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A Theoretical Study on Cyclacenes: Analytical

Tight-Binding Approach

Stefano Battaglia∗†, Hai-Anh Le‡, Gian Luigi Bendazzoli§,
Noelia Faginas-Lago¶‖, Thierry Leininger∗∗, Stefano Evangelisti††

September 7, 2018

Abstract

We present a theoretical study of cyclacene molecules performed at tight-binding
level. The orbital energies and eigenvectors have been analytically computed, and ex-
act expressions for the axial component of the total position spread and polarizability
tensors have been obtained. In absence of dimerization, the system has a Dnh symme-
try, where n is the number of hexagonal units. The energy bands present no gap at
the Fermi level, and to this fact it corresponds a diverging (per-electron) polarizabil-
ity for n → ∞ in the direction of the system symmetry axis. The two (degenerate)
components of the polarizability on the σh symmetry plane, on the other hand, remain
finite for n → ∞. The total position spread tensor presents a qualitatively different
behavior, since all the three components of the position spread per electron remain
finite for n → ∞. The results are analyzed and discussed for both axial and planar
components separately as these are affected differently with respect to the increasing
system size. Both dipole polarizability and total position spread have been computed
using an ab initio approach for the smallest systems, in order to compare the analytical
tight-binding expressions with a higher-level theory.

Keywords: Cyclacenes, Tight-Binding, CASSCF, TPS, Polarizability

∗Laboratoire de Chimie et Physique Quantiques, IRSAMC, Université Paul Sabatier, 118 Route de Nar-
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Introduction

First imagined by Edgar Heilbronner in 19541, [n]cyclacenes (cyclic polyacenes) have been

a fascinating research topic. A thorough understanding of cyclacenes is important as they

could be considered as the shortest zigzag carbon nanotube (CNT) and could be used to

model finite-length CNTs in simulations. Furthermore, [n]cyclacene chains have the potential

to be used as precursors for the synthesis of zigzag CNTs, allowing for a more controlled way

to fabricate this type of carbon nanostructure2. Unfortunately, the synthesis of [n]cyclacenes

has not yet been realized as it is summarized in a number of reviews3–5.

Besides experimental work on [n]cyclacenes, several computational studies using semi-empirical

methods6–16 and ab initio methods17–22 have been carried out on these systems. The semi-

empirical work was focused both on an analysis of the structural properties of the cyclacenes

as well as the behavior of electronic properties such as the HOMO–LUMO gap as a function

of the system size parameter n. It was found that the gap decreases in an alternating way

depending on the parity of n, as more units are added to the system. Depending on the type

of semi-empirical method employed, different limits for the gap were found, but all in agree-

ment with their general trend. The investigation of geometrical parameters, in particular the

C–C bond lengths perpendicular as well as parallel to the principal axis and their alternation

with respect to different values of n, was also insightful. The zigzag bonds form two parallel

delocalized polyacetylenic ribbons which are connected through the parallel C–C bond. It

has been found that the polyacetylenic chains undergo dimerization at AM1 level of theory,

while the parallel bond results quite elongated. The influence of such geometric distortion

from the non-dimerized system is to uniformly increase the HOMO–LUMO energy gap.

First principles ab initio studies mainly concentrated on the ground-state character of the

wave function and the corresponding excitation energy to the first electronically excited

state. Recent studies19–22 have shown that the ground state is a singlet state of open-shell

character, with an increasing number of unpaired electrons with increasing system size. This

fact in particular, is believed as one of the causes of the difficulties in the synthesis of cy-

clacenes as it was already argued in the reviews mentioned above. Another important recent

result21,22 is the clear behavior of the singlet–triplet energy gap as a function of the system

2



size. It was found that for an increasing number n of units, the gap decreases toward a

finite value. This property is very similar to their linear counterpart, which shows the same

behavior, opening important possible applications also in the field of molecular electronics.

The high computational cost of high-level methods based on first principles severely limits

the maximal size of the system that can be studied. As a result, semi-empirical approxima-

tions as simple as the tight-binding (Hückel) method, remain important to gain insight in

the behavior of molecular systems at the thermodynamic limit.

In this article, an analytical investigation of cyclacenes in the Hückel approximation is pre-

sented. We go beyond the simple study of the HOMO–LUMO gap by analyzing the behavior

of the total position spread (TPS) and polarizability tensors as a function of the system size.

The MATHEMATICA software package23 was used to obtain the analytical expressions of

the density of states, the axial component of the TPS and polarizability tensors as well as

the numerical calculation of the corresponding longitudinal components.

Fully analytical expressions for the axial components of the TPS and polarizability tensors

were computed. For the planar components, on the other hand, we were not able to obtain

closed expressions.

This article is organized as follows. In Section 2, the tight-binding Hamiltonian for a cy-

clacene system is presented, and its eigenvalues and eigenvectors, along with the density of

states, are obtained in closed form. In Section 3, analytical expressions of the axial com-

ponents of the TPS and polarizability are also derived in closed form. The corresponding

planar quantities were computed numerically. The molecular properties thus obtained are

then compared to higher level results calculated by ab initio methods. Some conclusions

are drawn in Section 4, where the different behavior of the axial polarizability and TPS is

discussed.

