N

N
N

HAL

open science

Novel Architecture of Smart FFT Processor

Rozita Teymourzadeh

» To cite this version:

‘ Rozita Teymourzadeh. Novel Architecture of Smart FFT Processor. 2014. hal-01802071

HAL Id: hal-01802071
https://hal.science/hal-01802071v1
Submitted on 28 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01802071v1
https://hal.archives-ouvertes.fr

NOVEL ARCHITECTURE OF 1024-POINT HIGH EFFICIENT FFT
PROCESSOR

Author: Asst. Prof. Dr. Rozita Teymourzadeh, CEng.
Formatted by: Kok Wai Chan

Dedicated To My Mother “Nasrin Teymourzadeh”

CONTENTS

CONTENTS
LIST OF FIGURES
LIST OF TABLES
LIST OF SYMBOLS
LIST OF ABBREVIATIONS
CHAPTER 1 INTRODUCTION
1.1 Background
1.2 Problem Statement
1.3 Motivation
1.4 Objective
1.5 Scope of Work
1.6 Project Workflow
1.7 Methodology
1.8 Chapter Organization
CHAPTER 11 AN OVERVIEW OF FFT ALGORITHM
2.1 Discrete Fourier Transform (DFT)
2.2 Fast Fourier Transform (FFT)
2.3 Floating Point FFT Algorithm
2.4 Floating Point FFT Application
2.4.1 Instrumentation
2.4.2 Communication systems
2.5 Literature Review
2.6 Summary

CHAPTER III FAST FOURIER TRANSFORM STRUCTURE
3.1 Introduction
32 FFT type structure

3.2.1 DIT radix 2 butterfly FFT
3.2.2 DIF radix_2 butterfly FFT

33 Comparison of DIT-FFT and DIF-FFT Architecture
34 FFT Processor architecture type

X1

Xii

0 0 N W L W

10
12
13
14

16
18

22
32

34
35

35
43

48
48

3.5
3.6

CHAPTER 1V

4.1

4.2

43
4.4

CHAPTER V

5.1
52
53
5.4
CHAPTER VI
6.1

6.2
6.3

3.4.1 FFT processor with radix-2 pipelined serial /O

3.42 FFT processor with radix-4 burst /O
3.4.3 FFT processor with radix-2 burst /O
3.4.4 FFT processor with radix-2 lite burst /O

FFT Processor and input signal

Summary

49
50
51

52

53
55

THE FLOATING POINT PARALLEL PIPELINE (FPP)

RADIX-2 FFT PROCESSOR

Data structure

4.1.1 Floating point data format
4.1.2 Biased exponent

Stage realization of FPP-FFT processor

4.2.1 Bitreverse

4.2.2 Radix-2 butterfly architecture

4.2.3 Proposed floating point adder/subtractor
4.2.4 Proposed floating point multiplier

4.2.5 Controller architecture

4.2.6 Address generator

4.2.7 Memory modules

Advantages of the proposed processor

Summary

FUNCTIONAL VERIFICATION OF FFT
SPECIFICATION

8-Point FFT simulation module

1024-Point FFT simulation result

Proposed floating-point FFT application
Summary

IMPLEMENTATION RESULT

Hardware implementation of 1024-point FPP-FFT

6.1.1 Top-module of radix-2 FPP-FFT processor

6.1.2 Bit reverse implementation

6.1.3 Radix-2 butterfly implementation
6.1.4 Controller unit architecture

6.1.5 RAM and ROM architecture
6.1.6 Address generator architecture

FPGA downloading (Xilinx ISE software)
ASIC Implementation (Gate level synthesis)

58

58
60

60

62
63
67
83
90
95
97

100
101

102
109
113
116

119

120
125
128
152
155
159

167
176

6.4
6.5

CHAPTER VII
7.1
7.2

REFERENCES

Research contribution

Summary

CONCLUSIONS AND FUTURE WORK
Conclusions

Future work

il

190
192

194
196

197

Figure No.

