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France

Abstract.

A pressure driven flow in contact interface between elastic solids with wavy surfaces is
studied. We consider a strong coupling between the solid and the fluid problems, which is
relevant when the fluid pressure is comparable with the contact pressure. An approximate
analytical solution is obtained for this coupled problem. A finite-element monolithically
coupled framework is used to solve the problem numerically. A good agreement is obtained
between the two solutions within the region of the validity of the analytical one. A power-
law interface transmissivity decay is observed near the percolation. Finally, we showed that
the external pressure needed to seal the channel is an affine function of the inlet pressure
and does not depend on the outlet pressure.

Keywords: wavy channel, contact, fluid flow, sealing, fluid-solid coupling, monolithic
approach, finite element analysis

1 Introduction

The problem of a thin fluid flow in narrow interfaces between contacting or slightly separated
surfaces occurs in different applications. The first example is the sealing problem: seals are
used to minimize or prevent leakage of fluids from and into internal chambers of numerous
engineering systems, such as gas cylinders, water circuits, lubricated bearings and gears, heat
engines and others. Dynamic and static seals are distinguished, the former seal interfaces
between surfaces with no relative motion, the latter deal with relatively moving surfaces.
Contact and non-contact seals are also distinguished: the former possess contacting parts in
the sealing interface, the latter do not.

Hydraulic fracturing is another application which involves interaction of fluid and solid
with possible contact between crack faces or/and with a third body, like sand particles [7]. The
fluid extraction of shale gas and oil from rocks represents an antipodal problematic to sealing
applications, but the physics and fluid-solid coupling remain identical. A slightly different
problem involving fluid, solid and contact appears in fatigue-crack growth in lubricated
rolling or cyclically sliding contacts [9]. Such an interaction between fluids and solids in
contact can be also found in poromechanics [13] and at larger scales in landslides [49], slip
in pressurized faults [19], bazal sliding of glaciers [18], and in other applications.

Depending on the application, the fluid can be considered compressible or incompress-
ible (both in gas and liquid states), and it might flow under capillary effect or pressure
difference. Fluids in liquid state at high pressure may evaporate due to a pressure decrease
along the fluid path or due to temperature increase induced by frictional heating, which
results in a mixed gas-liquid-solid problem: a notable example is cavitation in lubrication
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problems. Compressibility and viscosity of fluid can depend significantly on pressure and
temperature within a certain range of loading parameters. Polymers are used in most sealing
applications, however, due to fluid-uptake, chemical and thermal degradation, and also the
glass transition, their usage is limited; several applications require usage of metal-to-metal
contacts in seals. In nature, the problems of interfacial fluids in contact interfaces are relevant
for rock materials in terms of hydrogeology, shale gas and oil extraction as well as fracking,
and also magma rise in volcanology [27]. In biological systems, the relevant materials are
soft tissue and the applications include circulation of blood and other fluids in organisms.

Inevitable roughness, sometimes complemented by on-purpose patterning of engineer-
ing and natural surfaces, affects their sealing properties. Inversely, the presence of a fluid
in the contact interface may affect the mechanical properties of seals by adding extra load-
carrying capacity, changing the interface stiffness and the friction coefficient. For soft mate-
rials and high fluid pressures, interface fluids can considerably deform the solids in elasto-
hydrodynamic lubrication, however it may be also relevant for static seals [30]. In contact
seals this nonlinear fluid-solid interaction is intensified by nonlinear contact constraints.
This coupling presents the topic of the current study.

The roughness of contacting surfaces [52, 45] has strong implications in mechanics and
physics of contact: adhesion, friction and wear in dry and lubricated contacts are controlled
to a great extent by parameters of the roughness of contacting solids. Mass and energy
transport through and across contact interfaces strongly depend on the surface roughness,
for instance: electric contact resistance, heat conduction between contacting solids and the
sealing problem – the topic of the interest of the present paper. The roughness, or more
generally the surface geometry, may contain some deterministic features (turned surfaces,
patterned surfaces [38]) or be purely random, self-affine [31] down to atomistic scale [24, 37].
Surface morphology may be determined by surface processing (polishing, work-hardening),
underlying microstructure and its deformation (grain boundaries, plasticity induced rough-
ness [43], persistent slip marks [6], rumpling [46]), corrosion and oxidation; for coatings the
roughness is determined by the deposition method (physical vapor deposition, gas dynamic
cold spray deposition, electroplating and others), in biology the surface is determined by the
tissue growth processes and related instabilities or assigned functionalities [3, 26, 50]. The
resulting surface morphology may be rather complex and span over many scales from atom-
istic to structural ones, it can be characterized by numerous parameters, such as standard
deviation of heights and height gradient, height distribution, in particular its kurtosis and
skewness, power spectral density, spectral moments, etc. For mechanical contact problems,
since in most applications only the highest asperities come in contact, an approximation
of the roughness by a number of isolated spherical or elliptic asperities results in a rather
accurate and helpful model [5, 20, 11]. On the other hand, the fluid flow through the free
volume1 is mainly affected by “deeper” surface features: grooves, valleys and dimples.

