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Abstract

High dynamic range (HDR) imaging enables to capture the full range of physical

luminance of a real-world scene, and is expected to progressively replace tra-

ditional low dynamic range (LDR) pictures and videos. Despite the increasing

HDR popularity, very little attention has been devoted to new forensic prob-

lems that are characteristic to this content. In this paper, we address for the

first time such kind of problem, by identifying the source of an HDR picture.

Specifically, we consider the two currently most common techniques to generate

an HDR image: by fusing multiple LDR images with different exposure time, or

by inverse tone mapping an LDR picture. We show that, in order to apply con-

ventional forensic tools to HDR images, they need to be properly preprocessed,

and we propose and evaluate a few simple HDR forensic preprocessing strategies

for this purpose. In addition, we propose a new forensic feature based on Fisher

scores, calculated under Gaussian mixture models. We show that the proposed

feature outperforms the popular SPAM features in classifying the HDR image

source on image blocks as small as 3×3 pixels, which makes our method suitable

to detect composite forgeries combining HDR patches originating from different

acquisition processes.
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1. Introduction

One key limitation of conventional 8-bit image representations is that the

range of luminance available in the physical world substantially exceeds the

dynamic range handled by traditional imaging pipelines, resulting in a loss of

visual information in over/under-exposed image regions. This bottleneck was5

initially recognized and studied in computer graphics [1, 2, 3], leading to the

development of high dynamic range (HDR) formats capable of storing the phys-

ical luminance of a scene (expressed in cd/m2) in high bit-depth, floating-point

formats. More recently, HDR image and video formats have been popularized

in multimedia applications [4], thanks to the increasing availability of HDR10

cameras and displays, as well as content compression standards [5, 6]. Current

trends in multimedia technology, such as the diffusion of Ultra High Definition

Television [7], seem to suggest that the HDR paradigm will progressively replace

conventional low dynamic range (LDR) imaging [8].

While one can reasonably expect that native HDR sensors will become avail-15

able at low cost in the next coming years, nowadays the two most common

techniques to generate HDR content include: 1) acquiring multiple conventional

LDR pictures of the scene at different exposure times, which can be fused to-

gether afterwards using, e.g., the method in [1]. We will refer to HDR pictures

generated in this way as mHDR; 2) acquiring an LDR picture of the scene, and20

expanding its dynamic range through an operation commonly known as inverse

tone mapping (iTM), since conceptually it does the opposite of tone mapping

algorithms conceived to display HDR pictures on LDR displays [9]. We will re-

fer to this kind of images as iHDR. This latter option is particularly attractive

considering that nowadays the majority of legacy video footage is LDR, and that25

range expansion is needed to display it on next-generation HDR displays [10].

Furthermore, it has been shown that in many cases HDR video obtained through
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iTM yields similar, or even indistinguishable, visual experience as HDR content

generated by multiple exposures [11, 12].

In this work, we consider the forensic problem of identifying whether an HDR30

picture is mHDR or iHDR. From a multimedia security perspective, solving

this forensic problem can help to identify the authenticity of a content, and

to localize tampering whenever mHDR and iHDR image patches have been

composed together to create a forgery. To this end, it is desirable to perform fine-

grained mHDR/iHDR classification to precisely localize the tampered regions35

and infer their semantics consequently [13].

Forensic problems in the context of HDR images have been rarely considered

in the literature. In part, this is due to the only recent development of HDR

imaging in the multimedia and signal processing community; at the same time,

the limited availability of HDR image datasets has somehow constrained forensic40

research in this field; finally, the very same concept of high dynamic range

image format has sometimes been erroneously confused with simply higher bit

depth (sometimes called wider dynamic range), whereas HDR pictures are scene

referred and represent real-world luminance, featuring very different statistical

characteristics compared to LDR images. As a result, only very limited work45

has been done to identify and solve new potential forensic problems associated

to HDR, and when this has been done, it was in the LDR domain, e.g., to

differentiate LDR images from tone-mapped HDR images [14]. To the best of

our knowledge, this is the first work targeting a forensic problem in the HDR

domain, i.e., analyzing directly HDR pictures in order to identify their source.50

Indeed, in spite of the similarities between HDR and LDR imagery, HDR

image forensics present some subtleties and new challenges with respect to stan-

dard forensic techniques. For instance, while iTM might resemble a contrast

enhancement process, classical forensic detectors based on statistical finger-

prints [15, 16, 17] fail when applied on iHDR pictures, as those images do not55

present typical peak/gap artifacts in their histogram. In fact, the histogram of

the HDR image is not composed by a fixed number of bins, e.g., 28; conversely,

the bin size can be arbitrarily chosen, and the maximum luminance value is
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content dependent. As a result of the continuous nature of HDR values, most

forensic methods based on integer arithmetics, such as classical compression60

and point-wise transformation detectors [18, 19, 16] are not applicable. More

sophisticated forensic tools, which employ higher-order statistics to model local

image content [20, 21], are based on comparing neighboring pixel values as if

they were lying on a uniform interval scale. While this is a reasonable assump-

tion in the case of LDR pixels, we show in this paper that HDR images need to65

be preprocessed through a non-linear transformation in order for these forensic

tools to provide acceptable results. This confirms previous findings in HDR

image quality assessment [22, 23] and in local feature extraction from HDR

pictures [24, 25].

Though as an extension of our preliminary work [26], this paper departs70

from [26] on the following four aspects. 1) A comprehensive study is carried out

for HDR image preprocessing, covering different strategies and parameters. 2)

Instead of 8-bit representation, we consider a much more challenging case when

iHDR images are obtained from high bit-depth RAW LDR images with 16 bits

integer precision. 3) We provide an in-depth study of inverse tone mapping75

detection on very small image blocks, including the smallest possible size 3× 3.

4) The number of selected inverse tone mapping algorithms has increased from

3 to 6. In all, as the first work addressing HDR image forensics, we have made

the following contributions to differentiate mHDR and iHDR images:

• As a starting point, we consider the peculiarities of HDR content com-80

pared to LDR images, from a forensic perspective. We introduce and

motivate some basic preprocessing steps that must be applied to HDR

content in order to extract meaningful forensic features. Differently from

preprocessing approaches proposed in other fields of HDR imaging such

as quality evaluation and compression [22, 27], the preprocessing tech-85

niques considered in this work are specifically designed and evaluated to

maximize forensic classification accuracy rather than perceptual fidelity.