2.1
2.2
23
2.4

2.5
2.6

2.7
2.8
3.1
32
33
3.4
3.5
3.6
3.7
3.8
3.9

LIST OF FIGURES

Overall comparison framework between fixed and proposed
floating point radix-2 FFT processor

Harmonic analysis of the motor using FFT processor
Conventional MCM transceiver

The 4G OFDM transceiver with FFT/IFFT modulator
Radix-4 FFT architecture introduced

Floating-point FFT processor
Pipelined FFT processor architecture

CFMR FFT processor

Block floating point arithmetic

8-point FFT twiddle factor

2-point butterfly in DIT FFT algorithm

Final decomposition of 8-point DIT-FFT

Flow graph of the final decomposition of 4-point DIT-FFT
Flow graph of the final decomposition of §-point DIT-FFT
Flow chart of Radix 2 DIT-FFT structure

4-point Radix-2 DIT-FFT structure

2-point butterfly in DIF-FFT algorithm

Final decomposition of 8-point DIF-FFT processor
Internal calculation of 8-point DIF-FFT processor

Flow chart of radix-2 DIF-FFT structure

4-point radix-2 DIF-FFT structure

Comparison between available resources of FFT architecture
FFT processor with pipeline serial /O architecture

FFT Processor with radix-4 architecture

Page

17
21
21
23

25

27

28
30
37
38
38
40
41
42
43
44
45
46
47
47
49
50

51

4.1

4.2

43

4.4

4.5

4.6

4.7

4.8

49

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

421

422

4.23

4.24

FFT Processor with radix-2 burst I/O architecture
FFT Processor with radix-2 Lite burst I/O architecture
Single rectangular pulse

Rectangular frequency responses

Hardware design methodology framework

32-bit floating-point registers

1024 point radix-2 FPP-FFT block diagrams
Bit-reverse block

Proposed butterfly architecture

Internal architecture of radix-2 butterfly

The schematic diagram of floating point adder
Floating point adder algorithm

Optimized floating point adder algorithm

The schematic of comparison stage structure

The internal architecture of comparison stage

The schematic diagram of the alignment unit

The multiplexer architecture of the alignment stage
The schematic of addition/subtraction unit

The addition/subtraction unit architecture

The schematic of normalized unit structure

The internal architecture of normalized unit

/O structure of the proposed floating point adder
The proposed pipeline floating point adder/subtractor architecture
The schematic diagram of floating point multiplier
The flow chart of floating point multiplier

The schematic symbol of the proposed floating point multiplier

The schematic architecture of the proposed floating point
multiplier

The structure of the normalized stage in the proposed multiplier

52

53

54

55

57

59

62

63

64

65

68

69

70

72

72

74

75

76

71

79

80

81

82

83

84

85

86

87

4.25

4.26

4.27

4.28

4.29

4.30

431

4.32

4.33

5.1

52

53

5.4

5.5

5.6

5.7

5.8

6.1

6.2

6.3

6.4

6.5

The architecture of the normalized stage in the proposed
multiplier

The intermediate architecture of the proposed multiplier
Block diagram of controller unit

State machine block diagram for controller unit

Sequential algorithm of controller unit

Combination algorithm of controller unit

Internal structure of address generator unit

Internal structure of RAM unit

Internal structure of complex RAM unit

The input sampled data for 8-point FFT calculations
Simulation of 8-point FFT processor (MATLAB Toolbox)
MATLAB Simulation of 8-point radix-2 FFT processor
Internal structural of 8-point radix-2 FFT processor
MATLAB simulation of Butterfly unit in Radix-2 processor

Twiddle factor when N = 1024
MATLAB simulation of amplitude frequency response of

the rectangular input signal
MATLAB simulation of phase frequency response of

the rectangular input signal

MATLAB simulation of floating point data structure

The noisy input signal in time domain

The harmonic measurement of noisy signal with floating-point
FFT

The harmonic measurement of noisy signal with fixed-point FFT

The MATLAB simulation of power spectrum using floating-
point FFT

VLSI Front end design flow of the project
VLSI back end design flow of the project
Input/Output pins of the FPP-FFT processor