Numerical analysis of the fluid flow through contact interfaces was carried out between
real [4, 47, 48, 17] or model rough topographies [36, 14, 34]. In contrast to the complexity and
lack of scale separation of nominally flat realistic surface roughness, surface patterning allows
to use the concept of scale separation to a certain extent and to limit the analysis to major
geometrical features of the surface [40, 41, 35]. On the other hand, analysis of simple models
of surface geometry, for example wavy and bi-wavy models [51, 25, 23, 22, 12, 57, 15, 54, 29],
helps to understand better local deformation mechanisms in rough contact and the role of
patterning for macroscopic behavior. A wavy channel also serves as an important test model
in fluid flow analysis [33, 10, 44, 32, 15]. Here we also consider a periodic wavy channel, but
contrary to other flow studies, it is brought in mechanical contact with a rigid flat and the
fluid flows across the wavy section in channels delimited by mechanical contact zones. In

1By free volume here we mean the separation field between contacting surfaces.
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the first approximation this model represents a “rough” surface with parallel grooves.
To analyze the fluid flow in the contact interface, two problems should be solved: a

mechanical problem of the contact between solids with rough surfaces and the problem of
the fluid flow through the resulting free volume. If during the loading process the fluid
pressure is negligible in comparison to the contact pressure, it is possible to assume that both
physics are weakly coupled. This implies that they can be solved separately: firstly, the solid
contact problem is solved to obtain the deformed geometry of the channels. This geometry
is then passed to the fluid solver, which resolves the fluid flow under the assumption of
rigid boundaries. This solution strategy leads to a one-way coupling, whereby the contact
problem is independent of the fluid pressure, while the fluid problem depends on the
geometry computed by the solid solver. However, it is not rare that in the load interval of
interest a stronger coupling between fluid and solid equations is required. For example, it is
the case when the local contact pressure is comparable with the hydrostatic fluid pressure.
Note that it is always the case near edges of contact zones at which the contact pressure (in
the uncoupled case) decreases to zero as ∼

√
ξ, when the distance from the contact edge ξ

decreases ξ→ 0 [28]. The so-called two-way coupling strategy allows to take into account
the fluid pressure distribution and its effect on the deformation of the solid and vice versa:
the effect of the elastic deformation on the fluid flow.

In many industrial applications the thickness of the free volume interface between con-
tacting surfaces is quite small, and the flow is often laminar even for gas [30]. Nevertheless,
considering turbulent flow could be essential for more demanding applications, like drag
delivery, microfluidic chemical reactors, etc. Moreover, we postulate that the variation of
the mechanical loading conditions is slow enough compared to characteristic time of the
fluid flow, so the flow is assumed to be stationary; capillary actions are neglected, only
pressure driven flow is considered. This two-dimensional flow through the contact interface
is accurately described by the Reynolds equation [30, 21, e.g.], which is used in this study.

The paper is structured as follows: in Section 2 we formulate the problem to be solved;
in Section 3 we recall classical solutions for a wavy profile with a pressurized fluid present
in the interface; in Section 4 we obtain an approximate analytical solution; in Section 5 a
monolithic numerical scheme which couples the fluid and solid equations is briefly outlined;
finally, in Section 6 the numerical results are presented and discussed, and in Section 7 we
make conclusions.

2 Problem set-up

We consider an array of wavy channels of length L along OY direction (see Fig. 1(a)) with a
sine-shape section

z(x′) = ∆[1− cos(2x′)], (1)

where x′ =πx/λ, brought in contact with a rigid flat2, the pressure driven flow in this channel
(∆p f = pi−po, where pi and po are the inlet and outlet pressures, respectively) of incompress-
ible viscous fluid is governed by the stationary Reynolds equation for the Poiseuille flow.