• Based on the analysis of joint histograms of mHDR and iHDR images,
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we observe that features describing higher-order statistics of local im-

age patches are necessary to differentiate mHDR from iHDR. Based on90

this observation, we propose an HDR image forensic feature based on the

Fisher scores [28, 29] calculated under parametric Gaussian mixture mod-

els (GMMs). Our approach is to some extent inspired by a texture/facial

analysis feature [30, 31], which however has never been applied in a forensic

scenario. We show that our feature can outperform the popular Subtrac-95

tive Pixel Adjacency Matrix (SPAM) features [20] in mHDR and iHDR

image classification.

• In order to address the problem of fine-grained mHDR/iHDR classification

for, e.g., tampering localization, we conduct an experimental study using

image blocks with very small sizes, including the challenging case of 3 ×100

3 image blocks. This shows that the proposed forensic algorithm has

a practical value in detecting composition forgeries including iHDR and

mHDR content.

The rest of the paper is organized as follows. Sec. 2 briefly reviews the

mHDR image creation and six iTM methods. In Sec. 3, we compare LDR and105

HDR image representations from a forensic point of view, and propose four

simple strategies to pre-process an HDR image in order to effectively extract

forensic features. The proposed method based on Fisher scores and GMMs is

presented in Sec. 4. Finally, conclusions are drawn in Sec. 6.

2. Background110

In this paper, we consider a new image forensic problem on HDR content:

differentiating an HDR image created from the fusion of multiple LDR images

(i.e., mHDR) from one created through inverse tone mapping of a single LDR

image (i.e., iHDR). In this section we briefly describe how these two types of

images are created.115
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2.1. mHDR image creation

The most popular way to create HDR images is by combining pictures taken

from a conventional LDR camera [1, 32], using multiple LDR photos of the same

scene captured with different exposure times. For each captured image, pixel

values are modeled as a non-linear camera response function of the exposure.120

The exposure is further modeled as the multiplication of the scene luminance

(to be estimated), and the exposure time (assumed to be known). Therefore,

the camera response function and the luminance of the scene can be jointly

estimated, e.g., by minimizing the squared error between the camera response

and the pixel values measured at the different exposure times. The estimated125

luminance map constitutes the resulting mHDR image.

2.2. iHDR image creation

The dynamic range of an LDR picture can be expanded to match that of

an HDR display by iTM operators. Compared to mHDR images, iHDR images

created by iTM operators do not represent the physical luminance of the scene,130

but rather aim at expanding the dynamics of the LDR image in such a way to

reproduce the visceral response associated to the original scene [33]. Subjective

studies have shown that, with a well-exposed LDR image and a proper iTM

operator, iHDR images can be visually as appealing as mHDR pictures, and

thus difficult to distinguish from the latter ones at naked eye [12, 11]. This135

motivates the study of forensic techniques to computationally assess whether

an HDR image is iHDR or mHDR.

In this paper, we select six popular inverse tone mapping algorithms for

creating the iHDR images, described in the following.

1) In Akyüz et al.’s method [11], denoted by ‘A’, the input LDR content is140

firstly linearized and then linearly scaled to achieve the desired dynamic range

(typically the one of the HDR displaying device). Akyüz et al. show that this

method works well with well-exposed content without compression artifacts.

2) Banterle et al.’s method [34, 35], denoted by ‘B’, expands content by

applying the inverse of a sigmoid [36]. To reduce artifacts due to quantization145
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and to try to reconstruct the lost signal, an expanded image is blended with

the original one using an expand map, i.e., a smooth field that guides expan-

sion based on importance sampling. The method works well when images are

moderately saturated [9] and is temporally stable [35].

3) Huo et al.’s method [37], denoted by ‘H’, uses a non-linear sigmoid-like150

function in order to increase the dynamic range of the input LDR content only

in specific regions of the image, indicated by an expand map. The method is

computationally fast (using an approximated bilateral filter), temporally stable,

and is able to achieve quality results on moderately over-exposed content.

4) Kovaleski and Oliveira’s method [38], denoted by ‘K’, linearly expands155

the input LDR content to a desired dynamic range only in certain regions of

the image using an expand map, which is computed using thresholding on the

luminance channel followed by bilateral filtering. As in Huo et al.’s operator

[37], the method is computationally fast, temporally stable, and it can achieve

quality results on moderately over-exposed content.160

5)Meylan et al.’s method [39], denoted by ‘M’, applies different linear expan-

sions in different areas of the image, which are classified as diffuse or specular.

Classification is based on simple thresholding. Filtering is employed to reduce

contour artifacts that may appear in areas between a diffuse and a specular area.

The method is straightforward to implement and fast, but it is not temporally165

coherent because thresholding depends on the processed image.

6) Rempel et al.’s method [33], denoted by ‘R’, linearly expands the input

LDR content to a desired dynamic range only in certain regions of the image

using an expand map, which is obtained using an edge-stop function computed in

a multi-resolution fashion. This method is computationally fast and temporally170

stable. The method can typically produce high quality results on moderately

over-exposed content.
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3. Image Forensics: from LDR to HDR

The existing abundant literature on image forensics mainly deals with con-

ventional, 8-bit LDR representation per pixel per color channel. A natural ques-175

tion arises about whether these forensic techniques might be applied to HDR

content, and which kinds of precautions and caveats should be considered while

doing so. In this section, we start by discussing some fundamental differences

between HDR and LDR images, which are often misunderstood or confused.

Afterwards, we consider the illustrative case of a popular steganalytic/forensic180

feature, SPAM [20], and study its applicability in the case of HDR image.

3.1. Differences between HDR and LDR Image Representations

A common interpretation of HDR images is that those are the higher bit-

depth version of LDR pictures, e.g., being 16 or more bits per pixel and per

channel. However, the difference with LDR is conceptually deeper.185

LDR images are device-referred or output-referred, i.e., pixel values repre-

sent color to be displayed on a monitor or paper print. Since perceived lumi-

nance is a nonlinear function of physical light, LDR pixels are perceptually en-

coded using the sRGB non-linearity [40], commonly approximated as a “gamma-

correction” function (with the typical gamma value of 2.2). This gamma correc-190

tion, which was historically introduced to compensate for the typical response

of legacy CRT displays, actually describes quite accurately the loss of sensitiv-

ity of the human visual system at low luminance levels. Due to this nonlinear

compression, it is possible to represent images to be reproduced on typical LDR

displays using 8 bits per pixel per color channel. 16-bit representations are also195