FPP-FTT processor top level

Proposed 1024-point pipelined floating point FPP-FTT
processor

vi

88

89

90

92

93

94

96

98

99

103

104

105

106

107

108

110

111

112

113

114

114

115

118

119

120

121

122

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

6.20

6.21

6.22

6.23

6.24

6.25

6.26

6.27

6.28

6.29

6.30

6.31

6.32

6.33

Behavioral layout of FPP-FTT processor
Internal behavioral layout of FPP-FTT processor
Bit-reverse implementation

Internal structural layout of bit-reverse
Bit-reverse input/output signal

Radix-2 butterfly architecture with pipeline registers
Top- module of Radix-II butterfly architecture
Internal butterfly architecture

Internal behavioral layout of Radix-2 butterfly
Input and output signal of Radix-2 butterfly

Fast floating-point adder/subtractor internal architecture
Fast floating point adder/subtractor layout
Comparison stage internal architecture
Alignment stage internal architecture
Adder/Subtractor stage internal architecture
Normalized stage internal architecture

Adder stage frequency comparison

Adder stage frequency comparison
Floating-point adder speed comparison

Floating- point adder latency comparison
Floating-point adder/subtractor output signal
Multiplier internal architecture

Multiplier internal architecture layout
Floating-point multiplier output signal

Top- module of controller unit

Controller internal architecture

Controller architecture layout

ROM internal architecture

vii

123

124

125

126

127

129

130

131

132

133

135

136

137

138

139

140

144

145

145

146

147

148

149

151

152

153

154

156

6.34

6.35

6.36

6.37

6.38

6.39

6.40

6.41

6.42

6.43

6.44

6.45

6.46

6.47

6.48

6.49

6.50

6.51

6.52

6.53

6.54

6.55

6.56

6.57

6.58

6.59

6.60

6.61

RAM internal architecture

RAM architecture layout

ROM architecture layout

Top- module of address generator unit

Address generator internal architecture

Read address generator internal architecture (schematic)
ROM address generator internal architecture (Schematic)
Write address generator internal architecture (Schematic)
Address generator internal layout

Address generator output signal

Implementation of the FPP-FFT processor on the FPGA board
Overall FPP_FFT processor output signal

Overall FPP_FFT processor latency

1024-point FPP-FFT processor output signal as floating-point
coding

Successful implementation of place and route (PAR) for FPP-
FFT in Xilinx ISE

Successful synthesis process of FPP-FFT in Xilinx
Xilinx chip routing of the proposed FFT processor
FFT processor test circuit using Logic Analyzer

FFT processor output result displayed on Logic Analyzer

Active core die of the proposed FFT processor in SILTERRA
technology

NCLaunch result of the FPP_FTT processor in the gate level
The output plot of gate level processor (Silicon)

Symbol view of the FFT processor

Schematic view of the FFT processor

Internal implementation of the data delay

Top level implementation of the RAM modules

Top level implementation of the dual port RAM modules

Top level implementation of the floating point adder/subtractor
stage

viii

156

158

158

160

161

162

163

164

165

166

169

170

170

171

172

173

174

175

175

177

178

178

180

180

182

183

184

184

6.62

6.63

6.64

6.65

6.66

6.67

Internal implementation of the dual port RAM modules
Internal implementation of the add sub_stage

Internal implementation of the controller

Top level implementation of the address generator

Internal implementation of the address generator

Fixed-point and proposed floating-point FFT resolution
comparison

185

186

187

188
189

192

Table No.