Cyclic Hückel Polyacenes: the Tight-Binding Approximation

For two-dimensional (2D) or locally 2D carbon systems, the tight-binding (or Hückel) Hamil-

tonian Ĥ is a topological operator that involves carbon π electrons only. Its parameters are

defined as a function of the C–C bond distance alone and, in general, the geometry of the
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system has no influence on the eigenvalues and eigenvectors of Ĥ besides its symmetry. How-

ever, in this work we are interested in computing the polarizability and the total position

spread tensors, which depend on the fine details of the system geometry. Here, we consider

cyclic polyacenes consisting of n benzene hexagons of side length b (thus all C–C bonds are

assumed to be equal), lying on a cylinder of radius R = nb
√
3

2π
aligned along the z-axis. A

schematic drawing of the system can be seen in Figure 1, while the coordinates of the atoms

are summarized in Table 1.

Hückel Orbitals and Energies

We define the unit cell of [n]cyclacenes with four carbon atoms as shown in Figure 2, where

orthonormal p-like orbitals pνµ (µ ∈ [0, n− 1] denotes the cell and ν ∈ [1, 4] the atom within

the cell) have been centered on each atom. The orbitals pνµ are assumed to be eigenfunctions

of the position operator, thus satisfying

〈pνµ|r̂|pν
′

µ′〉 = wν
µδνν′δµµ′ (1)

where r = x, y, z.

The Hamiltonian is then defined as usual, with the on-site and hopping integrals, a and t,

respectively, given by

〈pνµ|Ĥ|pνµ〉 = a (2)

and

〈pνµ|Ĥ|pν′µ′〉 = tδνν±1δµµ±1 (3)

where ν ′ = ν ± 1 and µ′ = µ± 1.

The analytical expression of the four energy bands is known15 (see Appendix for a full

derivation), given by

ε1(ξ) = a− t

2
(+1 +

√

9 + 8 cos ξ)

ε2(ξ) = a− t

2
(−1 +

√

9 + 8 cos ξ)

ε3(ξ) = a− t

2
(+1 −

√

9 + 8 cos ξ)

ε4(ξ) = a− t

2
(−1 −

√

9 + 8 cos ξ)

(4)
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where ξ = kθ, k is an integer number and θ = 2π/n.

Note that since −t < 0, the eigenvalues are ordered from the smallest (ε1) to the largest

(ε4), for any value of k. The eigenvectors of the full Hamiltonian for an arbitrary finite

[n]cyclacene are also analytically known, and given by

|m, k〉 =
1√
n

n−1
∑

µ=0

e
2πikµ

n
[

c1,m(kθ)p1µ + c2,m(kθ)p2µ + c3,m(kθ)p3µ + c4,m(kθ)p4µ
]

(5)

where m and k are quantum numbers related to the symmetry of the system. Note that the

eigenvectors with m = 1, 3 are symmetric with respect to the σh plane, while antisymmetric

for m = 2, 4 (see Appendix for details).

By plotting the four energy eigenvalues given in Equation (4) as functions of ξ between −π

and π, we get the energy bands depicted in Figure 3 for a = 0 and t = 1.

The difference between the lowest unoccupied and highest occupied band is given by

∆(ξ) = ε3(ξ) − ε2(ξ) = t
(

√

9 + 8 cos(ξ) − 1
)

(6)

where we notice the closure of the gap for ξ = π. The two eigenvalues ε2(π) and ε3(π) are

degenerate at this level of theory.

In finite systems, the size of the gap depends on the integer value k: the gap vanishes if and

only if there exists a k such that ξ = kθ = π. Since θ = 2π/n, this implies that n must be

even.

To obtain the partial density of states (PDOS) for each energy band, it is convenient to

consider n → ∞ and to treat ξ as a continuous variable defined as the inverse function of

εm(ξ). The PDOS is then obtained for each band separately by computing the derivative as

exemplified here for the highest occupied band

∂ξ

∂ε2
=

∂

∂ε2
arccos

[

1

2

(

ε2
t
− a

t
− 1

2

)2

− 9

8

]

=
−
(

ε2
t
− a

t
− 1

2

)

t

√

1 −
[

1
2

(

ε2
t
− a

t
− 1

2

)2

− 9
8

]2
(7)

The expressions for the other bands are available in the Appendix.