We assume an isothermal fluid flow at a temperature at which it does not evaporate
under the pressure drop on its way from the inlet to the outlet. The system of equations to

2Note that all the discussions are valid not only for an elastic solid with a wavy surface in contact with
a rigid flat, but for two elastic solids with the effective wavy roughness given by z = z1 − z2 + c, where z1,z2
determine surface geometries of the two contacting solids, and c is an arbitrary constant. However, for
simplicity hereinafter we will assume that an elastic wavy surface is brought in contact against a rigid flat.
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Figure 1: (a) Problem set-up: an elastic wavy surface comes in contact with a rigid flat,
and an incompressible fluid flows under pressure difference from the inlet to the outlet; the
resulting interface pressure distribution p(x, y) is sketched. (b) Sketch of the contact interface,
note that due to fluid pressure acting on the surface of the solid, the contact patches in the
sections parallel to OX are wider at the outlet, than at the inlet, which is associated with the
direction of the fluid pressure drop.

be solved takes the following form:

∇·

[
g3
∇p f

]
= 0 in Ω f (2)

p f
∣∣∣
y=0 = pi, p f

∣∣∣
y=L = po, [∇p f · ex]

∣∣∣
x=0,λ/2 = 0 (3)

∇·σ = 0 in V (4)

ux|x=0,λ = 0, uy
∣∣∣
y=0,L = 0, σzz|z=−∞ = −pext (5)

g ≥ 0, p−p f ≥ 0, (p−p f )g = 0 in ∂V, (6)

where Eq. (2) is the Reynolds equation for pressure driven stationary incompressible viscous
Poisseuille flow, the distance between immobile walls is given by at least C1-smooth gap
distribution g = g(x, y) in the domain Ω f , which is the closure of the solid volume ∂V projected
on the rigid flat, and p f denotes the fluid pressure. Eq. (3) summarizes boundary conditions
for the fluid problem: the fixed inlet pi and outlet fluid pressure po and zero flux at crests of the
surface resulting from the problem symmetry. Expression ∇p f · ex is a quantity proportional
to the fluid flux in the OX direction (orthogonal to the main flow direction), and ex is a non-
zero in-plane vector collinear with the axis OX. The fluid flux is given by q =−g3(∇·p f )/12µ,
where µ is the dynamic viscosity. Prescribing the fluid flux at the inlet/outlet of the fluid
domain would only slightly change the numerical treatment, and since for contact static
seals the fluid flow with prescribed hydrostatic inlet and outlet fluid pressures presents a
more common situation, for the rest of the paper we will stick to this particular boundary
condition. Eq. (4) is the momentum balance equation for the quasi-static solid mechanical
problem in absence of volumetric forces, while (5) summarizes boundary conditions for the
solid problem, where pext is the squeezing pressure applied at infinity. Due to the symmetry,
horizontal displacements are zero at lateral walls orthogonal to OX, which corresponds to
the infinite periodic set-up. Vertical walls on the inlet and outlet sides are assumed to remain
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Figure 2: (a) - Contact between an elastic wavy profile and a rigid flat with a pressurized
fluid in the interface, (b) - variation of the mean pressure on the surface with the normalized
gap.

flat. Conditions (6) will be explained in the following section.
Note that the mechanical contact pressure p is defined in contact regions Ωc, whereas the

fluid hydrostatic pressure is a complementary field which is defined in the fluid zone Ω f ,
thus for every point p ·p f = 0 with an exception of the contact-fluid interface (contact edge),
∂Ω f ∩∂Ωc, at which p = p f . Here, the condition on the contact pressure p− p f ≥ 0 is valid
only on the contact edge shared with the fluid boundary ∂Ω f ∩∂Ωc, as p f = 0 in the interior
of the contact zone Ωc \∂Ωc. Note that such formulation makes possible existence of contact
zones with contact pressure smaller than the pressure of surrounding fluid if and only if
these zones are separated from the contact-fluid interface by zones with contact pressure
higher than the fluid pressure; a suction cup could be given as an example here. Linear
isotropic elasticity is considered for the elastic half-space V, so the stress-strain relation is
given by the Hooke’s law. Finally, we have one unknown vector field in three dimensions,
displacements u(x, y,z) in V, and one unknown scalar field in two dimensions, which is the
hydrostatic fluid pressure p f (x, y) in Ω f . We assume that full contact is not reached in all
sections parallel to OX, so the fluid can always circulate.

In Fig. 1(a) we also sketch the resulting interface pressure, note that in the contact zones
it is not uniform along the OY axis, but rather increasing towards the outlet side, while the
width of contact patches in sections orthogonal to OY is also increasing towards the outlet,
in accordance to the direction of the fluid pressure drop, see also Fig. 1(b).

We study the evolution of the two fields u and p f with the increasing external pressure
pext. In particular, we are interested to know how the contact profile a(y) delimits the contour
of the fluid channel and how its depth g(x, y) changes. In addition, we can determine under
which conditions the flow is possible through the interface, i.e. what are the critical values
of pi,po,pext resulting in channel closure.