becoming popular, e.g., as the RAW output of many digital cameras. Further-

more, pixel values in LDR images are approximately perceptually uniform, i.e.,

a difference of 1 pixel value has approximately the same perceptual magnitude

independently of the baseline value on which the difference is computed. As a

result, arithmetic operations on LDR pixels are perceptually meaningful. More-200

over, due to this perceptual uniformity, a well-contrasted LDR picture has pixel

values that span the full range of available codewords (e.g., 0− 255).
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On the other hand, HDR images are scene-referred, i.e., pixel values store (or

are proportional to) the physical luminance of the scene, measured in cd/m2. As

mentioned above, real-world luminance may span several orders of magnitude,205

from as low as 10−6 cd/m2 for very dim scenes, up to 108 cd/m2 for direct

sunlight in a sunny day. In order to accurately represent this wide range, HDR

image formats such as OpenEXR [41] or RGBE [2] typically use floating point

pixel values. Hence, differently from the LDR case, HDR pixels do not take

values on a fixed interval, i.e., the minimum and maximum pixel values are210

arbitrary and can be very different across images. Furthermore, the typical

histogram of an HDR image is highly skewed, with most pixels concentrated in

a very small range, but with possibly very long tails due to bright details at high

luminance. Finally, due to the highly nonlinear human perception of brightness,

in order to perform perceptually meaningful arithmetic operations on HDR pixel215

values, these need to be previously encoded in a similar way as in the case of

the gamma correction [22]. Different encoding functions have been proposed in

the past few years, including the popular SMPTE 2084 electro-optical transfer

function [27].

3.2. Benchmark Feature: SPAM220

One of the contributions of this paper is to investigate how a typical foren-

sic feature performs for a novel problem in the context of HDR images. To

this end, we consider the well-known steganalytic/forensic feature SPAM (Sub-

tractive Pixel Adjacency Matrix) [20]. In LDR image forensics literature, it

has shown excellent performance in detecting various image operations such225

as JPEG compression [42], median filtering [43], and image sharpening [13].

We choose to compare with the SPAM feature instead of the well-known SRM

(34671-dimensional) feature [21] because of the following two reasons. Firstly,

the SPAM feature can be taken as a subset of the SRM feature [21]. Secondly,

we are interested in forensic detection of image blocks as small as 3× 3, whose230

high-dimensional SRM feature may contain lots of redundancy.

The SPAM feature was designed for 8-bit grayscale images. It models the
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image derivatives using the first-order and second-order Markov chains. In this

paper, we consider the widely used second-order SPAM feature, which is 686-

dimensional. Clearly, as mentioned in Section 3, computing differences between235

photometric pixel values might not be appropriate, e.g., these differences might

be dominated by very bright pixels. Hence, it is reasonable to apply some com-

pressive encoding (such as a logarithm) before computing the forensic feature.

In Sec. 5, we will provide relevant experimental comparisons between the SPAM

feature and the proposed method.240

3.3. HDR Image Preprocessing

Straightforwardly, it is not possible to directly extract the SPAM feature

from an HDR image given its floating point representation and largely varying

pixel value range. In fact, this can bias the extraction of the 686-dimensional

second-order SPAM feature as it only counts small image derivatives with val-245

ues in {−3,−2, · · · , 3}. For this problem, HDR image pixel values should be

scaled and rounded so that the SPAM feature can be properly extracted. In the

following, we consider four simple scaling and rounding strategies, which will

then be compared experimentally in Section 5.2.

Without loss of generality, we only consider the luminance component of250

a given HDR image, which is also where most iTM methods carry out the

dynamic range expansion. Given an HDR image of size H ×W , its luminance

component is extracted and linearly scaled to [0, 1] to obtain the matrix L. A

simple scaling strategy can be based on the maximum pixel value, which is equal

to 1 for L. However, this does not take into account that different HDR images255

may capture scenes with very different dynamic ranges. In order to compensate

for this factor, we can scale the image based on the average brightness. To

this end, we adopt the image key which indicates whether the captured scene

is subjectively light, normal, or dark [36]. This can be approximated as the

exponential of the log-average luminance of the image:260

K = exp





1

H ×W

∑

i,j

log (Li,j + ǫ)



 , (1)
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where Li,j denotes the value of the (i, j)-th pixel (1 ≤ i ≤ H, 1 ≤ j ≤ W ), and

we set ǫ = 10−6 to avoid the singularity when taking the logarithm. Notice

that Eq. (1) corresponds to computing the geometric mean of the image, which

is intuitively appropriate given the highly skewed distribution of HDR pixels.

Based on either the maximum value 1 or the image key K calculated adaptively265

according to each image, we thereafter propose the following two image scaling

strategies:

Llin
i,j = (2b − 1)Li,j , (2)

and

L
keylin
i,j = (2b − 1)

Li,j

K
, (3)

where b is an arbitrary non-negative parameter. The value of b decides the range

of pixel values after scaling, which affects the population of image derivatives in270

{−3,−2, · · · , 3} considered by the SPAM feature [20]. We will experimentally

study its impact on the forensic performance in Sec. 5.2.

In the study of HDR image statistics, it is a common practice to analyze the

image after taking the logarithm [44]. Accordingly, we propose the two following

strategies to scale the HDR image in the logarithmic domain:275

L
log
i,j = (2b − 1)

log(Li,j + ǫ)− log(ǫ)

log(1 + ǫ)− log(ǫ)
, (4)

and

L
keylog
i,j = (2b − 1)

log(Li,j + ǫ)− log(ǫ)

log(K + ǫ)− log(ǫ)
, (5)

respectively based on the maximum pixel value and the image key. After the

HDR image is preprocessed following either Eq. (2), (3), (4), or (5), the pixel

values are rounded to integers in order to extract the SPAM feature.

In order to extract the proposed forensic feature (to be detailed in the next280

section), we also consider the four preprocessing strategies as for SPAM features.

However, our method does not require integer pixels. Thus, no rounding is

applied after Eqs. (2)-(5) for the extraction of our feature.
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4. Forensic Analysis Based on Fisher Scores

4.1. Preliminary Analysis285

In order to discriminate iHDR and mHDR images, a key observation is that

iHDR pictures are obtained from an LDR signal, which has a discrete nature.

For 8-bit representation LDR images with pixel values in a limited integer set

{0, 1, · · · , 255}, though after inverse tone mapping the pixel values are converted

to floating point numbers, the discreteness of pixel values still exist in the iHDR290

images. In order to explore these statistics, we analyze the joint probability

or co-occurrence matrix of neighboring pixels [20, 45]. When constructing the

joint histogram with a sufficiently big number of bins, e.g., 512, such intrinsic

differences between mHDR and iHDR images can be exposed.