The total density of states of both the occupied bands ε1 and ε2 and the unoccupied bands

ε3 and ε4 is reported in Figure 4 for a = 0 and t = 1.
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The total energy for a finite-size system composed of n elementary cells is given by the

sum of the energies of the occupied orbitals

Etot = 2
n−1
∑

k=0

[

ε1(kθ) + ε2(kθ)
]

= 2
n−1
∑

k=0

[

2α− t
√

9 + 8 cos kθ
]

(8)

where the factor 2 in front of the sum arises from the fact that at every point kθ on the

energy bands there are two electrons. The discrete expression for the energy in Equation (8)

can be evaluated in closed form for n → ∞ as

Etot =
n

π

∫ π

−π

[

ε1(ξ) + ε2(ξ)
]

dξ = 4n

(

α−
√

17tE[16
17

]

π

)

(9)

The function E[x] is the complete elliptic integral of 2nd kind.

The Total Position Spread and Polarizability Tensors

The total position spread (TPS) tensor is a key quantity in the theory of polarizability. It

was introduced by Resta and co-workers under the name of localization tensor (LT)24–26

(notice that Resta’s definition differs from ours in a factor equal to the number of electrons).

In molecular systems, the TPS tensor gives interesting information on the nature of a

bond27,28. On the other hand, at thermodynamic limit, the LT (i.e. the TPS divided by

the number of electrons) differentiate insulators from conductors according to its asymptotic

behavior with respect to the system size.

The TPS tensor is defined as the second moment cumulant of the total position operator

Λrr′ = 〈Φ0|R̂rR̂r′ |Φ0〉 − 〈Φ0|R̂r|Φ0〉 〈Φ0|R̂r′ |Φ0〉 (10)

where R̂r =
∑N

i=1 r̂(i) is the sum over the one-electron position operators (with r, r′ = x, y

and z), N the number of electrons and |Φ0〉 ≡ |0〉 the state of interest (usually the ground

state).

The TPS tensor can be conveniently expressed as sum over excited states |ΦI〉 ≡ |I〉 of the

many electron system

Λrr′ =
∑

I

〈0|R̂r|I〉 〈I|R̂r′ |0〉 − 〈0|R̂r|0〉 〈0|R̂r′ |0〉 (11)
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which in the case of the diagonal components (r = r′), simplifies to

Λrr =
∑

I>0

| 〈0|R̂r|I〉 |2 (12)

where we note that the second term on the right-hand side of Equation (10) drops out.

One advantage of expressing the TPS in the form of Equation (12) is that the polarizability

can be easily obtained by dividing the term | 〈0|R̂r|I〉 |2 in the sum by the energy difference

between the excited state |I〉 and the reference state |0〉, resulting in

αrr =
∑

I>0

| 〈0|R̂r|I〉 |2
EI − E0

(13)

This approach is particularly useful in the case of a model Hamiltonian, since the whole set

of many-particle states |I〉 is known and spans the complete space. In other words, the use

of this technique gives the exact value of the TPS and the polarizability.

For a Hückel system and a one-electron operator r̂ the only non-zero matrix elements appear-

ing in Equations (12) and (13) are those between the ground state |0〉 and single excitations

thereof. Therefore they reduce to integrals between occupied and empty orbitals. In the case

of cyclacenes as modeled in this work, the total position spread tensor takes the following

form
∑

I>0

| 〈0|R̂r|I〉 |2 = 2
2
∑

m=1

n−1
∑

k=0

4
∑

m′=3

n−1
∑

k′=0

| 〈m, k|r̂|m′, k′〉 |2 (14)

where non-primed indexes run over occupied states, primed ones over empty states and the

factor 2 in front comes from the double electron occupancy of the orbitals.

The Axial Component of the TPS and the Polarizability

As usual in Hückel treatments, we assume that Equation (1) holds, such that the matrix

representation of ẑ in the elementary cell is given by

z = b

















1 0 0 0

0 1
2

0 0

0 0 −1
2

0

0 0 0 −1

















(15)

7



The matrix elements appearing in Equation (14) for r̂ = ẑ do not vanish only for k = k′ and

when the symmetry with respect to σh of the orbitals in the sum is different. Thus, the only

nonzero integrals in this case are

〈1, k|ẑ|4, k〉 =
b

4

(

−1 +
3√

9 + 8 cos ξ

)

(16)

〈2, k|ẑ|3, k〉 =
b

4

(

−1 − 3√
9 + 8 cos ξ

)

(17)

and are reported as a function of ξ in Figure 5 (with b = 1), together with their squared

value (which according to Equation (14) is the actual contribution entering the defnition of

the TPS and the polarizability).

The fact that the integral contributions to Λzz are finite at every point ξ comprised in the

interval (−π, π] already suggests that the behavior of the position spread, as the size of the

system increases, will be linear.

The total axial component of the TPS, obtained by summing the integrals in Equations (16)

and (17) for all values of k, has the following form

Λzz = 2
n−1
∑

k=0

[

| 〈1, k|ẑ|4, k〉 |2 + | 〈2, k|ẑ|3, k〉 |2
]

=
b2

4

n−1
∑

k=0

(

1 +
9

9 + 8 cos kθ

)

(18)

By taking the limit of large n values, Equation (18) can be given in closed form as

Λzz =
n

2π

∫ π

−π

2
[

| 〈1, k|ẑ|4, k〉 |2 + | 〈2, k|ẑ|3, k〉 |2
]

dξ =
nb2

68

(

17 + 9
√

17
)

(19)

Indeed, Λzz is linear in n and diverges in the thermodynamic limit: Λzz → ∞ for n → ∞.