3 Wavy profile with pressurized fluid in the interface

Before making an attempt to solve the three-dimensional problem formulated in the previous
section, we focus our attention on a simpler, planar contact problem with a pressurized fluid
in the interface. Understanding of this problem will be helpful for the derivation of the
approximated solution for the full problem, which is presented in the following section.

An elastic solid with a wavy surface (Fig. 2, Eq. (1)) is brought in contact with a rigid
flat in a fluid environment, which is retained under a constant pressure p f . A plane strain
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problem is considered. The solid mechanical contact problem was solved for this configu-
ration by Westergaard without fluid pressure (p f = 0) [51, 23] under the assumption of the
infinitesimally small slope of the wavy profile; the pressure distribution in contact region
was found to be

pW (x′,a′) = 2p̄(a′)
cos(x′)
sin2(a′)

√
sin2(a′)− sin2(x′), (7)

where x′ = πx/λ,a′ = πa/λ, and a is the half-width of the contact zone; the mean contact
pressure reads as

p̄(a′) =
πE∗∆
λ

sin2(a′), (8)

i.e. p̄(a′) =
a′∫
0

pW (x′,a′)dx′, and E∗ is the effective elastic modulus defined by

1
E∗

=
1−ν2

1

E1
+

1−ν2
2

E2
,

where Ei,νi are the Young’s moduli and Poisson’s ratios of the two contacting solids i = 1,2,
respectively. Associated effective displacements (taken with a negative sign) in the contact
interface are given by

uz(x′,a′) =


−∆cos(2x′) + C, in contact cos(x′) > cos(a′)
−∆ [cos(2x′) + 2sin(x′)h(x′,a′) −2sin2(a′) ×
× ln

( sin(x′)+h(x′,a′)
sin(a′)

)]
+ C, out of contact cos(x′) ≤ cos(a′),

(9)

where h(x′,a′) =

√
sin2(x′)− sin2(a′).

The solution of the contact problem for the same configuration in the pressurized envi-
ronment was found by Kuznetsov in [25]. If we assume that the fluid pressure acts only
vertically3 and that the profile slope is infinitesimal, the stress state in the contact interface
in the presence of the additional fluid pressure, applied outside the contact patches, can be
considered as the superposition of the stress state corresponding to the same contact area,
but without influence of the fluid, i.e. the Westergaards solution (7), and a uniform field of
the fluid pressure p f :

p(x′,a′) = p f + pW (x′,a′). (10)

A detailed rigorous analysis of the trapped fluid in the contact interface without the assump-
tion of infinitesimal slopes and with the fluid pressure acting normally to the surface was
carried out in [42], but here the simplified vision (10) is sufficient to investigate the strongly
coupled fluid flow along the wavy channel brought in contact.

In the classical Hertzian contact the pressure decreases to zero towards contact edges,
but in a pressurized environment such a situation is impossible as the contact would be
open by the environmental pressure. So the pressure p f represents an offset which can be
complemented by the mechanical pressure rising in contact. Since a constant p f does not
change the shape of the surface in infinitesimal slope assumption, displacements obtained for
pressures (7) and (10) differ only by a constant, thus Eq. (10) satisfies the contact conditions,
which can be formulated for the coupled problem in the following way:

p−p f ≥ 0, g ≥ 0, (p−p f )g = 0, (11)

3In [42], this assumption was shown to be too prohibitive for certain applications even if the surface slope
is assumed infinitesimal.
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where p is the contact pressure, g is the gap, and p f is the pressure of the environment. That
is the form which appears in the main system of equations to be solved (6).

The relation between the mean gap and the contact force almost does not change com-
pared to the unpressurized case [23, 25], only a force offset p fλ is added for every period.
The mean gap can be computed by integrating g(x) = z(x) + uz(x) in the non-contact region
giving

ḡ = ∆

(
1−

p̄
p∗

[
1− ln

(
p̄
p∗

)])
, for p̄ ∈ [0,p∗] (12)

where p∗ = πE∗∆/λ is the pressure needed to bring the wavy surface in full contact in the
absence of fluid pressure and the mean contact pressure in absence of fluid p̄ is given by
Eq. (8). In Fig. 2(b) the full normalized pressure p/p∗ = (p̄ + p f )/p∗ is plotted with respect
to the mean gap ḡ evolution, where p̄ + p f is the full pressure applied to the system. It is
naturally assumed that the fluid can be squeezed-out from the contact interface.

Based on this planar solution the following preliminary conclusion can be drawn for
the three-dimensional problem. If the hydrostatic pressure changes only weakly along the
channel, i.e. pi ≈ po, then the contact lines would remain almost parallel to the axis OY and the
derivative of the gap with respect to y may be neglected. Then the hydrostatic pressure will
be an affine function of the coordinate y, i.e. p f = pi + (po−pi)y/L. The flux, which would have
a non-zero component only along y axis, can be readily found as qy(x) =−g3(x)(po−pi)/(12µL);
note that it depends only on the x-coordinate. Thus, naturally for the situation pi ≈ po the
channel would be sealed at pext ≈ p∗+ po.

