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Abstract—Electronic nose is a promising bio-inspired instru-
ment for the detection of Volatil Organic Compounds (VOCs),
meaning a compound containing carbon which easily evaporates.
One of the most important parts of these devices is a set of
non-specific chemical sensors, which will interact with the VOC
and output valuable information for its identification. The non-
specificity of these chemical sensors ensures the universality of
the instrument. The main task achieved by this instrument is
the detection of individual VOC. However, in many real-life
applications, mixtures of VOCs are observed. The recovery of
the mixture composition, meaning the individual signatures and
their relative contribution, is a challenging task which can be
studied in a Blind Source Separation framework. In this paper,
we propose a non-linear mixture model for a particular type of
chemical sensors. This model is based on the Langmuir isotherm
for a multi-component gas. We study the joint identifiability of
signatures and concentrations, and propose a necessary identifi-
cation condition. Finally, we propose an algorithm for the blind
estimation of the parameters and assess its performance through
simulations.

Index Terms—non-linear source separation, Langmuir, elec-
tronic nose, two-block coordinate descent, gas mixture

I. INTRODUCTION

Electronic nose (eNose) is a bio-inspired instrument which
is able to detect and identify Volatile Organic Compounds
(VOCs). A VOC is a chemical compound which contains
carbon and can be easily evaporated. An eNose is composed
of several non-specific chemical sensors and a transduction
method [1]. First, the VOC interacts with the set of chemical
sensors, providing chemical information on the VOC, which is
assumed to be highly VOC-dependent. Then, the transduction
method transforms the chemical information into a usable one
such as electrical or optical. The outputs are time-series from
which features are extracted in order to create a signature for
a given VOC.

The chemical sensors of an eNose are expected to be non-
specific, meaning that they can interact with a broad variety of
VOCs. This non-specificity is in fact a requirement for having
a universal device [2]. In a real-life application, the instrument
can be exposed to mixtures of several VOCs. In this case, the
resulting output will be no more the individual signature of a
VOC but the mixing of all the individual signatures.

Although it is clearly a Blind Source Separation (BSS) case,
this issue has been ignored by the literature of eNoses. To the
authors’ knowledge, the issue of BSS for eNoses was raised
only recently [3].
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This article tries to solve BSS problem for a type of chemi-
cal sensors used for an eNose. First, we describe a theoretical
non-linear mixture model based on the Langmuir isotherm [4]
for a multi-component gas. Then, some theoretical results on
identifiability in the blind case are provided. We propose an
algorithm based on a two-block coordinate descent in order
to recover the sources and their relative contributions. Finally,
their reconstruction is validated through simulations.

II. PROBLEM STATEMENT

The chemical sensors studied in this contribution are those
recently described in [5]. Briefly, the sensitive layer of the
sensor consists of a biomolecular receiver, called a ligand,
which is dropped off a golden surface. Thanks to an air
flow, the analysed VOC, called an analyte, is brought above
the surface and interacts with the ligand through a reversible
binding reaction. This chemical reaction is recorded in real-
time thanks to a Surface Plasmon Resonance imaging (SPRi)
technique. Briefly, the surface is illuminated by a monochro-
matic light which is reflected towards a photodetector. The
chemical interactions occurring at the surface change the
medium, which in turns modifies the refractive index. Finally,
the refractive index changes the reflected light. Consequently,
the amount of received light accounts for the binding reaction
between the ligand and the analyte. The above explanations
are summarized in Figure 1.

To describe the Langmuir model for a multi-component gas,
some fundamental assumptions need to be made:

A1l Environmental parameters (temperature, ...) are constant.

A2 There is no interaction between the R analytes.

A3 The binding reaction is only mono-layer.

A4 A binding site can be occupied only by one analyte.

A5 The concentration ¢, of each analyte is constant during
all the injection phase.