The connection to the LT tensor in the theory of the insulating state follows directly, since

simply dividing Λzz by the number of electrons in the system (i.e. 4n) gives a finite number.

Accordingly, this means that along the z Cartesian coordinate, the cyclacene can be regarded

as an insulator. This can be understood as the electrons fluctuation along the z direction

remaining bounded while the system is growing in the other two Cartesian coordinates as n

increases.

To compute the zz component of the polarizability, the transition matrix elements 〈1, k|ẑ|4, k〉
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and 〈2, k|ẑ|3, k〉 have to be divided by ε4 − ε1 and ε3 − ε2, respectively. This results in

| 〈1, k|ẑ|4, k〉 |2
ε4 − ε1

=
b2
(

− 1 − 3√
9+8 cos ξ

)2

16t
(

1 +
√

9 + 8 cos ξ
) (20)

and

| 〈2, k|ẑ|3, k〉 |2
ε3 − ε2

=
b2
(

− 1 − 3√
9+8 cos ξ

)2

16t
(

− 1 +
√

9 + 8 cos ξ
) (21)

The polarizability contributions of Equations (20) and (21) are shown in Figure 6 for b = 1

and t = 1.

Differently to the TPS case, the 2 → 3 transition element diverges at ξ = π due to the

vanishing gap in the denominator. This can also be seen from a power series expansion

around that point, reading

| 〈2, k|ẑ|3, k〉 |2
ε3 − ε2

=
b2

t

[

1

2(ξ − π)2
− 23

24
+

1741(ξ − π)2

480
− 168461(ξ − π)4

12096

]

+O[(ξ−π)5] (22)

The direct consequence of the diverging contribution is that not only the total zz component

of the polarizability tensor trivially diverges in thermodynamic limit (similarly to the TPS)

αzz =
n

2π

∫ π

−π

2

[ | 〈2, k|ẑ|3, k〉 |2
ε3 − ε2

+
| 〈1, k|ẑ|4, k〉 |2

ε4 − ε1

]

dξ → ∞ (23)

but also the per-electron polarizability diverges

αzz

4n
=

1

8π

∫ π

−π

2

[ | 〈2, k|ẑ|3, k〉 |2
ε3 − ε2

+
| 〈1, k|ẑ|4, k〉 |2

ε4 − ε1

]

dξ → ∞ (24)

since the first of the two integrands does so too (cf. Equation (22)).

This means that αzz does not simply diverge (linearly) because of the n/2π prefactor in

Equation (23), but faster than that, as the integral itself is unbounded. This result appears

in contradiction with the axial component of the per-electron TPS, which approaches a finite

value as n → ∞.

We argue that the discrepancy of the two quantities is due to the limitation of the tight-

binding approximation.

In order to investigate this incongruence, as well as obtaining more quantitative results for

both the TPS and polarizability, complete active space self-consistent field (CASSCF) cal-

culations have been performed on a limited number of [n]cyclacenes (geometries and active

9



spaces taken from Ref. 22) using the MOLPRO29,30 and ORCA31 program packages.

In Figure 7, the axial component of the TPS (as implemented in MOLPRO27,32) computed

using a double-ζ atomic natural orbital basis set with polarization functions (ANO-DZP)33

is depicted as function of the system size. Although the predicted linear behavior of Λzz is

an asymptotic limit, already for the first (even-numbered) [n]cyclacenes, a clear linear trend

is observed with a fully quantum mechanical approach, thus supporting the tight-binding

results.

The polarizability has somewhat higher computational requirements. In this work we have

computed the polarizability tensor only for cyclacenes with n equal 6, 8, 10 and 12, using

the aug-cc-pVDZ basis set and the resolution-of-the-identity approximation for the molecu-

lar orbital transformation34–36. The threshold applied for convergence was set to ”verytight”

and an electric field perturbation of 0.0001 atomic units has been added to the system in

order to obtain the polarizability by finite differentiation of the dipole moment.

The results for the αzz component are listed in Table 2. The four available ab initio polariz-

ability values appear to increase approximately linearly with system size. In particular, there

is no sign suggesting the divergence observed at tight-binding level. This is not surprising,

as the problematic term in Equation (24) is due to the vanishing denominator of the 2 → 3

transition integral.

Already Hartree-Fock theory predicts a non-degenerate HOMO–LUMO pair, suggesting, re-

maining within an uncoupled Hartree-Fock picture to obtain the static polarizability, that

the problematic denominator responsible for divergence in Equation (24) would have a finite

value and thus not cause any trouble.