Fig. 1 reports the joint histogram of horizontally adjacent pixels of the lu-295

minance component in some HDR images (refer to the electronic version for

a better visibility). Differently from the mHDR images, we can observe that

gaps/peaks exist in the joint histograms of iHDR images, as shown in Fig. 1-(b),

-(d), -(f), -(h), -(j), and -(l). To compactly describe the above mentioned joint

histogram characteristic, we can use, e.g., Fourier analysis. In our preliminary300

tests, this provided us around 85% of iHDR image detection accuracy, indicating

that such second-order statistics may be only partially effective [26]. In addi-

tion, many digital cameras can also output 16-bit RAW pictures, that could be

used as input for an iTM algorithm. In this case, the differences in second-order

statistics of pixel values might be too small to be accurately detected, as shown305

in Fig. 1-(c), -(e), -(g), -(i), -(k), and -(m), where we can no longer observe

gaps/peaks in the joint histogram. This suggests that second-order statistics

might be insufficient to solve, with acceptable generality, the forensic problem

of discriminating iHDR from mHDR. Therefore, we resort to a more powerful

feature, based on higher-order statistics, which provides a richer description of310

inter-pixel dependencies.
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(a) mHDR

(b) iHDR, ‘A’, 8-bit (c) iHDR, ‘A’, 16-bit (d) iHDR, ‘B’, 8-bit (e) iHDR, ‘B’, 16-bit

(f) iHDR, ‘H’, 8-bit (g) iHDR, ‘H’, 16-bit (h) iHDR, ‘K’, 8-bit (i) iHDR, ‘K’, 16-bit

(j) iHDR, ‘M’, 8-bit (k) iHDR, ‘M’, 16-bit (l) iHDR, ‘R’, 8-bit (m) iHDR, ‘R’, 16-bit

Figure 1: Example joint histograms of mHDR/iHDR images in the logarithmic domain. The

same scene was captured in the mHDR image and in the LDR image which was used for cre-

ating the iHDR images [11, 39, 33, 35, 37, 38]. The corresponding LDR image for creating the

iHDR images whose joint histograms are shown in (b), (d), (f), (h), (j), and (l) is represented

with 8 bits for each color channel. Whereas the corresponding LDR image for (c), (e), (g),

(i), (k), and (m) is represented with 16 bits for each color channel. For a better visibility, we

have taken logarithm of the joint histogram and afterwards carried out a normalization.
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4.2. Forensic Analysis Based on Fisher Scores

Motivated by the preliminary analysis of mHDR/iHDR images in Sec. 4.1,

here we study the local higher-order image statistics after the given HDR im-

age is pre-processed as described in Sec. 3.3. Given a generic pixel z0 and315

its s × s local neighborhood {z1, z2, · · · , zs2−1}, we obtain a local differen-

tial vector x with xi = zi − z0 (i = 1, 2, · · · , s2 − 1). Its log-likelihood un-

der an M -component Gaussian mixture model (GMM) parametrized by θ =

{πi,µi, (Ci)−1|i = 1, 2, · · · ,M} is computed as:

L(θ|x) = p(x|θ) =
M
∑

i=1

πiN (x|µi,Ci), (6)

where πi, µi, and Ci are respectively the mixing weight, mean, and covariance320

matrix of the i-th GMM component. The higher-order statistics in the local

neighborhood of z0 can therefore be represented using the Fisher scores [28],

which are calculated as the partial derivatives with respect to the parameters θ

of the log-likelihood L(θ|x), i.e., ∇θ log L(θ|x). More specifically, the partial

derivatives with respect to πi and (Ci)−1 are calculated as:325

∂ log L(θ|x)

∂ πi
=

N (x|µi,Ci)

L(θ|x)
, (7)

∂ log L(θ|x)

∂ (Ci)−1
=

πiN (x|µi,Ci)

2L(θ|x)

(

Ci − (x− µi)(x− µi)T
)

. (8)

For the sake of simplicity and also for reducing the dimensionality of the final

forensic feature, we only consider the diagonal elements of (Ci)−1 for computing

the Fisher scores. Therefore, we have a Fisher score vector F(θ,x), with length

M + (s2 − 1)M = s2M .330

In practice, we compute the Fisher scores with respect to two 0-mean GMMs,

parametrized by θ0 and θ1, representing mHDR and iHDR, respectively. The

two GMMs are learned in a previous, off-line training stage from a database

containing the two classes of HDR images, using the Expectation-Maximization

algorithm. The reason why we employ 0-mean GMMs is that x captures the335

local derivatives of z, which carry high-frequency information, and thus the
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trained means µi are generally close to zero. Therefore, we remove the DC

component and train 0-mean GMMs for both image classes, as is usually done

in natural image modeling [46] and image forensics/anti-forensics [13, 47]. Given

x, we then can form the following 2s2M × 1 sized Fisher score vector:340

f̃(x) =
[

F(θ0,x)T ,F(θ1,x)T
]T

, (9)

which is further normalized [29, 30, 31] to construct the proposed forensic feature

vector with the i-th element as:

fi(x) = sign
(

f̃i(x)
)

∣

∣f̃i(x)
∣

∣

1/2

∑

i

∣

∣f̃i(x)
∣

∣

, i = 1, 2, · · · , 2s2M. (10)

In the LDR image analysis literature, the concept of Fisher scores [28] has

largely influenced image classification in the form of the well-known Fisher vec-

tor [29], which further inspired the recently proposed LHS feature [30, 31] in345

texture/facial analysis. We use for the first time Fisher scores [28] in the pro-

posed method for HDR image forensic purposes. We will show in Sec. 5.3 with

experimental evidence that the proposed method outperforms the LHS feature.

Though sharing the same basis of the Fisher vector, the proposed feature departs

from the LHS feature on the following three points.350

• For the proposed feature, the partial derivatives with respect to πi and

(Ci)−1 are calculated under 0-mean GMMs, whereas for the LHS fea-

ture [30, 31], the partial derivatives with respect to µi and (Ci)−1 are

calculated using non-0-mean GMMs. For a fair comparison, we tried to

extract the LHS feature using 0-mean GMMs. This modified LHS feature355

turned out to perform worse than the original LHS feature (around 4%

lower detection accuracy on 8 × 8 image blocks). Therefore, we use the

original LHS formulation for comparison with the proposed feature.

• After the partial derivative calculation and before the normalization in

Eq. (10), a necessary normalization based on the mean and variance of360

the Fisher scores calculated on the training differential vectors is included

in the construction of the LHS feature [30, 31]. However, for the proposed

feature, we do not include such a procedure.