2.1

2.2

3.1

32

5.1

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

LIST OF TABLES

Fixed-point and floating point FFT processor efficiency
Fixed-point and floating-point FFT processor applications
Comparison of calculation in DFT and FFT algorithm

Bit-reversal process for N=8

Expected MATLAB simulation results for radix-2 FFT
processor

Proposed FPP-FFT Processor specifications
Bit-reverse for specification

Proposed butterfly specification

Comparison stage specifications

Alignment stage specifications

Add/subtractor stage specifications

Normalized stage specifications

Overall floating-point adder/subtractor specifications
Proposed floating-point multiplier specifications
Proposed controller specifications

Proposed RAM specifications

Proposed ROM specifications

Proposed Address generator specification

Comparison of simulation and implementation result in FFT
processor

Estimated power/ area of proposed FFT in different technology

libraries
Estimated power/area of conventional FFT in different
technology

Summary performance of the FPP-FFT processor

System improvement persentages

Page
14
16
35
41

109
125
126
128
141
142
142
143
143
150
155
157
157
159
168
179
179
190

192

LIST OF SYMBOLS

e Number of exponent bit

S e ma Maximum clock frequency

us Micro second

Ms/sec Mega sample per second

N Number of input samples

A Twiddle factor

x(n) Even input data in discrete-time
Xe(n) Odd input data in discrete-time
Xo(1) Input data in discrete-time
X(w) Input data in frequency domain

6(t—1t,) Shifted impulse signal

T Signal domain

Xi

ADC
ASIC
ATV
CDMA
CFMR
CMOS
CORDIC
DA
DAB
DAC
DFT
DIF
DIT
DVB
DS
DSL
DSP
DTFT
FDMA
FIR
FFT
FM
FPGA
FPP
HDTV
HSPA
HVAC
IC
IFFT
/o
ISE
LSB
MC
MCM
MDC
MOS
MR
MSA

LIST OF ABBREVIATIONS

Analog to Digital Converter
Application Specific Integrated Circuit
Advanced Televisions

Code Division Multiple Access
Continuous Flow Mixed-Radix
Complementary Metal Oxide Semiconductor
Coordinate Rotational Design Computer
Design Analyzer

Digital Audio Broadcasting

Digital to Analog Converter

Discrete Fourier Transform
Decimation In Frequency

Decimation In Time

Digital Video Broadcasting

Direct Sequence

Digital Subscriber Loop

Digital Signal Processing
Discrete-Time Fourier Transform
Frequency Division Multiple Access
Finite Impulse Response

Fast Fourier Transform

Frequency Modulation

Field Programmable Gate Array
Floating-point Parallel Pipeline
High-Definition Television
High-Speed Packet Access

Heating Ventilation and Air-Conditioning
Integrated Circuit

Inverse Fast Fourier Transform
Input/Output

Integrated Synthesis Environment
Least Significant Bit

Multi Carrier

Multi Carrier Modulation

Multi-path Delay Commentator
Metal-Oxide Silicon

Mix Radix

Multiply-Sub-tract-Add

Xii

MSB
MSE
NSR
OFCDM
OFDM
PAR
PAVR
PE
RAM
RNS
ROM
SDF
SNR
SQNR
SOC
TCP
THD
VHDL
VHSIC
VLSI
WLAN
2D

4G

Most Significant Bit

Mean Squared Error

Noise to Signal Ratio

Orthogonal Frequency and Code Division Multiplexing
Orthogonal Frequency-Division Multiplexing
Place And Route

Peak-to-Average Ratio

Processing Element

Random Access Memory

Residue Number System

Read Only Memory

Single-path Delay Feedback

Signal to Noise Ratio

Signal Quantization Noise Ratio
System On Chip

Transmission Control Protocol

Total Harmonic Distortion

VHSIC hardware description language
Very High Speed Integrated Circuit
Very Large Scale Integration

Wireless Local Area Network

Two Dimensional

Fourth Generation

xiii

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

The need for new generation of digital processor identified as floating point fast
Fourier transform (FFT) that is capable of handling new requirement in signal
processing has mobilised the world of high performance digital signal processing
(DSP). The FFT processor (Cooley & Tukey 1965) is the heart of signal processing
which is widely used in multi-media applications (Bever et al. 1990, Jeong & Choon
1995), telecommunication systems (Le et al. 1995, Nee & Prasad 2000, Zhigiang &
Nassar 2005) and DSP processor. In the field of DSP processor, there are specific
applications such as fast finite impulse response (FIR) filtering (Eniscetin et al. 1997),
spectral analysis, synthesis and correlation (Jont et al. 1977). Among DSP processors,
FFT algorithm is most practical processor. High performance FFT is required in this

particular study due its efficient algorithm.