A similar argument is probably less accurate at CASSCF level, where the monodeterminan-

tal picture is lost and orbital energies are not well-defined anymore. Nevertheless, natural

orbital occupation numbers (NOONs) of the HOMO and LUMO (last column of Table 2)

differ significantly for the cyclacenes considered here, suggesting a clear difference between

them, unlike in the case of the degenerate Hückel orbitals. To strictly apply the sum-over-

states formula given in Equation (13) to the CASSCF formalism, one would have to compute

all excited states, which is clearly unfeasible (and likely very inaccurate).

The above arguments however, provide some evidence that the missing electron–electron
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repulsion within the tight-binding approximation is responsible for the degeneracy at the

Fermi level, ultimately producing the unexpected divergence of Equation (24).

The Planar Components of the TPS and the Polarizability

To evaluate the planar components of the TPS and polarizability, instead of working with

the two components x̂ and ŷ separately, it is more convenient to consider the combined

operator x̂± iŷ in its polar form given by R̂e±iϕ̂. In this notation, ϕ is the angle of rotation

about the z axis and R the radius of the cyclacene. The angle ϕ formally depends on the

elementary cell µ and is defined as

ϕ =











2πµ
n

if ν = 2, 3

2π(µ+
1
2
)

n
if ν = 1, 4

(25)

such that, when Equation (1) holds, the matrix form of the operator x̂± iŷ expressed in the

reduced basis spanned by pνµ is given by

x± iy = Re±
i2πµ
n

















e±
iπ
n 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e±
iπ
n

















(26)

and R remains a simple multiplicative constant as defined at the beginning of this article,

i.e. R = nb
√
3

2π
. The application of this operator on the many-particle state |m, k〉 results in

Re±iϕ̂ |m, k〉 =
R√
n

n−1
∑

µ=0

e
2iπµ
n

(k±1)

[

e±
iπ
n c1,mp

1
µ + c2,mp

2
µ + c3,mp

3
µ + e±

iπ
n c4,mp

4
µ

]

(27)

This implies that the non-vanishing matrix elements are given by

〈m, k|x̂ + iŷ|m′, k − 1〉 and 〈m, k|x̂− iŷ|m′, k + 1〉 (28)

where the factor e±
i2πµ
n in Equation (26) allows interactions only between states with k′−k =

±1. Moreover, differently to the case of the ẑ operator, now |m, k〉 and |m′, k′〉 must be of the

same symmetry with respect to σh for the integrals to be nonzero. Thus, the contributing
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transitions to the planar components of the TPS are 1 → 3 and 2 → 4.

This makes a total of four types of integrals different from zero, which correspond to

〈1, k|x̂ + iŷ|3, k − 1〉 and 〈1, k|x̂− iŷ|3, k + 1〉

〈2, k|x̂ + iŷ|4′, k − 1〉 and 〈2, k|x̂− iŷ|4′, k + 1〉
(29)

where we point out that these elements posses an analytical expression, although quite

cumbersome. For this reason they are omitted here and given in the Appendix.

The rotational symmetry of the cyclacene simplifies the calculation of the individual integrals

of x̂ and ŷ, since these are simply given by

〈m, k|x̂|m′, k − 1〉 = 〈m, k|ŷ|m′, k − 1〉 =
1

2
〈m, k|x̂ + iŷ|m′, k − 1〉

〈m, k|x̂|m′, k + 1〉 = 〈m, k|ŷ|m′, k + 1〉 =
1

2
〈m, k|x̂− iŷ|m′, k + 1〉

(30)

Moreover, the squared integrals contributing to the planar component of the TPS are the

same for both transitions 1 → 3 and 2 → 4 and are shown in Figure 8 as exemplified by the

term 1
4
· | 〈2, k|x̂ + iŷ|4′, k − 1〉 |2 = | 〈2, k|x̂|4′, k − 1〉 |2 = | 〈2, k|ŷ|4′, k − 1〉 |2.

Furthermore, the rotational symmetry implies that the two planar components of the TPS

tensor are degenerate, given by

Λxx = Λyy =
1

2

n−1
∑

k=0

[

| 〈2, k|x̂ + iŷ|4, k − 1〉 |2 + | 〈2, k|x̂− iŷ|4, k + 1〉 |2

+| 〈1, k|x̂ + iŷ|3, k − 1〉 |2 + | 〈1, k|x̂− iŷ|3, k + 1〉 |2
]

(31)

With the same approach applied to the axial component, the polarizabilities αxx and αyy are

obtained by dividing the matrix elements by the energy differences

αxx = αyy =
1

2

n−1
∑

k=0

[ | 〈2, k|x̂ + iŷ|4, k − 1〉 |2
ε4(kθ − θ) − ε2(kθ)

+
| 〈2, k|x̂− iŷ|4, k + 1〉 |2
ε4(kθ + θ) − ε2(kθ)

+
| 〈1, k|x̂ + iŷ|3, k − 1〉 |2
ε3(kθ − θ) − ε1(kθ)

+
| 〈1, k|x̂− iŷ|3, k + 1〉 |2
ε3(kθ + θ) − ε1(kθ)

]

(32)

where in this case the dependence of the denominator on kθ is crucial and therefore explicitly

written.