4 Approximate solution

To solve approximately the coupled problem formulated in Eqs. (2)-(6) we need to make
several strong assumptions: we assume (i) that in every section y = const, the pressurized
Westargaard-Kuznetsov solution (10) is satisfied for a = a(y) and p f = p f (y). However, it is
clear that it should imply that∂p f /∂x = 0, which could seem to exclude the channel narrowing.
But since in the following, the problem will be reduced to a one-dimensional flow along OY
axis, this assumption (i) is not contradictory: the fluid pressure can be considered as the
mean pressure in the section

p f (y) =
1

λ−2a

λ−a∫
a

p f (x, y)dx.

We also assume (ii), which is the strongest and the least realistic assumption, that in every
section

pext = p̄ + p f = const, (13)

for that we require that p f ≤ pext in Ω, which is equivalent to require that pi ≤ pext. Another
simplification would be (iii) to reduce the two dimensional Reynolds equation to a one-
dimensional equation for the average gap (12), which implies that the hydrostatic pressure
is independent of the x-coordinate: p f = p f (y). Under these assumptions Eq. (2)-(3) can be
rewritten as

ḡ3p′f = C1, p f (0) = pi, p f (L) = po, (14)

where the prime sign denotes partial derivative with respect to y, and C1 is the integration
constant. The condition of the zero flow at x = 0,λ (see Eq. (2)) is automatically satisfied as
p f is assumed not to depend on x.
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Now we can use the relation between the mean gap and the pressure (12) through the
relation (13), which being substituted in (14) yields:

−p∗∆3

C1

ρ(y)∫
ρi

[
1−ρ

{
1− lnρ

}]3 dρ = y, (15)

where ρ(y) = (pext−p f (y))/p∗, and ρi = ρ(0) = (pext−pi)/p∗. From (15) it follows that ρ(y) should
be a monotonically increasing function of y in the range y ∈ [0;L]. The boundary conditions
now read as:

ρ(0) = ρi = (pext−pi)/p∗, ρ(L) = ρo = (pext−po)/p∗.

The integral I(ρ) =
∫ [

1−ρ
{
1− lnρ

}]3 dρ from (15) with zero integration constant is evaluated
as:

I(ρ) =ρ−α1ρ
2 +α2ρ

3
−α3ρ

4 +β0ρ
2(1−β1ρ+β2ρ

2) ln(ρ)

+ρ3(1−γρ) ln2(ρ) +
ρ4

4
ln3(ρ),

where α1 = 9/4, α2 = 17/9, α3 = 71/128, β0 = 3/2, β1 = 16/9, β2 = 13/16, γ= 15/16. The solution
cannot be provided in the form p f (y), but rather y(p f ), which reads as

y =
−p∗∆3

C1
(I(ρ) + C2),

where the integration constants can be found through boundary conditions: C2 = −I(ρi) and
C1 = −p∗∆3 (I(ρo)− I(ρi)

)
/L. The final approximate solution, which determines the average

fluid pressure distribution along the channel coordinate y is given below:

y
L

=
I(ρ)− I(ρi)
I(ρo)− I(ρi)

. (16)

Resulting curves for the variation of hydrostatic pressure, mean gap and contact half-width
along the channel are depicted in Fig. 3, 4(a), 4(b), respectively. This approximate result is
able to capture the non-linear hydrostatic pressure distribution along the channel, to account
for the induced deformation of the solid and thus to obtain the narrowing of the channel.
Note that the obtained fluid pressure distribution becomes a concave function and resembles
the pressure distribution of a compressible fluid.

With the derived analytical solution we may calculate the fluid flux in the y-direction as

qy(x, y) = −
g3(x, y)

12µ
dp(y)

dy
, (17)

where the gap g(x, y) is obtained in each section y = const using the Westergaard’s solution (9)
corresponding to the mean pressure p̄ = pext − p f (y), and the derivative dp/dy is calculated
using (16) as

dp
dy

=

(
−

1
p∗

L
I(ρo)− I(ρi)

dI(ρ)
dρ

)−1

. (18)

This result will be used in the following for computation of the mean flux and the effective
transmissivity of the interface and comparison with the numerical solution.
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Figure 4: Approximate solutions for (a) normalized contact region half-width a/λ and (b)
normalized mean gap ḡ/∆ evolution along the channel.

