.

Note that we only derived the wave evolution in two opposite limits, either when the driving

time, τd, was much smaller than τmix and the plasma period, or when it was much smaller than
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τmix. The situation when τd is either of the order of the plasma period or of τmix would deserve

further investigation.

Appendix C. INFINITE NUMBER OF BEAMS

This appendix provides calculations similar to those in [31], but reformulated in a form suitable

for the derivation of section V, and with the correction of several errors. We first focus on εd1(m, ω)

defined by equation (51). In order to separate the regular and the singular parts of this quantity,

we add and subtract to the right hand side of equation (51) the quantity

ω2
p[

π2g(ω/k)

k2δ sin2(πω/kδ)
− 2πg′(ω/k)

k2
cot(πω/kδ)], (117)

where k = km. This yields

εd1(m, ω) =1− ω2
p

[
π2g(ω/k)

k2δ sin2(πω/kδ)
− 2πg′(ω/k)

k2
cot(πω/kδ)

+Σ∞σ=−∞(
[g(σδ)− g(ω/k)]δ

(ω − σkδ)2
+

2g′(ω/k)ωδ

k(ω2 − (σkδ)2)
)

]
, (118)

where use has been made of the relations (see [2])44

π2

sin2(πx)
= Σ∞σ=−∞

1

(x− σ)2
(119)

π cot(πx) = Σ∞σ=−∞
x

(x2 − σ2)
. (120)

We notice that the function of σδ inside the summation in equation (118) has no real poles.

Therefore, the sum passes smoothly to an integral as δ goes to zero45. In this limit, equation (118)

becomes

εd1(m, ω) =1− ω2
p

[
π2g(ω/k)

k2δ sin2(πω/kδ)
− 2πg′(ω/k)

k2
cot(πω/kδ)

+

∫ ∞
−∞

(
g′(v)

k(ω − kv)
+

2g′(ω/k)ω

k(ω2 − k2v2)
)dv

]
. (121)

We now compute the zeros of εd1(m, ω) and write ω = α + iβ. We first consider those with β

vanishing when δ goes to zero. If β vanished like or faster than δ, the first term in the bracket

of equation (121) would diverge, while the second and third one would remain finite, which is

impossible. Therefore, β vanishes slower than δ, which forces the cotangent to converge toward

−µ i, where µ = ±1 is the sign of β. Then, in order to stay finite, the first term requires β to

44 Equation (120) corrects a typo in equation (33) of [31].
45 We assume g′(v) continuous, |g(v)| to be integrable, and g(v) ≥ 0.
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scale like δ | ln(δ/vT) |. With this in mind, and looking for solutions in the vicinity of nkδ, equation

(121) requires

ω2
p[−4π2g(nδ) exp[2π(iµα1 − |β|)/kδ]

k2δ
+

iµπg′(nδ)

k2
]

= 1 + P

∫ ∞
−∞

ω2
pg
′(v)

k2(nδ − v)
dv, (122)

for nδ in the support of g, with α1 = α − nkδ. Equation (121) provides two contributions to the

term in g′(nδ): one from the term in cotangent, and one from the pole of the term in g′(v) in

the integral, while the two poles of the term in g′(ω/k) bring contributions cancelling each other.

Solving for α1 and β yields

tan
2πα1

kδ
= −

πω2
p

k2
g′(nδ)/[1 + P

∫ ∞
−∞

dv
ω2

pg
′(v)

k2(nδ − v)
] , (123)

β = µ
kδ

2π
ln

{[
k2δ

4π2ω2
pg(nδ)

]
×(1+ P

∫ ∞
−∞

dv
ω2

pg
′(v)

k2(nδ − v)

)2

+

(
πω2

pg
′(nδ)

k2

)2
}. (124)

Equation (123) yields 2πα1/kδ modulo π, and the right solution is obtained by requiring cos(2πµα1/kδ)

to have the opposite sign to the denominator of this equation.

Like the natural frequencies of the beams, the roots are spaced kδ apart in α. Therefore, the

above zeros have real parts between these natural frequencies. There are two roots for each beam,

since µ can be either positive or negative, and no root away form the support of g. Thus we obtain

two modes for each beam, as required.

We now compute ∂ε
∂ω (m, ω) defined in equation (54) for the case of a vanishing imaginary part

of ω when δ goes to zero. Here again, we handle the singularity by adding and subtracting to the

right hand side of equation (54) the quantity

2ω2
p[−π

3 cos(πω/kδ)g(ω/k)

k3δ2 sin3(πω/kδ)
− π2g′(ω/k)

k2δ sin2(πω/kδ)
+
πg′′(ω/k)

2k3
cot(πω/kδ)]. (125)

These terms can also be written in the form of sums by using again equations (119) and (120), and

(see [2])

π3 cos(πx)

sin3(πx)
= Σ∞σ=−∞

1

(x− σ)3
. (126)

Using the latter expression, for δ small we find that ε′σ,µ is given by equation (56).
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Appendix D. APPROACHING THE SINGULAR LIMIT BY COARSE-GRAINING

In the introduction, we recalled the pulverization procedure for deriving Vlasov equation from

the BBGKY hierarchy. The singular limit can be obtained by a coarse-graining procedure, which

is germane to the pulverization procedure: each particle is substituted by a continuum of particles

with velocities close to its velocity, with a mismatch in velocity ∆v distributed with the continuous

distribution P (∆v), instead of a discrete distribution in the case of the pulverization46. This

procedure may be viewed as the counterpart in velocity of the quantum regularization of small

spatial scales for collisions recalled in the introduction. Indeed, the coarse-graining in velocity may

appear as a way to account for the quantum uncertainty on the particle velocities.

The calculation leading to equation (47) can be performed again, but the summation over

particles now involves an integral over the nearby velocities of the coarse-grained system. Then

ϕ(bal)(m, ω) is substituted with

ϕ
(bal)
cg,j (m, ω) = − ie

ε0k2
m

∫
exp[−ikm · rj(0)]

ω − km · (ṙj(0) + u)
P (u)d3u, (127)

and

f0(v) =

nb∑
σ=1

NσP (v −wσ), (128)

where nb is the number of beams. If the width of P is large with respect to the edge of an

elementary cube of the velocity grid, f0 is a smooth function, the grid may be taken as very tight,

and for practical purposes P (u) may be taken as a Dirac distribution in equation (127), which

then becomes equation (46).

Appendix E. SHIELDED COULOMB POTENTIAL BY A SINGULAR LIMIT OF THE

MANY-BEAM DESCRIPTION

If in equation (65) we take first the limit δ → 0 and then the limit ε→ 0+, according to equation

(121), εd(m,km · v + iε) converges toward

εlim(m,km · u) = 1 + ω2
p P

∫ ∂g
∂v (v)

km(km · u− kmv)
dv − iµ

πω2
p

k2
m

∂g

∂v
(
km · u
km

). (129)

This is nothing but the contribution of ε(m,km ·u+iε) in the same limit (see for instance equation

(9.12) of [105]). Therefore, for δ small enough, equation (64) becomes equation (68), and equation

46 More precisely, the pulverization leads to infinitesimal beamlets whose summation corresponds to a coarse-graining

of the previous multi-beam-multi-arrays.
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(65) becomes equation (69).
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