We were not able to express the two previous equations in closed form as we have done for

the axial component. For this reason we resort on numerical computation to inspect the
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behavior at the thermodynamic limit.

The results for the spread and the polarizability are reported in Figure 9, where we show,

in logarithmic scale, the results of a numerical evaluation of both quantities up to a few

thousands of monomer units. It appears clear that the planar components of both the per-

electron total position spread (i.e. the localization tensor) and the per-electron polarizability

tend to a finite value as the number of monomer units grows to infinity. The limit is reached

quite quickly, and it does not change significantly beyond the system size considered.

In Table 2 the values for αxx computed at CASSCF/aug-cc-pVDZ level are listed. The

behavior for the first few points of the polarizability appears linear, but clearly the limited

number of systems analyzed are not enough to infer a trend.

Conclusions

The analytical expression for the eigenvalues and eigenvectors of cyclacenes in the tight-

binding approximation has been obtained. By using the MATHEMATICA software package,

the exact expression of the energy bands, density of states, axial position spread and polar-

izability have been computed. The energy gap vanishes at the Fermi level, as it is located

at the frontier between two different bands. For this reason, the density of states shows the

presence of a Van Hove singularity at the Fermi level.

The axial per-electron TPS remains finite, in accordance with the finite extension of the

system in this direction. Quite remarkably, however, the corresponding per-electron polar-

izability diverges, a behavior that is commonly found only in the case of conductors. In

general a divergence of the per-electron polarizability is associated to a similar behavior of

the corresponding position spread tensor. To our knowledge, this is the only case where the

two quantities do not behave in the same way. We argue that the reason is likely due to the

missing description of the electron–electron repulsion in the tight-binding approximation,

which removes (at ab initio level of theory) the degeneracy present at the Fermi level. This

is supported by CASSCF calculations of the dipole polarizability for a few small systems.

The axial component of the TPS has been computed at CASSCF level of theory as well, and

remarkably, for the series of [n]cyclacenes from n = 6 to n = 22, it increases linearly with
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system size as predicted by the analytical expression derived within Hückel theory, despite

being an asymptotic limit.

We were not able to obtain analytically exact expression for the planar (degenerate) compo-

nents of the spread and polarizability tensors. A numerical calculation, however, does not

show any evidence of a divergence of these quantities. Therefore the system is predicted

to be, at this level of description, an insulator. This result is of particular interest, as this

material has a zero gap along with a nonzero density of states at the Fermi level, thus sug-

gesting a metallic behavior. The here computed properties however, which depend on the

geometrical details of the system, would characterize it as insulator, meaning that closing a

linear polyacene to form a ring appears to change the type of the material from metallic to

non-metallic, although more investigation is necessary.

In a recent paper22, we have extensively studied [n]cyclacenes at an ab initio level. In

particular, due to the presence of quasi-degenerate orbitals at the Fermi level, a CASSCF

approach is highly recommended. Because of the size of the system, the treatment of all the

valence π orbitals as active ones is out of question is one would like to study systems beyond

n ≈ 16, even with modern approaches such as the density matrix renormalization group.

The knowledge of the structure of the π bands obtained in this work is extremely useful in

order to perform a rational choice of the active space at the ab initio level.
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14. L. Türker and S. Gümüş, J. Mol. Struct. THEOCHEM 685, 1 (2004), ISSN 01661280.
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A The Tight-Binding Hamiltonian

The mono-electronic tight-binding Hamiltonian is basically parametrized according to the

C–C bond length, which in this work is assumed to be the same for any C–C bond of the

cyclacenes. Moreover, the symmetries of these molecules are also retained by the Hamilto-

nian, and here, we exploit i) the rotation Cn around the z-axis and ii) the reflection plane

σh perpendicular to the z-axis (plane of the ring).

The Hamiltonian matrix Hn of a cyclic polyacene containing n hexagonal units, expressed

in the orthonormal basis of the p-like orbitals, is then given by a block circulant matrix of

dimension 4n× 4n partitioned in n2 blocks of size 4 × 4

Hn =





























H0 H1 0 · · · 0 H−1

H−1 H0 H1
. . .

... 0

0 H−1
. . . . . . 0

...
... 0

. . . . . . H1 0

0
...

. . . H−1 H0 H1

H1 0 · · · 0 H−1 H0





























(A1)

The structure of the block H0 on the diagonal is

H0 =

















a −t 0 0

−t a −t 0

0 −t a −t

0 0 −t a

















(A2)

while the blocks H1 and H−1 are given by

H1 =

















0 −t 0 0

0 0 0 0

0 0 0 0

0 0 −t 0

















and H−1 =

















0 0 0 0

−t 0 0 0

0 0 0 −t

0 0 0 0

















= (H1)
T (A3)

The parameter a ∈ R corresponds to the on-site (Coulomb) integral and −t ∈ R to the

hopping (bond) integral (using the standard Hückel vocabulary).