The current prevalent practice, there is the digital hardware with finite word-
length to present and analyze DSP system. Realistic FFT implementation requires
special attention due to potential quantization and arithmetic errors as well as the
possibility of overflow and round off. These effects must constantly be taken into
consideration in DSP system design and the implementation for sensible applications.
A FFT Processor’s data format determines its ability to handle signals of different

precisions, dynamic ranges and signal-to-quantization-noise ratio (SQNR).

The data is represented in digital systems with different formats known as
fixed point and floating-point arithmetic. In fixed-point FFT processors, a number is
represented with a series of binary which the left most bit is named the most
significant bit (MSB). This MSB represents sign of the number. In addition fixed
point arithmetic, IEEE 754 (IEEE 1985) standard introduced a new format identified

as floating-point arithmetic.

The floating-point arithmetic automatically scales the number to obtain the full
range representation of the mantissa, which is done by increasing or decreasing the
exponent value for small or large numbers respectively. In other words, the floating-
point algorithm tracks the number and adjusts the value of the exponent. Due to the
FFT processor being involved with huge calculations, its fixed-point implementation
limits the dynamic range, which jeopardizes the precision. Hence, this book describes
the designing of high-speed floating point FFT processor for very high-resolution

applications.

1.2 PROBLEM STATEMENT

It is common knowledge in the research community that the implementation of a fixed
point is preferred due to its efficiency: it requires less computational complexity and
less silicon area when the hardware is implemented. However, a problem arises on
most current work on fixed point as it has limited accuracy, which is inherent in many

FFT calculations.

In order to execute fixed-point calculation in DSP processors, normalization,
round off and quantization are required, which results in low precision and low
dynamic range. Using fixed-point processors would cause overflow if the incoming
numbers are in full scale. In addition, quantization effects also decreases SNR of the

signal. Therefore, floating-point structure is rise up to function.

Floating-point arithmetic such as IEEE 754 standard promises more numerical
accuracy than fixed point. Due to the fact that floating point offers high resolution it
is thus adopted more as DSP applications which require high performance for signal

processing.

The trade-off between fixed and floating points is the achieved resolution,
speed, power consumption and core size. In order to implement in floating point

architecture, there are the undesirable issues as follow:

)

ii)

iii)

iv)

v)

vi)

Although many different fixed point FFT algorithms have been developed,
there are still not enough floating-point literatures as a resource for this

research work.

It is a norm that the floating-point arithmetic is customarily ignored due to its

complex in nature.

In the past in order to obtain high resolution, the throughput has to be

sacrificed due to complex architecture.

The system latency will be raised due to the application of more components

to benefit high resolution.

Its implementation is not acceptable because of the high cost of

implementation and its instability.

Most of the chip implementations reported for the implementation of fixed
point and floating point FFT processors (Fox & Surace 1987, Long et. al.
2007, Morton et al. 1994, Plessey 1990) have been involved with multiple
chips, which are to perform FFT calculations that resulted in high cost and low

efficiency.

Hence based on the issues above, the design was proposed with the use of a novel

floating point FFT architecture to achieve high resolution (< 0.01% accuracy) and

high speed (=200 MHz), low area (single chip) and low power consumption (<1 W)

with reduction of latency.

1.3

MOTIVATION

The idea of this book is a floating point FFT processor with high speed and high

resolution. The advancement of VLSI processing (60 nm) enables implementation of

capable DSP architecture. Hence based on the explanations given prior to this and the

problems faced in terms of low resolution and overflow in fixed point FFT structure, it
motivates us to design and investigate the floating-point FFT processor and implement
it in order to provide higher precision and larger dynamic range. The designed
floating-point FFT architecture claims closed parameter characteristics as well as

fixed-point architecture in terms of speed and latency and single-chip implementation.