A. Model

1) Single sensor: Let’s consider a complex mixture of R
analytes measured by the sensor. From Assumptions Al-4,
each of the R analytes will interact with the sensitive layer by
a binding reaction. Considering all reactions as independent
of each other, there are R chemical reactions occurring on the
surface:

A+ L= AL
where A,., £, a, and d,. respectively stand for the rth analyte,
the ligand, the absorption and desorption constants, which are
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Figure 1: A binary mixture composed of the analytes .A; (red dots) and A2
(blue dots) is injected by air flow above the chemical sensor £. The binding
reactions governed by the parameters (a,,d,) are recorded in real-time thanks
to a SPRi technique. See the text for more details.

Prism

Light

specific to the reaction. Under assumption AS, we can describe
the rate of complex formed A,-L by the differential equation:

d[A, L], (1) S
T = arcr<[£:|s - ;[Azﬁ]s(t)) - dT[AT‘C]S(t)

(1)
where [-]5 stands for the surfacic concentration (in mol/m?).
The equation (1) can be simplified to:

do; (t)
dt

I

where 0,.(t) = [’?Zf]s (t) stands for the fraction of sites being
occupied by the r™ analyte. If we wait for a sufficiently
long time t.,, the system of chemical reactions will reach

an equilibrium phase, meaning that Vr, Vi > 1.,

do, () e c
o =0=ac (- D1657) — d, 05

i=1

The solution of the " equation can be easily obtained by
summing the R equations and isolating ZfL 6. This leads
to:
_ kycy

1+ Zszl kici
ar

where k, = T = 0. Equation (3) is referred to as the
Langmuir isotherm [4] for a multi-component gas.

The SPRi measurement of the described reactions can be
assumed to be proportional to the fraction of occupied sites by
considering that the medium .4, £ is in the nanometer range
[6], [7]. The coefficient of proportion « is then dependent
on the SPR settings through a constant 3, the ligand surfacic
concentration [L]s and the mass analyte m, : a = S[L]sm,.
To simplify, B[L]; is assumed here to equal 1.

€q
0;

3)

The assumption of a thin layer at the surface also implies
that the medium will be viewed as homogeneous by the SPRi.
We can then assume that the individual optical outputs will

add up: 5 RO
y==rty—— “
14> krey
where y denotes the measurement.

2) Sensor array: At this stage, considering that only &, and
¢, are unknown, we have 2R parameters and only 1 equation.
It is obviously impossible to estimate them correctly with so
little information. A classical approach is to consider several
sensors, say P, with different types of ligands to add equations
to the problem. By comparison to the above developments, k,
is now written as k. where the subscript p stands for the
sensor index number. The vector k, € RE can be seen as
the fingerprint - or the olfactive signature - of the analyte r.
All the individual signatures are stacked in a matrix K =
[ki,...,kp] e REXE,

3) Several mixtures: Now, we have R(1 + P) parameters
for only P equations. There is still too little information
for solving the problem of estimating £, and c,. An other
intuitive way to add equations is to consider several experi-
ments, say N, of the same mixture but at different individual
concentrations. We denote by c,, the concentration of the i
analyte in the n'™ experiment. All the concentration vectors
¢, € RE are stacked in a matrix C = [cy,...,cy] € REXN,

4) Final model: Taking into account the sensor dimension
(subscript p) and the experiment dimension (subscript n), the
measurement should now be denoted ¥,,,, meaning the output
of the pth sensor for the n™ mixture. As above, we stack all the
measurements in a matrix called Y = [yq,...,yy] € RE*V,

Finally, the model can be seen in a scalar form as in (3),
but we can now also write it in compact form:

Z(K.C)=Y =KMCA(1ply + KC) (5

where M € RE*R stands for the diagonal matrix of the
masses and [/ for the Hadamard (i.e. entrywise) division.

B. Some limiting cases

The above model can be related to well-known models in
the BSS literature in some limiting cases.

1) Low concentration: When we deal with an application
where low concentrations are expected, this leads to a quite
simpler version of the model (5). Indeed, assuming C « 1 and
K ~ O(1), we can simplify (5) by a 0-order Taylor expansion:

Y ~KMC (6)

Then (6) is a linear mixing model, whose identifiability
conditions have been addressed in the BSS literature [8], [9].