Exploiting the properties of block circulant matrices, one can obtain from Hn the following
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4×4 reduced Hamiltonian (note that this actually corresponds to express in reciprocal space

the elementary unit cell depicted in Figure 2)

H(kθ) =

















a −t(1 + eikθ) 0 0

−t(1 + e−ikθ) a −t 0

0 −t a −t(1 + e−ikθ)

0 0 −t(1 + eikθ) a

















(A4)

Notice also, that in H(kθ), the dependence on n is now expressed through θ = 2π/n.

The reduced Hamiltonian H(kθ) commutes with the symmetry operator σ̂h, therefore its

eigenvalues and eigenvectors are most easily found by working in the symmetry-adapted

manifolds

L+ = span

















c1

c2

c2

c1

















and L− = span

















c1

c2

−c2

−c1

















(A5)

By projecting H(kθ) onto the subspaces spanned by L+ and L−, the components c1, c2 ∈ C

can be obtained as the eigenvectors of the 2 × 2 effective Hamiltonian

H(±)(kθ) =





a −t(1 + eikθ)

−t(1 + e−ikθ) a± t



 (A6)

The eigenvalues of H(+)(kθ) are given by

ε
(+)
± (kθ) = a− t

2
(1 ±

√
9 + 8 cos kθ) (A7)

while those of H(−)(kθ) by

ε
(−)
± (kθ) = a− t

2
(−1 ±

√
9 + 8 cos kθ) (A8)

Since −t < 0, the order of the four eigenvalues, for any k, is ε
(+)
+ (kθ) < ε

(−)
+ (kθ) ≤ ε

(+)
− (kθ) <

ε
(−)
− (kθ), where we note the alternation between roots of H(+)(kθ) and H(−)(kθ). Moreover,

note that the superscript (±) can be viewed as the symmetry label with respect to the σh

reflection plane, where (+) stands for symmetric and (−) for antisymmetric.

The eigenvectors of the full Hamiltonian given in Equation (A1) are

|m, k〉 =
1√
n

n−1
∑

µ=0

e
2πikµ

n
[

c1,m(kθ)p1µ + c2,m(kθ)p2µ + c3,m(kθ)p3µ + c4,m(kθ)p4µ
]

(A9)
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where m labels the reduced eigenvector of H(kθ) given in Equation (A4) and k the quantum

number of the rotation Cn. |m, k〉 is eigenvector of the Ĉn rotation operator with eigenvalue

e
2πik
n and of the reflection operator σ̂h with eigenvalue −(−1)m.

In Table A1 we report the eigenvalues and the normalized eigenvectors of the reduced Hamil-

tonian H given in Equation (A4) expressed as a function of ξ = kθ. Note that for a better

readability we have relabeled the eigenvalues according to their energetic order from 1 to 4

as presented in the main text of the manuscript, where 1 is the energetically lowest and 4

the highest.

The expressions of the eigenvectors (and thus the associated eigenvalues) retain the symme-

try features of the Hamiltonian. The 1st and 3rd eigenvectors are symmetric by reflection

about the plane of the ring, while the 2nd and 4th are antisymmetric as can be inferred from

Figure A1.

B Partial Densities of States

To compute the partial density of states for the energy band ε
(+)
1 , one first inverts the

expression as

ε
(+)
1 = a− t

2

(

1 +
√

9 + 8 cos
(

ξ
)

)

(B1)

ξ = arccos

[

1

2

(

ε
(+)
1

t
− a

t
+ 1

2

)2

− 9

8

]

(B2)

and then computes the derivative with respect to ε
(+)
1 which yields

∂ξ

∂ε
(+)
1

=
∂

∂ε
(+)
1

arccos

[

1

2

(

ε
(+)
1

t
− a

t
+ 1

2

)2

− 9

8

]

(B3)

=
−
(

ε
(+)
1

t
− a

t
+ 1

2

)

t

√

1 −
[

1
2

(

ε
(+)
1

t
− a

t
+ 1

2

)2

− 9
8

]2
(B4)
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In a similar way we can derive the partial density of state for ε
(−)
2 , ε

(+)
3 and ε

(−)
4 , which are

given by

∂ξ

∂ε
(−)
2

=
−
(

ε
(−)
2

t
− a

t
− 1

2

)

t

√

1 −
[

1
2

(

ε
(−)
2

t
− a

t
− 1

2

)2

− 9
8

]2
(B5)

∂ξ

∂ε
(+)
3

=
−
(

ε
(+)
3

t
− a

t
+ 1

2

)

t

√

1 −
[

1
2

(

ε
(+)
3

t
− a

t
+ 1

2

)2

− 9
8

]2
(B6)

∂ξ

∂ε
(−)
4

=
−
(

ε
(−)
4

t
− a

t
− 1

2

)

t

√

1 −
[

1
2

(

ε
(−)
4

t
− a

t
− 1

2

)2

− 9
8

]2
(B7)