15



• Furthermore, differently from the LHS feature using a single GMM, the

proposed method includes two GMMs for forensic analysis. The two365

GMMs, which respectively model mHDR images and iHDR images, pro-

vide information on both types of images. This enables the proposed

feature to better distinguish between mHDR images and iHDR images

than the LHS feature.

For a given HDR image preprocessed as described in Sec. 3.3, overlapping370

s × s image patches are extracted. Then, the DC component of the computed

local differential vectors are removed. Afterwards, their corresponding Fisher

score vectors are respectively computed according to Eq. (9). For extracting the

proposed forensic feature vector of a given image, these Fisher score vectors are

averaged before normalization as in Eq. (10).375

Note that the Fisher score vectors are extracted and then averaged from

s×s patches of a given image. Thus, for a given block size s, the feature dimen-

sionality remains the same independently from the original image dimension.

At the same time, this grants the proposed forensic feature the ability to work

on image blocks as small as s × s. In [48, 31], it is shown that the statistics380

calculated on image patches as small as 3 × 3 are capable of achieving good

classification results. Besides, a small value of s can help to reduce the dimen-

sionality of the feature vector. Therefore, we set s = 3 in this paper, and we

learn one GMM from each type (mHDR, and six iHDR types: ‘A’, ‘B’, ‘H’,

‘K’, ‘M’, and ‘R’) from 3 × 3 HDR image patches. We compare the proposed385

method with the SPAM feature, which is 686-dimensional. Therefore, we learn

GMMs with M = 38 components, so that the proposed forensic feature is com-

parably 684-dimensional. Likewise, we learn a GMM with M = 43 components

for extracting the 688-dimensional LHS feature [30, 31]. Further in Sec. 5.3, we

will also study how the number of GMM component M impacts the forensic390

performance of the proposed method.
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5. Experimental Results

5.1. Experimental Setting

Currently, there is no large mHDR image dataset available in the literature.

In order to conduct our forensic tests, we therefore collected 498 high-resolution395

mHDR images from the following 8 sources:

• EmpaMT dataset [49] includes 33 mHDR images;

• Meylan created 14 mHDR images [50];

• Fairchild created 106 mHDR images [51];

• HDRSID dataset [52] includes 232 mHDR images;400

• IRCCyN-IVC dataset contains 10 mHDR images1;

• Mantiuk created 8 mHDR images [53];

• Stanford dataset [54] is with 88 mHDR images;

• Ward created 7 mHDR images2.

In order to avoid any possible intervention or postprocessing, we keep the down-405

loaded mHDR images as they were. We rely on their authors to have adopted

possible strategies [55] to create the best possible mHDR images. Our collection

of downloaded mHDR images is a diverse mHDR image dataset, with images

from various resources. To keep the diversity, we do not impose any mHDR

image selection. In particular, we keep the mHDR images with ghosting arti-410

facts3 [56]. This dataset diversity can help us to better validate the robustness

of forensic features.

1We downloaded these images from: http://ivc.univ-nantes.fr/en/databases/ETHyma/

and http://ivc.univ-nantes.fr/en/databases/JPEG_HDR_Images/ with duplicates removed.
2Included in: http://www.cs.utah.edu/~reinhard/cdrom/hdr/.
3Two example HDR images can be found here: http://rit-mcsl.org/fairchild/

HDRPS/Scenes/Peppermill.html and http://rit-mcsl.org/fairchild/HDRPS/Scenes/

BarHarborPresunrise.html.
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Among the above mentioned 8 mHDR image sources, EmpaMT dataset and

Meylan provide some original LDR images (sequences). From these two sources,

we have 33+7 = 40 well-exposed LDR images. Among them, 3 images are 24-bit415

RGB images in JPEG format, and the others are in RAW format. Each of these

LDR images corresponds to one mHDR image. For the remaining 498−40 = 458

mHDR images, we have no access to the original LDR image sequences. As a

supplement, we randomly pick 458 images from another LDR image dataset

“mitadobe5k” [57], which contains 5000 high-quality images stored in RAW420

format, initially used for the study of photographic global tonal adjustment.

We find these LDR images especially suitable here, as their high quality ensures

the creation of visually appealing iHDR images. The mHDR and LDR images

are with a good diversity of scenes and cameras, which is important for reliable

forensic analysis.425

In our experiments, most of the LDR images in use are in the RAW format

and only 3 out of 498 images are 24-bit RGB images in JPEG format. In our

previous work [26], all the RAW LDR images are firstly read out to 24-bit RGB

images before they are used by the inverse tone mapping algorithms to create

the iHDR images. In this paper, we consider a more challenging case. We430

read out 16-bit pixel values from each color channel of the RAW images, then

they are used to create the iHDR images. This makes the forensic detection of

inverse tone mapping a much harder problem, compared to the setting in our

previous work in [26]. From the results reported in this section, we can see that

the performance of all the three forensic features, i.e., SPAM [20], LHS [30, 31],435

and the proposed, decreases, if we compare with the results reported in our

previous work [26]. But we will show that the new results still confirm that it

is promising to perform HDR image forensics via analysis of high-order image

statistics using the proposed method as well as the SPAM/LHS features.

For each LDR image in our dataset, we create iHDR images ‘A’, ‘B’, ‘H’,440

‘K’, ‘M’, and ‘R’, with the six iTM algorithms [11, 39, 33, 35, 37, 38] described

in Sec. 2.2. These mHDR and iHDR images are randomly divided into a training

and a test set, both containing 249 mHDR images, and 249 iHDR images of each
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type (‘A’, ‘B’, ‘H’, ‘K’, ‘M’, and ‘R’). We also made sure that if iHDR images,

created from one LDR image which comes from EmpaMT dataset or Meylan,445

are in one set, the corresponding mHDR image is also included in the same set.

Here, we choose to run forensic tests on cropped 512×512 sub-images instead

of the high-resolution HDR images. This is partly because of the use of machine

learning methods, e.g., SVM (Support Vector Machine), which is a common

practice in image forensics. In this context, a sufficient number of image samples450

is required to avoid the curse of dimensionality. We also need enough image

samples to show the statistical significance of the tests. Though not directly

testing on high-resolution images, the proposed experimental setting is very

suitable to assess forensic methods. Even for high-resolution image classification

under the setting of 512× 512 image size, one possible way could be to simply455

divide the image into overlapping/non-overlapping 512 × 512 sub-images; the

final output can then be obtained by fusing the decisions on the sub-images,

e.g., by majority voting.