Therefore, the floating-point operation supports more accurate FFT
calculations at the speed of processing integers while preventing difficult problems
such as overflow, operand alignments, and signal scaling that commonly occur in
fixed-point operations. Furthermore, floating point FFT processors support
addressing modes and a higher degree of parallel execution. A high level hardware
language is more efficient on a floating point processor with register based
architectures, floating point instruction, a large address space, powerful addressing
mode and a faster floating-point computing engine. These methods were utilized to

achieve an intelligent controller for proposed floating-point FFT.

Additionally, with the upcoming requirement of signal processing systems and
convergence of high performance DSP applications, DSP processors are needed to
configure for the computation of various algorithms used in high-resolution
applications. Based on the previous section, the significant incentive in this project is
the design of high performance floating-point single chip FFT algorithm for signal
processing. This motivation leads to design on-chip implementation of floating-point
components to bring down the cost and optimize the system for the smallest size
possible area to fit in the field-programmable gate array (FPGA) board and application
specific integrated circuit (ASIC) implementation. Furthermore, FPGA
implementation of the floating-point FFT is well suited in requirement for portable

applications and low power consumption has long been the main constraint.

Several other factors were taken into consideration such as more functionality,
higher workload, and longer operation time that contribute towards making the power
consumption and energy efficiency even more critical and desirable for DSP

application. However, in order to have low power, the implementation of FFT

algorithm is still a challenging task. (Cummings & Haruyama 1999, Dick & Harris
1999).

1.4 OBJECTIVES

The overall objective of this book is to propose the high performance floating point-
based FFT that are suitable for harmonic analysis applications. Specifically the
proposed FFT processor must have a 32-bit resolution, a SNR of more than 100dB
and a maximum clock frequency of more than 100 MHz in order to meet harmonic

monitoring applications. In achieving the above objectives, it is accomplished:

i) To develop a novel 1024-point radix-2 FFT algorithm DSP processor suitable

for high resolution motor monitoring application.

ii) To optimize the architecture of a novel algorithm for high-speed and high
resolution, low power consumption as well as small silicon area for VLSI

implementation.

iii) To design and test the proposed novel architecture 1024-point radix-2 FFT

processor implemented on the FPGA board.

iv) ASIC implementation of active core area for novel FFT algorithm based on

0.18 um SILTERRA and 0.35 um MIMOS technology libraries.

v) To conduct the performance analysis of the FPGA 1024-point FFT chip.

1.5 SCOPE OF WORK

Our research and development scope is the designing, implementation and testing of
the high-resolution novel 1024-point radix-2 floating-point parallel pipeline FFT
processor in signal processing system. The proposed FFT processor must meet high-

resolution requirement for accurate DSP applications. The system had to be

implemented on FPGA board and optimised on ASIC. The research and development
will not focus on the designing of other corporation in the complete equipment and

devices.

1.6 PROJECT WORKFLOW

The workflow of this project is based on research, simulation, implementation and
optimization. First, the problem statement and objectives of the research are
formulated. Then the scope of work is determined. Once the algorithm for the
proposed and conventional FFT is identified, a comprehensive MATLAB simulation
was carried out to determine the functionality of the algorithm. Later, the hardware
coding (using VHDL) will be derived then followed by implementation using ASIC or
FPGA board to fulfill system requirement.

Figure 1.1 detailed the overall workflow carried out in this project. It shows
the structure used to validate the simulation of the conventional 1024-point radix 2
FFT then followed by the implementation of the proposed 1024-point radix-2 floating-
point parallel pipeline (FPP) FFT processor. The proposed FPP-FFT is also optimized
using Xilinx, Synopsys and CAD tools. With the scope of work successfully narrowed
down to realistic goals, the design and implementation of the novel floating point FFT
architecture has been identified. This overall research work involves the effort of
simulation and VLSI implementation of high-speed high-resolution floating point FFT

structure to meet the required system functionalities.