C Planar Components of the TPS

The individual integrals contributing to the planar components of the TPS are given in the

following expressions

〈2, k|x̂ + iŷ|4, k − 1〉 = 1
2
Re

iπ
n

(

−
√

1 + 1√
9+8 cos[2(k−1)πn−1]

√

1 − 1√
9+8 cos[2kπn−1]

+ 16 cos[(k−1)πn−1] cos[kπn−1]
√

9+8 cos[2(k−1)πn−1]+
√

9+8 cos[2(k−1)πn−1]

√

9+8 cos[2kπn−1]+
√

9+8 cos[2kπn−1]

) (C1)

〈2, k|x̂− iŷ|4, k + 1〉 = 1
2
Re−

iπ
n

(

−
√

1 + 1√
9+8 cos[2(k+1)πn−1]

√

1 − 1√
9+8 cos[2kπn−1]

+ 16 cos[(k+1)πn−1] cos[kπn−1]
√

9+8 cos[2(k+1)πn−1]+
√

9+8 cos[2(k+1)πn−1]

√

9+8 cos[2kπn−1]−
√

9+8 cos[2kπn−1]

) (C2)

〈1, k|x̂ + iŷ|3, k − 1〉 = 1
2
Re

iπ
n

(

−
√

1 − 1√
9+8 cos[2(k−1)πn−1]

√

1 + 1√
9+8 cos[2kπn−1]

+ 16 cos[(k−1)πn−1] cos[kπn−1]
√

9+8 cos[2(k−1)πn−1]−
√

9+8 cos[2(k−1)πn−1]

√

9+8 cos[2kπn−1]+
√

9+8 cos[2kπn−1]

) (C3)

〈1, k|x̂− iŷ|3, k + 1〉 = 1
2
Re−

iπ
n

(

−
√

1 − 1√
9+8 cos[2(k+1)πn−1]

√

1 + 1√
9+8 cos[2kπn−1]

+ 16 cos[(k+1)πn−1] cos[kπn−1]
√

9+8 cos[2(k+1)πn−1]−
√

9+8 cos[2(k+1)πn−1]

√

9+8 cos[2kπn−1]+
√

9+8 cos[2kπn−1]

) (C4)
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Figure 1: Cyclacene scheme.

Figure 2: Elementary unit µ of the polyacene ring with attached basis functions.
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As usual b = 1 and t = 1.
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Figure 9: x component of the TPS (left) and polarizability (right) divided by the number

of electrons in the system (in b2 units and b2

t
, respectively).
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Figure A1: Molecular orbitals at ξ = 0 (left column) and ξ = π (right column) for a

[12]cyclacene. From bottom to top the energy (eigenvalue) associated to the orbitals in-

creases. Note that the orbitals depicted are canonical Hartree-Fock orbitals using the STO-

3G basis set, with an isosurface cutoff value of 0.04.
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atom x y z

type 1 x1
µ = R cos(2π(µ+1/2)

n
) y1µ = R sin(2π(µ+1/2)

n
) z1µ = b

type 2 x2
µ = R cos(2πµ

n
) y2µ = R sin(2πµ

n
) z2µ = b

2

type 3 x3
µ = R cos(2πµ

n
) y3µ = R sin(2πµ

n
) z3µ = − b

2

type 4 x4
µ = R cos(2π(µ+1/2)

n
) y4µ = R sin(2π(µ+1/2)

n
) z4µ = −b

Table 1: Atomic coordinates of the cyclacene. 0 ≤ µ ≤ n − 1 labels the elementary unit

which is composed by four atoms.

n αxx αzz NOON H/L

6 317.697 251.274 1.63/0.37

8 505.095 334.526 1.64/0.37

10 749.741 419.408 1.60/1.40

12 933.888 479.233 1.41/0.60

Table 2: Axial and longitudinal components of the polarizability (in atomic units) computed

with the CASSCF method. The last column lists the NO occupation numbers of the HOMO–

LUMO (H/L) pair.
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m = 1 m = 2 m = 3 m = 4

ε
(±)
m (ξ) a− t

2 (1 +
√
A) a− t

2 (−1 +
√
A) a− t

2 (1−
√
A) a− t

2 (−1−
√
A)

c1,m(ξ) +
2 cos ξ

2√
A+

√
A

− 2 cos ξ
2√

A−
√
A

+
2 cos ξ

2√
A−

√
A

− 2 cos ξ
2√

A+
√
A

c2,m(ξ) + 1
2e

− iξ
2

√

1 + 1√
A

− 1
2e

− iξ
2

√

1− 1√
A

− 1
2e

− iξ
2

√

1− 1√
A

+ 1
2e

− iξ
2

√

1 + 1√
A

c3,m(ξ) c2,m(ξ) −c2,m(ξ) c2,m(ξ) −c2,m(ξ)

c4,m(ξ) c1,m(ξ) −c1,m(ξ) c1,m(ξ) −c1,m(ξ)

Table A1: Eigenvalues and eigenvectors of H(ξ), with A = 9 + 8 cos ξ.
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