5 Numerical coupling schemes for fluid-solid interaction

Two different approaches for numerical solution of fluid-structure interaction problems
(including the fluid transport through the contact interface) are generally distinguished: the
first is the partitioned approach, under which solvers for solid mechanics problem and for
the fluid transport are separated and work sequentially, thus the data exchange between
them must be established; the second is the monolithic approach, which operates with a
single combined solver for both physics, so that solutions of the solid and fluid problems are
obtained simultaneously.

In this study we use the monolithic approach, some details of its implementation in the
finite element framework are presented below. To satisfy the contact constraints, we add
contact elements on the potential contact zone, here we utilize the mortar approach and the
augmented Lagrangian method to fulfill the constraints [2, 56, 53, 39]. To solve the Reynolds
problem, fluid pressure values are added as degrees of freedom to the surface nodes of the
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Figure 5: Finite element mesh with 128× 128 elements on the contact surface, which was
used to solve the coupled solid-fluid problem.

structural mesh, and the surface elements for solving the fluid problem are appended to
this mesh. Finally, to enforce the Neumann boundary conditions of the fluid pressure in
the out-of contact zones of the surface, we use the mortar method again [55]. Therefore,
the equations governing contact constraints, fluid flow and fluid/structure interaction are
embedded into a single global system of equations, which is solved at each iteration of the
Newton-Raphson method, required due to intrinsic nonlinearity of the coupled problem.
When convergence criteria are satisfied for displacement and pressure degrees of freedom,
the solution of the coupled problem is obtained for given boundary conditions.

Note that contrary to many multiphysical coupled problems, in which different physics
require significantly different temporal and spatial discretizations, the particular coupling
considered here deals with stationary equations for the fluid and the solid, which can be
resolved numerically on almost coinciding surface meshes. The mesh used for the fluid is
obtained by projecting the surface of the solid mesh on the rigid flat, with which the solid
comes in contact.

The coupling algorithm was implemented in the in-house finite element software Z-set [8,
1]. Due to the reflection symmetry of the geometry and loads, only the half wavelength is
simulated using structured finite element mesh of hexahedral linear elements, with 128×128
square-shaped faces on the surface, the mesh gradually coarsens with the depth. The mesh is
depicted in Fig. 5, it contains approximately 109 000 nodes and approximately 98 000 elements
with 8 integration points per element. At the bottom surface z =−H, the displacement vector
is prescribed as ux = uy = 0,uz = kt, where k is a load factor, t is the time. Geometrical
parameters of the problem are the following L = 1 cm, λ = 2 cm, ∆ = 0.2 mm, H = 1.4 cm,
Young’s modulus E = 2 GPa and Poisson ratio ν = 0.3, thus E∗ ≈ 2.2 GPa.
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6 Results

We carried out several simulations for three different fixed inlet fluid pressures pi = 2,10,50
MPa, respectively, and for outlet pressures po/pi = {0; 0.25;
0.5; 0.75}. The solid is gradually brought in contact by applying vertical displacement on its
bottom side. We present the detailed results of numerical simulations in Fig. 6 and Fig. 7:
the distribution of the fluid pressure and the contact pressure, as well as the gap and the
fluid flux for the case pi = 50 MPa, po = 0 and for two particular load steps: pext/p∗ = 0.48,0.8,
respectively. On the initial stage of loading no contact occurs and the load is supported by
the fluid solely, which flows along the entire channel (this classical situation is not presented
in the figures). For higher loads, the solid comes in contact with a rigid flat, the contact
starts from the outlet zone (see Fig. 6). With the increasing load the contact zone spreads
out and at a certain load reaches the inlet zone (see Fig. 7); starting from this moment the
approximate solution (16) becomes applicable. The gap, being bigger at the inlet due to
higher inlet pressure, narrows towards the outlet region. The flow is localized within the
trough of the wavy profile, and the flux intensifies towards the outlet. Due to the narrowing
of the channel along the flow direction, the current lines converge towards the outlet, it
results in a small but still distinguishable fluid pressure gradient in the OX direction, which
was not explicitly taken into account in the derivation of the approximate solution.

In Fig. 8 numerical results for the variation along the channel of mean fluid pressure, mean
gap and the contact width, as well as the contact and fluid pressure profiles in the section
y = L/2 are compared with approximate solution from Section 4. A rather good agreement
is obtained in the range of validity of the approximate result: the inlet pressure and external
pressure satisfy the following conditions pi ≤ pext, pext < p∗, and they are chosen such that the
contact zone reaches the inlet, see (13) and the discussion in Section 4. These limitations
are quite strong and in reality ensure only a limited range of validity of the approximate
solution.