Based on the above considerations, we cropped (at most) 9 adjacent sub-

images of size 512 × 512 from the center of each high-resolution mHDR/iHDR460

image. In order to keep the number of cropped 512 × 512 mHDR images and

that of iHDR images of each type the same, a few 512 × 512 iHDR images

created from mitadobe5k LDR images were randomly picked and removed. In

the end, we had 1851 mHDR images and 1851 iHDR images of size 512×512 in

the testing dataset HDRFTE (HDR Forensic TEsting). In the training dataset465

HDRFTR (HDR Forensic TRaining), there are 1839 mHDR images and 1839

iHDR images sized 512× 512.

Besides 512×512 images, we also choose to test on very small image blocks.

More specifically, we consider image blocks with sizes 8×8, 7×7, 6×6, 5×5, 4×4,

and even 3× 3. Such tests can be taken as equivalent to fine-grained tampering470

localization [13], and they are very important for assessing the forensic perfor-

mance of different features. From each mHDR/iHDR image, one image block

is cropped randomly from each image from the HDRFTR dataset, whereas five

image blocks from random locations are cropped from images in the HDRFTE
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Figure 2: Detection accuracy comparison for different HDR image preprocessing strategies

with different parameters. The experimental study is carried out on 8 × 8 image blocks

of mHDR and ‘mix’ iHDR images. The training of the detectors is performed on HDRFTR

dataset, while the accuracies are obtained from HDRFTE dataset. The legends ‘lin’, ‘keylin’,

‘log’, and ‘keylog’ respectively correspond to the HDR image scaling strategies formulated

in Eqs. (2), (3), (4), and (5), by substituting b with bs or bl.

dataset. Therefore, for each HDR image forensic problem classifying small im-475

age blocks, we had 1839 × 1 = 1839 blocks from each class for training the

detector, and 1851 × 5 = 9255 blocks from each class for testing to obtain the

detection accuracies.

As described in Sec. 2.2, we have six types of iHDR images ‘A’, ‘B’, ‘H’, ‘K’,

‘M’, and ‘R’. Besides, we also consider another class with mixed iHDR images480

randomly selected from the previously mentioned six types of iHDR images, and

we denote it as ‘mix’. For each class of mHDR/iHDR images, 50 image patches

with size 3 × 3 are randomly selected from each image in the training dataset

HDRFTR. Therefore, we have 1839 × 50 = 91950 image patches to learn a

GMM. For each image (block) size and each type of iHDR image, 1839×2 = 3678485

image (block) samples from dataset HDRFTR are used for training the detector,

whereas 1851 × 2 = 3702 image samples or 1851 × 5 × 2 = 18510 image block

samples from dataset HDRFTE are used to evaluate the forensic performance.
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Table 1: Detection accuracy (%) comparison of different forensic detectors on 8 × 8 image

blocks, when different HDR image preprocessing strategies are used. The bs and bl values are

selected according to the results shown in Fig. 2. The feature dimensionalities of the SPAM

feature and the proposed feature are respectively 686 and 684. Forensic detectors are trained

on dataset HDRFTR. Results are obtained on dataset HDRFTE.

mix A B H K M R

‘lin’

bs = 14, bl = 6

SPAM 69.17 74.94 67.44 68.99 74.66 71.93 70.41

Proposed 70.68 75.34 69.88 66.86 75.69 71.10 67.37

‘keylin’

bs = 5, bl = log2(2)

SPAM 72.84 74.97 68.06 72.39 75.01 75.11 76.18

Proposed 75.21 76.37 72.02 73.92 76.44 76.65 77.36

‘log’

bs = 9, bl = 4

SPAM 73.56 74.37 71.01 73.75 74.15 74.31 79.76

Proposed 76.45 76.70 75.55 76.21 76.59 76.37 81.24

‘keylog’

bs = 9, bl = 6

SPAM 72.72 73.39 70.24 72.77 73.46 73.71 78.60

Proposed 76.25 75.93 75.25 74.88 75.55 75.55 81.90

5.2. HDR Image Preprocessing

In this section, we will experimentally study and compare the impact of dif-490

ferent HDR image preprocessing strategies we proposed in Sec. 3.3 on mHDR/iHDR

classification accuracy. Here, we use ‘lin’, ‘keylin’, ‘log’, and ‘keylog’ to re-

fer to the HDR image scaling strategies formulated in Eqs. (2), (3), (4), and

(5), respectively. For both the SPAM feature [20] (also see Sec. 3.2) and the

proposed method, we test different values of b to pre-process the HDR con-495

tent, extract the forensic features, train the forensic detectors, and obtain the

detection accuracies for evaluation.

We perform the experimental study on 8×8 image blocks, since the forensic

performance at this level is more sensible to the quality of the employed feature.

For the sake of conciseness, we report the results of this experiment for the ‘mix’500

iHDR class only, instead of all types of iHDR images separately, as this already

includes all six types of iHDR images we consider in this paper. Fig. 2 shows

the forensic performance variations with varying the b value (see Eqs. (2)-(5))

for the four proposed HDR image preprocessing strategies. In the figures, bs
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and bl respectively denote the b values used for extracting the SPAM feature505

and the proposed feature.

According to Fig. 2, we obtain the best b values for different HDR image

preprocessing strategies. With these values, we extract the SPAM feature and

the proposed feature, and obtain the detection accuracies for other six inverse

tone mapping detection problems, as reported in Table 1. In linear pixel value510

domain (corresponding to ‘lin’ and ‘keylin’), it is interesting to observe that

the scaling based on the image key performs much better than that based on

the maximum value, showing that the very different dynamic ranges of different

HDR images do cause bias in forensic tests. This can be improved by conduct-

ing a scaling based on the image key, which is adaptively estimated from each515

HDR content. Compared to the linear domain, it seems to be more effective to

perform HDR image forensics in the logarithmic domain (corresponding to ‘log’

and ‘keylog’). This can be interpreted by looking at the joint histogram results

shown in Fig. 1. By taking the logarithm, the range of small image pixel values

is expanded and thus makes histograms more distinctive. Statistical differences520

are well exposed in the range with small pixel values, leading to effective forensic

analysis. Also, in this case normalizing by the key does not change significantly

the performance, showing that a logarithmic range compression is already ro-

bust enough to cope with the content-dependent dynamic range of each image.

Therefore, we choose to use in the rest of the experiments the ‘log’ HDR image525

preprocessing strategy for both the SPAM feature and the proposed method,

with bs = 9 for the SPAM feature and bl = 4 for the proposed feature.