2) Saturation: At the opposite end, if we work with really
high concentrations or with analytes having a really high
affinity with the sensor array, then KC >» 1 and (5) gets
harder:

Y~KMCQKC (7N



Eq. (7) is clearly non identifiable as V(D;, Dy) € RP*P x
RN*N DI KMCD>;/D,KCDy; = KMC[1KC where
(D4, Dy) are diagonal. Fortunately, this version of (5) is
unlikely to appear since it would be useless to put the sensor
in a saturation regime.

3) Analyte with the same mass: As a final limiting case,
consider analytes having the same mass m, i.e. M = mlI:

Ly - kcpapy + KC) (8)
m

This particular model falls into a class known as Post Non-
Linear mixtures [10]. The component-wise inversion g(y) =
ﬁ enables to recover the linear model Y = K C. Model (8)
is interesting but rather unrealistic in an application prospect,
as it considerably constrains the set of analytes that can be
mixed together.

4) Conclusion: The above special cases of model (5) con-
strain the range of applications of these chemical sensors for
an electronic nose. Therefore, in the following, we will try to
deal with the general case.

III. METHOD

In this section, the unsupervised — or “blind”- case is
studied, meaning that neither K or C' are known so that they
have to be estimated jointly. The masses M are assumed to
be known in order to simplify the study.

A. Permutation issue

A usual trivial indetermination in a BSS framework is the
source permutation, when the model is linear. It is interesting
to note that model (5) doesn’t suffer from this indetermination,
subject to a weak assumption. Indeed, let Q € R®*F be an
invertible matrix, and keeping in mind that M is diagonal, we
have:

Z(KQ,Q7'C) = Z(K,C)
< QM = MQ
< Vi, (QM);; = (MQ);
e Vi X giemey Sy MirGr
< Vi, Qij M = MiiGij
S V’L7] qij = 0 or mg; = My;

Thus, if we assume that each analyte of the mixture has a
different mass, meaning that Vi # j, m;; # my;, then the
only trivial indetermination is the scaling ambiguity.

B. Identifiability

Identifiability is generally not a trivial question meaning that
the parameters (K, C) which have generated the measures
Y according to model (5) can be exactly retrieved or not.
The study carried out in Section III-A showed that the model
will be at best identifiable up to a multiplicative diagonal
matrix. Thereafter, identifiability will mean identifiability up
to a diagonal matrix.

We assume that we have more sensors and more mixtures
than there are analytes, so that P > R and N > R. To find

identification conditions for C, we rewrite model (5) noticing
that it is separable across experiments:

5) < Vn, y,H01p+ Ke,) =KMec,
Lemma 1. Let A, < KM — diag(y,)K. Then c, is
identifiable if and only if A, is full rank. Similarly, let
B, diag(y,)C" — C'M. Then k,, is identifiable if and
only if By, is full rank.

Proof. The proof is straightforward: assume there are two
solutions ¢,, and c},. Then A,c, = y,, and A,c, = y,,.
By subtraction, A, (¢, — c},) = 0p. Since A,, is full rank,
we have necessarily (c,, — c,) = 0p. The proof for k,, is the
same. O

Proposition 1 (Necessary condition). If ¢, (resp. k,) are
identifiable, then K (resp C) is full rank, or M is not
proportional to the Identity matrix.

Proof. Let’s prove the statement for K, since a dual rea-
soning holds for C. The proof is by contradiction. Assume
rank{K} # Rand M o Id, then Jv € RE such that
Kv = 0p. Hence diag(y,,)Kv = 0p. On the other hand,
because M o« Id, KMwv = 0p. Hence A, v = 0p, which
prevents identifiability from Lemma 1. O

C. Algorithm

In order to retrieve the parameters (K,C), we propose
to use an alternating least squares algorithm, also called
two-block coordinate descent. It consists of minimizing the
cost function T (see below) with respect to K using an
estimation of C, and then minimizing w.r.t. C using the
previously estimated value of K. This process is repeated until
convergence.

