Classical realizability as a classifier for non-determinism

Guillaume Geoffroy

12M, Aix-Marseille Université

July 10, 2018

Model of computation
(programs t, u, v, \ldots)Realizability theory
(formulas A, B, C, \ldots)

 $\begin{array}{ccc} {\sf Extension \ of} & & {\sf Extension \ of} \\ {\sf pure \ } \lambda {\sf -calculus \ + \ control} & & {\sf ZF \ or \ PA_2} \end{array}$

 $\begin{array}{ccc} \text{Extension of} & & \text{Extension of} \\ \text{pure } \lambda \text{-calculus} + \text{control} & & & \text{ZF or } \text{PA}_2 \\ & & \downarrow \\ & & \text{Realizbility models} \\ & & \text{of } \text{ZF or } \text{PA}_2 \end{array}$

$t \Vdash A \iff \stackrel{t \text{ has the } behaviour}{prescribed by A}$

$$t \Vdash A \iff \stackrel{t \text{ has the } behaviour}{\text{prescribed by } A} \iff \stackrel{t \text{ passes all tests}}{\text{required by } A}$$

$$t \Vdash \forall X \; \forall Y \; (X \to Y \to Y)$$

$$t \Vdash A \iff \stackrel{t \text{ has the } behaviour}{\text{prescribed by } A} \iff \stackrel{t \text{ passes all tests}}{\text{required by } A}$$

$$t \Vdash orall X \ orall Y \ (X o Y o Y) \iff egin{array}{c} t \ ext{captures the behaviour} \\ ext{of its second argument} \end{array}$$

$$t \Vdash A \iff \stackrel{t \text{ has the behaviour}}{\text{prescribed by } A} \iff \stackrel{t \text{ passes all tests}}{\text{required by } A}$$
$$t \Vdash \forall X \; \forall Y \; (X \to Y \to Y) \iff \stackrel{t \text{ captures the behaviour}}{\text{of its second argument}}$$
$$\text{for all } u, v, \; (t \; u \; v) \rightsquigarrow v \qquad \qquad t \text{ behaves like } \lambda x. \lambda y. y$$
$$(\text{true})$$

Deterministic reductions

test = "does t eventually do \dots ?"

Deterministic reductions

test = "does t eventually do \dots ?"

t ~~~~~~~~~~ u deterministically

Deterministic reductions

test = "must t eventually do \dots ?"

test = "must t eventually do \dots ?"

test = "must t eventually do \dots ?"

test = "may t eventually do \dots ?"

t passes only tests that u and v pass (intersection of behaviours)

t passes all tests that u or v passes (union of behaviours)

 $\psi \ x \ y$ passes only tests that x and y pass

 $\psi \times y$ passes only tests that x and y pass ψ adds nothing to the realizability theory

 $\psi x y$ passes all tests that x or y passes

 $t \longrightarrow u$; v

Union of behaviours

Intersection of behaviours

 $t \longrightarrow u ; v$

$$\{t\} \succ \{u\}$$
and
$$\{t\} \succ \{v\}$$

 $\{t\} \succ \{u \ ; \ v\}$

Voting

2-out-of-3 voting

Voting

k-out-of-n voting

First-order formula $A \xrightarrow{}$ Formula ($\Im 2 \models A$) of the realizability language

First-order formula $A \xrightarrow{}$ Formula ($\Im 2 \models A$) of the realizability language

$$\begin{array}{c} \forall x \ \forall y \ \forall z \\ x \wedge (y \wedge z) = (x \wedge y) \wedge z \end{array}$$

The operation \land is associative

First-order formula $A \xrightarrow{}$ Formula ($\Im 2 \models A$) of the realizability language

$$\exists 2 \models \forall x \forall y \forall z x \land (y \land z) = (x \land y) \land z$$

The operation \land on]2 is associative

First-order formula A $\xrightarrow{}$ Formula ($\Im 2 \models A$) of the realizability language

$$\exists 2 \models \forall x \forall y \forall z x \land (y \land z) = (x \land y) \land z$$

The operation \land on 12 is associative

$$\begin{array}{c} \forall x \ \forall y \\ (x=0) \lor (x=1) \end{array}$$

There are only two elements

First-order formula $A \xrightarrow{}$ Formula ($\Im 2 \models A$) of the realizability language

$$\exists 2 \models \forall x \forall y \forall z x \land (y \land z) = (x \land y) \land z$$

The operation \land on 12 is associative

$$\begin{array}{l} \exists 2 \models \forall x \ \forall y \\ (x = 0) \lor (x = 1) \end{array}$$

J2 only has two elements

The key idea

$\forall x \in \exists 2 A(x) \iff$

Union of behaviours A(0) and A(1)

Intersection of behaviours A(0) and A(1)

There is a program which simulates \longleftrightarrow "I2 has less than $2^{\lceil \frac{n}{n-k} \rceil}$ elements" *k*-out-of-*n* voting is realized

k-out-of-*n* voting can be simulated with *j*-out-of-*m* voting if and only if $\lceil \frac{m}{m-j} \rceil \leq \lceil \frac{n}{n-k} \rceil$

Parallel or

	true	false	?
true	true	true	true
false	true	false	?
?	true	?	?

Gustave's function can be simulated with *parallel or*, but not the converse

Conclusion

Non-deterministic behaviour (unknown structure) (boolean algebra)

What about non-classical settings? (pure λ -calculus, PCF, *etc.*)