5.3. Forensic Performance Evaluation

Using the ‘log’ preprocessing strategy as discussed in Sec. 5.2, we report

in Table 2 the forensic performance of the proposed method with comparisons530

to the SPAM feature [20] and the LHS feature [30, 31]. To better validate the

efficacy of the proposed feature. We also carry out the forensic detection in

the following two scenarios: 1) HDR images with relatively low dynamic range,

and 2) HDR images with relatively high dynamic range. For each HDR image,
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Table 2: Detection accuracy (%) comparison when different image (block) sizes are considered.

The feature dimensionalities of the SPAM feature, the LHS feature, and the proposed feature

are respectively 686, 688, and 684. Forensic detectors are trained on dataset HDRFTR.

Results are obtained on dataset HDRFTE.

‘mix’ ‘A’ ‘B’ ‘H’ ‘K’ ‘M’ ‘R’

512× 512

SPAM 97.19 97.16 96.92 97.08 97.14 97.00 97.92

LHS 94.68 94.79 96.38 95.14 94.95 95.11 96.81

Proposed 94.35 93.84 97.11 94.06 94.38 94.81 97.27

8× 8

SPAM 73.56 74.37 71.01 73.75 74.15 74.31 79.76

LHS 72.98 73.75 69.69 71.49 73.52 73.76 77.88

Proposed 76.45 76.70 75.55 76.21 76.59 76.37 81.24

7× 7

SPAM 71.39 72.25 68.07 71.26 72.37 72.36 78.36

LHS 70.12 71.66 68.26 70.57 71.11 71.40 76.48

Proposed 74.67 74.99 73.95 74.20 74.79 74.86 80.32

6× 6

SPAM 69.68 70.96 66.35 70.21 70.43 70.93 75.88

LHS 69.12 70.54 66.08 69.69 70.61 70.15 75.63

Proposed 72.70 73.33 71.87 72.01 73.01 73.12 78.22

5× 5

SPAM 67.10 68.25 63.24 67.26 68.17 68.50 74.23

LHS 67.72 68.21 64.05 67.09 68.81 67.88 72.81

Proposed 70.82 71.16 68.64 70.68 71.38 71.36 76.52

4× 4

SPAM 63.06 63.97 59.22 63.11 63.87 64.41 69.76

LHS 64.67 65.09 60.32 64.49 65.19 65.60 69.98

Proposed 67.50 67.71 64.67 67.25 67.55 67.91 73.88

3× 3

SPAM - - - - - - -

LHS 62.28 64.02 58.66 62.59 63.82 63.76 68.93

Proposed 63.66 64.89 60.44 63.92 64.79 64.63 70.51

after excluding the biggest 0.01% and smallest 0.01% pixels, we can compute535

its dynamic range as the ratio between the biggest and smallest pixel values.

According the dynamic range of each HDR image, we construct the following to

subsets: 1) HDRFTE-L, containing iHDR images with the 20% lowest dynamic
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Table 3: Detection accuracy (%) obtained on dataset HDRFTE-L (iHDR/mHDR images with

the 20% lowest dynamic range).

‘mix’ ‘A’ ‘B’ ‘H’ ‘K’ ‘M’ ‘R’

512× 512

SPAM 98.24 98.11 98.11 98.11 97.97 98.51 98.38

LHS 95.54 95.95 96.62 97.30 96.08 96.89 97.57

Proposed 95.41 93.51 96.49 94.05 93.92 95.14 96.08

8× 8

SPAM 75.22 75.73 71.59 74.32 75.46 77.00 79.30

LHS 75.92 74.95 70.70 72.30 75.24 76.32 78.76

Proposed 80.30 79.54 77.62 78.41 79.14 79.24 81.54

7× 7

SPAM 72.57 73.14 68.24 72.54 73.57 75.46 78.00

LHS 73.41 73.76 70.16 73.05 73.41 74.59 77.05

Proposed 77.95 77.68 75.41 75.92 77.65 78.22 81.35

6× 6

SPAM 72.51 73.49 66.68 71.78 73.41 74.32 76.35

LHS 71.97 72.84 68.24 71.67 72.62 72.78 76.57

Proposed 76.38 75.14 73.70 73.32 74.81 76.27 78.81

5× 5

SPAM 69.35 69.86 63.24 67.95 69.51 70.46 73.95

LHS 69.43 69.03 65.22 68.16 69.76 70.19 73.30

Proposed 73.11 72.84 69.65 72.03 72.95 73.89 76.22

4× 4

SPAM 65.38 66.70 60.11 65.16 67.05 67.43 70.65

LHS 67.84 68.16 61.16 66.59 68.49 69.46 70.65

Proposed 70.73 70.08 66.24 68.27 69.84 71.70 74.03

3× 3

SPAM - - - - - - -

LHS 65.30 65.32 59.86 63.76 65.38 66.57 68.41

Proposed 65.46 65.43 60.86 64.51 65.89 66.70 69.38

range and mHDR images with the 20% lowest dynamic range, and 2) HDRFTE-

H, containing iHDR images with the 20% highest dynamic range and mHDR540

images with the 20% highest dynamic range. The detection accuracies on these

two subsets are reported in Tables 3 and 4 respectively.

For the extraction of both the LHS feature and the proposed feature, we use
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Table 4: Detection accuracy (%) obtained on dataset HDRFTE-H (iHDR/mHDR images with

the 20% highest dynamic range).

‘mix’ ‘A’ ‘B’ ‘H’ ‘K’ ‘M’ ‘R’

512× 512

SPAM 95.95 94.59 93.78 93.92 94.05 94.73 95.68

LHS 93.11 91.22 94.05 91.49 91.08 92.30 96.08

Proposed 92.16 89.19 94.32 90.14 89.73 91.76 97.03

8× 8

SPAM 70.54 69.38 65.05 68.97 68.43 67.73 76.73

LHS 69.38 68.76 62.65 66.35 68.22 68.65 75.84

Proposed 73.51 69.89 68.73 69.95 70.46 69.97 79.46

7× 7

SPAM 68.76 68.57 61.89 67.43 68.41 68.00 77.14

LHS 67.97 67.78 62.97 66.92 66.76 67.05 74.59

Proposed 72.78 69.70 68.27 69.00 70.27 70.38 78.84

6× 6

SPAM 66.86 65.59 60.30 65.57 65.43 66.41 74.54

LHS 65.62 66.32 59.35 65.35 65.87 65.54 74.08

Proposed 70.16 69.22 65.22 67.49 68.35 69.14 7.30

5× 5

SPAM 64.89 64.54 57.78 63.65 64.05 64.49 73.84

LHS 64.97 63.35 58.68 63.14 64.41 64.11 72.27

Proposed 68.76 66.65 61.59 66.54 66.54 68.65 76.16

4× 4

SPAM 60.43 60.41 56.19 60.59 60.05 61.11 70.32

LHS 61.84 61.65 54.65 61.11 61.41 61.51 70.27

Proposed 65.70 64.24 58.27 63.62 63.59 64.08 74.08

3× 3

SPAM - - - - - - -

LHS 60.41 61.51 56.19 60.49 61.35 61.11 69.86

Proposed 62.89 62.92 56.14 62.16 62.35 62.62 72.92

the same setting except the number of components of the GMMs. As described

in the end of Sec. 4.2, we set the local neighborhood size s = 3. Furthermore,545