As shown in section II-B, when the product KC' is too
large compared to 1, the model can be simplified into a non-
identifiable one, for which there is no hope of recovering the
true parameters. By assuming that the latter are not located in
this region and to prevent the algorithm from getting stuck in
this “non-identifiable area”, we propose to regularize it with
the max-norm.

Algorithm 1: Estimate (K, C)

Require: C, 2, €, Pmax
while |Y(K,11,Cpi1) — T(K,,Cp)| > € & p < Pmax
do
Kp+1 <« arg minKZO, \\Kl\maxﬁm T(K, Cp)
Cp+1 <« arg mincz& [Clmax< = T(Kp+1, C)
p—p+1
end while
return K, C),

Q
p+1Tmax




Imagine thatAwe are in the K estimation block, so we have
an estimation C' for C'. An intuitive way for constraining the
amplitude of the product K C'is to upper-bound the max-norm
with a parameter €:

Vi, j (KC)ij < | KC|max = Rsup(|(KC)y|) <Q (10)

ij
Clearly, constraint (10) would not be trivial to implement.

So, we relax it by noticing that the max-norm | - |max iS
submultiplicative [11]:

| K Cllmax < [ K |max|Clmax < Q (11)

Now constraint (11) imposes that the maximum value of K
is lower than or equal to H éilmx' Thus, it can be easily
implemented in addition to the non-negativity constraint as
a box-constraint. For the minimization of each block, we
propose to use the L-BFGS method [12], which can easily

incorporate box-constraints.

IV. COMPUTER RESULTS

To validate Algorithm 1 and assess its performance in the
presence of noise, we carry out simulations. The number of
sensors, P, is set to 100 and the number of experiments, [V,
to 100. We vary the number of analytes in the mixtures, R, to
5, 10 and 15. The vector of masses is [10,20, ..., 140, 150]'
g/mol (we take the 5 first masses when R = 5, etc...) and 2 =
100. Matrices K and C' are generated randomly according to
an exponential law with A\ = 1.5. The noise is additive and
Gaussian with zero-mean and standard deviation o,,. When
negative values are created due to noise addition, we clip them
to 0. o, depends on the Signal to Noise Ratio (SNR) defined

as:
5N Y
SNR = 20 log(Z—n) with o = HP]LF

As shown in section III, parameters (K, C') are identifiable
up to a diagonal matrix when the masses are different for
each analyte. Consequently, to assess estimations (K ,C’), a
correlation measure is well suited:

R R
1 - 1
Corg = = TZ:lcor(lcr7 k.) Corc = = ;cor(cr, ¢.) with,

_ S (@ = 2)(yi — 9)

V2 @ — 2P (v — 9)?
where - stands for the mean of the vector.

Even if the model doesn’t suffer theoretically from the per-
mutation issue, in practice some local minima can correspond
to permuted sources. This problem is overcome by taking each
column of K (resp. Ct) in an arbitrary order. We associate
it with the closest column of the ground truth K which is
then deleted from K for the subsequent columns of K. This
yields a lower bound to the true correlation between K and
K. More details will be given in an extended paper.

The model is generated 100 times with different parameters
and we try to recover blindly (K, C) using Algorithm 1 start-
ing from only one random initialization Cy ~ U([0,1]). For

V(z,y) € RP, cor(x,y)
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Figure 2: Correlation results for different SNR. From top to bottom, the
number of analytes in the mixtures is 5, 10 and 15.

a given SNR, the correlation results, calculated as explained
above, are averaged over the 100 trials.

Figure 2 shows that Algorithm 1 recovers correctly the sig-
natures and their concentrations when the noise is sufficiently
low. The fact that the performance is not exactly 1 in this case
is explained by the non-convexity of the problem. Indeed, over
the 100 realizations per SNR, the algorithm is highly expected
to sometimes reach a local minimum which is not correlated
with the ground truth, especially when we start from a single
random initialization.