In Fig. 9(a) the numerically computed evolution of the length of the contact zone on the
inlet and the outlet sides with the increasing pressure is depicted for three different inlet
pressures pi/p∗ = 0.03,0.14,0.72 and po = 0. These results are compared with the analytical
solution, which is valid if the external pressure is in the interval pi < pext < p∗. In accordance
with the assumptions of the approximate solution, the evolution of the length of the contact
zone on the outlet side is independent of the inlet fluid pressure. However, in the numerical
results curves both for inlet and outlet sides shift into the region of higher external pressures
with the increasing inlet pressure. Note also that in the numerical results the outlet contact
length grows faster than the inlet one. Finally, the strongly coupled numerical model shows
that the higher is the inlet pressure pi, the higher external load is needed to completely seal
the channel.

In Fig. 9(b) the effective transmissivity Keff of the wavy channel brought in contact is
plotted: it is defined as

Keff = −
12µQL

∆3(po−pi),
(19)

where Q is the mean flux over the area λ×L, i.e.

Q =
1
λL

λ∫
0

L∫
0

qy dxdy. (20)

For computation of the local flux qy(x, y) we used the results of numerical simulations as
well as the approximate solution (16)-(18). We considered the same three cases as before
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Figure 6: Results of the numerical simulation: (a) normalized fluid pressure p f /pi, (b)
normalized contact pressure |σn|/|σn|

max, (c) normalized fluid flux intensity |q|/|qmax|, (d)
normalized gap g/∆; pext/p∗ = 0.48, pi/p∗ = 0.72, which corresponds to pi/pext = 1.5.

with different inlet pressures. For each case we highlight the corresponding external pressure
necessary for the contact to appear at the inlet and outlet sides. As soon as the contact appears
on both sides, the evolution of the transmissivity becomes exponential with respect to the
external pressure normalized by p∗ with the exponent ≈ −8 in all three cases. We note that
this coefficient is lower than the one observed in simulations of the interface transmissivity
for the surfaces with representative random roughness, where it was reported to be of
order ≈ −12 [16]. Closer to the complete sealing (the percolation limit) the transmissivity
decays faster and can be very accurately described by a power law with respect to the
difference between the critical external pressure pc, necessary to seal the channel, and pext,
i.e. Keff ∼ (pc−pext)γ. Note that for our results γ was estimated as 6±0.5, while in accurate
but one-way coupled studies of the percolation limit of bi-sinusoidal surfaces it was found
to be equal to 3.45 [15, 16].

The transmissivity for the lowest inlet pressure pi/p∗ = 0.03 almost coincides with that
of the one-way coupling analysis and is well described by Kuznetsov’s analytical solution.
For higher inlet pressures we obtain significantly bigger transmissivity. In the region of the
exponential decay in case of two-way coupling we have ≈ 1.6 times higher transmissivity
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Figure 7: Results of the numerical simulation: (a) normalized fluid pressure p f /pi, (b)
normalized contact pressure |σn|/|σn|

max, (c) normalized fluid flux intensity |q|/|qmax|, (d)
normalized gap g/∆; pext/p∗ = 0.8, pi/p∗ = 0.72, which corresponds to pi/pext = 0.9.

than in the case of the one-way coupling for pi/p∗ = 0.14 and≈ 32 times higher for pi/p∗ = 0.72.
Note that the transmissivity curves based on the analytical approximation (17)-(18) are in
a very good agreement with the numerical ones in the range of the validity of the former.
However, the analytical result cannot be used to study the flow near the percolation since
the pressure needed to seal the channel given by the analytical solution (i.e. pext = p∗+ po)
strongly underestimates the real one, which can be accurately studied using the numerical
approach.

In the inset of Fig. 9(b) we plot the effective transmissivity with respect to the real contact
area fraction, curves coincide for three different cases in the beginning of loading, while the
complete sealing occurs at different values of the real area fraction A/A0 = 80%−90%. Note
that in one-way coupled studies of the percolation limit of the randomly rough surfaces in
contact, the complete sealing was found to correspond to ≈ 42% of the real contact area [14].