38-component and 43-component GMMs are used respectively by the proposed

method and the LHS feature, leading to a dimensionality of 684 and 688 re-

spectively. All the forensic detectors are trained on the HDRFTR dataset using

25



38 48 56 64 72
75

77

79

81

83

Number of GMM components

D
et
ec
ti
o
n
a
cc
u
ra
cy

(%
)

mix

A

B

H

K

M

R

Figure 3: Detection accuracy variation of the proposed method on 8× 8 image blocks, when

GMMs with different numbers of components are used. Forensic detectors are trained on

dataset HDRFTR. Results are obtained on dataset HDRFTE. In general, richer GMMs with

more components bring higher detection accuracies.

SVM [58] with a Gaussian kernel. The parameters of the SVM are searched

using a five-fold cross validation with a multiplication grid as suggested in [20].550

Results reported in Tables 2-4 show the image classification on HDR images

with high dynamic range is a harder problem than those with low dynamic range.

In both cases, the proposed method achieves at least comparable performance

with the SPAM/LHS features, and is especially advantageous on very small

image blocks. Note that, on image blocks as small as 3× 3, the SPAM feature555

cannot even be extracted, as it is not possible to count the co-occurrences of

neighboring second-order derivatives. However, the proposed method can still

perform the forensic task thanks to the fact that the GMMs are learned on 3×3

image patches. Though in such an extreme case the detection accuracies are

much lower than for 512 × 512 images, we believe that these result show the560

boundary achievable by forensic methods when we keep pushing the limits of

image block size. This is very important for the forensic study of very fine-

grained image tampering localization [13].

It is possible to enrich the GMM by learning more components. One in-

teresting question is whether richer GMMs can bring more forensic detector565
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power. In order to answer this question, we study the impact of the number

of GMM components to the forensic performance. Besides the 38-component

GMMs used to construct the 684-dimensional proposed forensic feature, we learn

GMMs with 48, 56, 64, and 72 components. This leads to forensic features with

higher dimensionality, i.e., 864, 1008, 1152, and 1296, respectively. For differ-570

ent iHDR image detections, Fig. 3 shows the detection accuracy variation with

respect to the number of GMM components. We can see that, in general, richer

GMMs with more components can help improve the forensic performance of the

proposed method. Nevertheless, 38-component GMMs seem to be already quite

satisfactory for our HDR image forensic task.575

6. Conclusions

This paper addresses for the first time a new forensic problem in the context

of high dynamic range imaging: differentiating HDR images created from mul-

tiple LDR exposures from those obtained by single LDR images through inverse

tone mapping. We point out in the paper some important and substantial dif-580

ferences between LDR and HDR content, e.g., in terms of the physical meaning

and representation of pixels. This motivates the need to study the applicability

of existing forensic tools to HDR, and to eventually propose new ones. We con-

sider as an example the popular SPAM feature and compare four HDR image

preprocessing strategies to extract it from HDR images. Going one step further,585

we propose a more powerful HDR forensic feature, inspired by the texture/facial

analysis LHS feature, by exploiting local higher-order statistics based on Fisher

scores calculated under GMMs, which achieved especially competitive detection

accuracies on image blocks as small as 3× 3. This is especially significant when

considering a scenario of fine-grained tampering localization. Experimental re-590

sults show that the proposed method performs at least at a comparable level

when compared to the SPAM/LHS feature, and is especially advantageous on

very small image block classification.

As the first image forensics work in HDR content, this paper introduces
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digital forensics to a new type of image, where various forensic problems can595

be studied. Future research shall be devoted to exploring other relevant foren-

sic problems in HDR images, such as camera fingerprints estimation and anti-

forensics. Furthermore, the proposed feature based on Fisher scores could be

also successfully employed in many conventional LDR forensic problems, in or-

der to push further the possibility of identifying image tampering on very small600

image blocks and gain a better understanding of the semantics of a forgery.

References

[1] P. E. Debevec, J. Malik, Recovering high dynamic range radiance maps

from photographs, in: Proc. SIGGRAPH, 1997, pp. 369–378.

[2] E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward,605

K. Myszkowski, High dynamic range imaging: acquisition, display, and

image-based lighting, Morgan Kaufmann, 2010.

[3] F. Banterle, A. Artusi, K. Debattista, A. Chalmers, Advanced High Dy-

namic Range Imaging, AK Peters / CRC Press, 2011.

[4] F. Dufaux, P. L. Callet, R. Mantiuk, M. Mrak, High Dynamic Range Video:610

From Acquisition, to Display and Applications, Academic Press, 2016.

[5] A. Luthra, E. François, W. Husak, Call for evidence (CfE) for HDR and

WCG video coding (2015).

[6] T. Richter, On the standardization of the JPEG XT image compression,

in: Picture Coding Symposium (PCS), 2013, IEEE, 2013, pp. 37–40.615

[7] ITU-R, The present state of ultra-high definition television, ITU-R Rec-

ommendation BT.2246-6 (March 2017).

[8] A. Chalmers, K. Debattista, HDR video past, present and future: A per-

spective, Signal Processing: Image Communication 54 (2017) 49–55.

28



[9] F. Banterle, K. Debattista, A. Artusi, S. N. Pattanaik, K. Myszkowski,620

P. Ledda, A. Chalmers, High dynamic range imaging and low dynamic

range expansion for generating HDR content, Comput. Graph. Forum

28 (8) (2009) 2343–2367.

[10] H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead,

M. Trentacoste, A. Ghosh, A. Vorozcovs, High dynamic range display sys-625

tems, in: Proc. SIGGRAPH, 2004, pp. 760–768.
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