V. CONCLUSION AND PROSPECTS

We have described a mixture model based on the Langmuir
isotherm for a multi-component gas, which can be applied
for a type of chemical sensors used in an electronic nose.
This model characterizes a non-linear relation between the
concentration of each Volatile Organic Compound (VOC) in
the mixture and their individual signature. This non-linearity
makes it a quite challenging problem for a Blind Source
Separation (BSS) issue.

For this purpose, we have derived conditions for joint
identifiability of signatures and concentrations. We have also
proposed a two-block coordinate descent algorithm in order to
retrieve blindly these parameters. Performance has eventually
been assessed in the presence of noise.

Further work will include experiments with real data. The
assumption of masses knowledge also has to be relaxed.
Finally, a mixture model depending on time derived from the
system of differential equations (2) is currently being studied.

ACKNOWLEDGMENT

The authors would like to acknowledge Cyril Herrier and Thierry
Livache from the start-up Aryballe Technologies for their highly
valuable help in the understanding of the proposed model.



(1]

(2]

(3]

(4]

(]

(6]

(7]

(8]

(9]
(10]

(11]
[12]

REFERENCES

K. Persaud and G. Dodd, “Analysis of discrimination mecha-
nisms in the mammalian olfactory system using a model nose.”
Nature, vol. 299, no. 5881, pp. 352-355, 1982.

T. C. Pearce, S. S. Schiffman, H. T. Nagle, and J. W. Gardner,
Handbook of machine olfaction: electronic nose technology.
John Wiley & Sons, 2006.

S. Madrolle, R. A. Ando, L. T. Duarte, R. Attux, C. Jutten, and
P. Grangeat, “Méthodes de séparation de sources non linéaires
pour des capteurs de gaz a oxyde métallique,” in XXVieme
Collogue Gretsi, 2017.

A. Halperin, A. Buhot, and E. B. Zhulina, “On the hybridization
isotherms of DNA microarrays: the Langmuir model and its
extensions,” Journal of Physics: Condensed Matter, vol. 18,
no. 18, p. S463, 2006.

S. Brenet, A. John-Herpin, F. X. Gallat, A. Buhot, T. Livache,
C. Herrier, T. Rousselle, and Y. Hou, “Development of a novel
multiplexed optoelectronic nose for analysis of volatile organic
compounds,” in 2017 ISOCS/IEEE International Symposium on
Olfaction and Electronic Nose (ISOEN), May 2017, pp. 1-3.
E. Stenberg, B. Persson, H. k. Roos, and C. Urbaniczky, “Quan-
titative determination of surface concentration of protein with
surface plasmon resonance using radiolabeled proteins,” Journal
of colloid and interface science, vol. 143, no. 2, pp. 513-526,
1991.

E. Maillart, “Imagerie par résonance des plasmons de surface
pour I’analyse simultanée de multiples interactions biomolécu-
laires en temps réel,” Ph.D. dissertation, Université Paris Sud-
Paris XI, 2004.

K. Huang, N. D. Sidiropoulos, and A. Swami, “Non-Negative
Matrix Factorization Revisited: Uniqueness and Algorithm for
Symmetric Decomposition,” IEEE Transactions on Signal Pro-
cessing, vol. 62, no. 1, pp. 211-224, Jan. 2014.

P. Comon, “Independent component analysis, a new concept?”
Signal processing, vol. 36, no. 3, pp. 287-314, 1994.

A. Taleb and C. Jutten, “Nonlinear source separation: The
post-nonlinear mixtures,” in In: Proceedings of the ESANN’97.
Citeseer, 1997.

M. S. P. Kaare Brandt Petersen, The Matrix Cookbook. Tech-
nical University of Denmark, Nov. 2012.

R. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A Limited Memory
Algorithm for Bound Constrained Optimization,” SIAM Journal
on Scientific Computing, vol. 16, no. 5, pp. 1190-1208, Sep.
1995.