Finally, we evaluated the critical external pressure necessary to seal the channel, i.e. to
prevent the fluid flow across the interface. The results are presented in Fig. 10(a). The
relationship between the inlet pressure and the critical external pressure is found to be close
to linear, the results of the least squares fitting are presented in Fig. 10(a). So the critical
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Figure 8: Comparison of results of numerical simulations with the approximate analytical
solutions for (a) normalized contact region half-width a/λ, (b) normalized mean gap ḡ/∆ and
(c) normalized fluid pressure p f /pi evolution along the channel, (d) normalized contact and
fluid pressure profiles p/E∗ in the section y = L/2: p = |σn| in Ωc, p = p f in Ω f and p = |σn| = p f
at ∂Ωc∩∂Ω f .

external pressure pc needed to seal the channel can be approximately found as:

pc ≈ p∗+ 0.8pi, (21)

where 0.8 is a fit parameter. We performed additional simulations with different outlet
pressures for a given inlet one. The results are presented in Fig. 10(b), where we plot
evolution of the mean flux Q (20) with the increasing external pressure. In the beginning
of loading the mean flux is lower in case of a smaller pressure drop, however, under the
increasing external load curves converge, and complete sealing of the channel occurs at the
same value of the critical external pressure, which therefore is determined only by the inlet
pressure. The explanation comes from the fact that close to the complete sealing of the
channel, the fluid pressure drop occurs in the vicinity of the outlet, while in the remaining
channel the pressure is close to the inlet one. Therefore, remarkably, the load-carrying
capacity of the fluid in the interface close to percolation is defined only by the inlet pressure.

In addition, in Fig. 10(a) we highlight the external pressure at which the contact appears
on the inlet side, this corresponds to the onset of validity of the approximate solution. The
end of its validity corresponds to pext/p∗ = 1. The narrow validity range of our approximate
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Figure 9: The evolution with the increasing external pressure of: (a) the length of the
contact zone on the inlet and the outlet sides; (b) the effective transmissivity Keff of the
interface for three different values of the inlet fluid pressure pi/p∗ and zero outlet pressure
po = 0. Analytical results (17)-(18) are shown as thick dashed curves, numerical results are
presented using markers, while full curves are fittings of power law Keff ∼ (pc−pext)γ, where
γ = 6±0.5. “Cross” and “star” markers are used to highlight the external pressure necessary
for the contact to appear at the outlet and inlet sides, respectively. Inset in (b) shows the
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not yet reach the inlet, thus the initially continuous flow fingers toward the outlet; III - the
contact zones connect the inlet and the outlet forming separate channels for the fluid flow;
zone III.a corresponds to the combination of loads for which the approximate analytical
solution remains valid; IV - the contact is completely sealed, no flow passes through, the
fluid is under the inlet hydrostatic pressure and ensures some load-bearing capacity in the
non-contact region. (b) Evolution of the mean flux across the interface with the increasing
external pressure for pi/p∗ = 0.14 and four cases of the outlet pressure po/pi = 0,0.25,0.5,0.75,
showing that the critical pressure, necessary to seal the channel, is independent of the outlet
pressure. Markers represent numerical results, while full curves are fittings to the power
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solution can be improved by dropping the assumption (ii) in Section 4 and by including
strong elastic interaction between y-sections, which would lead to a much more complicated
analysis and is not addressed here.

7 Concluding remarks

We presented a theoretical study of the pressure driven creeping flow in contact interface
formed between solids with wavy surfaces. We considered the case when the fluid flows
across the wavy section in channels delimited by mechanical contact zones. This problem
is relevant for certain applications of thin fluid flow in contact interfaces, including sealing,
hydrogeology and biological systems. A strong (two-way) coupling between fluid flow and
deformation of the solid was assumed, which is crucial for applications in which the fluid
pressure is comparable with the mean contact pressure, for example, for the soft matter or
biological tissue.

We derived an approximate analytical solution based on the Westergaard-Kuznetsov
solution and a one-dimensional formulation of Reynolds equation. This solution describes
both the solid deformation and the fluid pressure distribution in the strongly coupled case.
A finite-element monolithically coupled framework for fluid and solid equations was also
used to solve this non-linear multi-field problem and to prove the validity of the approximate
solution. Despite a rather limited interval of loads within which the latter is applicable, it
can provide a useful first-order approximation for the analysis of transmissivity of contact
interfaces. At the same time, numerical results showed that in a wide range of the external
loads up to the complete sealing of the channel, the transmissivity of the interface can be
described by a power law, which has already been reported in the studies of contact interfaces
having representative and model roughness.

Both numerical and analytical results, which take into account two-way coupling, showed
that the interface transmissivity is significantly higher than this predicted by the one-way
coupling if the fluid pressure is high enough. An additional result of this study is the
affine dependence of the external critical pressure which seals the channel on the inlet fluid
pressure: this relation may be shown useful in sealing applications as well as in soft porous or
cracked media, in zones where the flow can be described by Reynolds equation. Remarkably,
this critical pressure was found to be independent of the outlet pressure.
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[15] W. B. Dapp and M. H. Müser. Contact mechanics of and reynolds flow through saddle
points: On the coalescence of contact patches and the leakage rate through near-critical
constrictions. EPL (Europhysics Letters), 109(4):44001, 2015.
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