The output result in terms of amplitude, phase, spectrum and specifications
will be evaluated and the comparison will be performed using MATLAB and fixed

point radix-2 FFT processor hardware implementation.

uonenuis

juiod Buneo|4

juiod paxi4

L

10ss9001d 1.1 z-x1per jutod Suneoyy pasodoid pue poxij uoamiaq sromawesj uosuedwod [[e10AQ [°] 2InS1

uostedwo)

uosuedwo)

uostedwod

apnydwy

—

aseyd

| S—

wnJyads

apnyidwy

- (v1LvYin)

108s8001d | 44 J0 BINPNIS

(uonejuawsaidwy)
aInjoa)ydly | 44 pasodold

—

aseyd

—

— _l wnJoads

—

ale aig
Kousye
Jamod
paadg
uonnjosay

f 3

-

uoneziwndo

MOpUIM
Buipo
indu|

(uonejuswaidwy)
ainjajydle

JIOEIENEY)
ejeq

144 juiod paxi4
|euonuaAuo)

1.7 METHODOLOGY

Based on the discussion in the previous sections, the methodology presented in this

book is as follow:

)

iii)

V)

To present the novel architecture of the high-speed FFT processor.
The research also continues to achieve high efficiency in proposed

algorithm.

To perform MATLAB simulation of the 3rd stage decimation in
time (DIT) FFT structure to obtain the needed frequency response.

To conduct VHDL implementation of proposed novel 1024-point
radix-2 FPP-FFT algorithm by synthesising and defining

constrained file for the design.

To implement the design and download the design to Xilinx Virtex
IT FPGA board and test the FFT with a logic analyser. The FPGA
board output is compared with MATLAB simulation result.

To ASIC optimization of proposed radix 2 FFT architecture in
SILTERRA and MIMOS technology libraries.

1.8 CHAPTER ORGANIZATION

The work in this book organized into seven chapters. The first chapter gives a brief

introduction of the FFT processor.

The second chapter provides the review of FFT and DFT processor and its

application. The comparison between floating-point and fixed-point processor was

made in this part. This chapter also provides brief summaries of the literature review

prior to engaging the mentioned scope of work. Several topics related to this research
are reviewed to give an overall picture of the background knowledge involved. The

summary of the literature review is given to clarify the research rationale.

Chapter Three presents the principle of the FFT processor in detail. The
different architecture of FFT based on decimation in time (DIT) and decimation in
frequency (DIF) and its comparison are discussed. In addition, different architecture

of FFT processor based on radix structure is considered in detail.

Chapter Four introduces the architecture of the proposed FFT algorithm
followed by the introduction of floating-point data structure in detail. The proposed
floating-point parallel FFT processor architecture is designed. All components of this
processor are evaluated separately. New algorithm are explained and performed to
increase the resolution and throughput of the FFT architecture. The structural

advantage of the proposed system is discussed in detail.

In chapter Five, simulation result of the standard radix-2 FFT processor using
MATLAB tools is presented. In order to implement the FFT processor the individual
block diagram is designed and simulated and a particular model was considered to

perform floating-point data testing.

Chapter Six focuses on realization of the proposed FFT architecture and its
implementation. The 1024-point radix-2 FPP-FFT processor are structured and
implemented to increase the throughput of the processor. The implementation of
advanced components such as floating-point adder/subtractor, address generator and
butterfly radix-2 are investigated and performed accordingly. The system is
synthesized by Xilinx ISE synthesis software then the floating point pipeline
adder/subtractor and multiplier architecture are introduced to perform arithmetic
calculation. Additionally, the proposed processor is also synthesized in SILTERRA
0.18 um technology and the MIMOS 0.35 pm technology.

Chapter Seven extracts the book conclusions and proposes future work.

CHAPTER 11

AN OVERVIEW OF FFT ALGORITHM

The prevalent subject of Fourier analysis encompasses a vast spectrum of mathematics
with parts that may appear quite different at first glance. In Fourier analysis, the term
Fourier transforms often refers to the process that decomposes a given function into
the harmonics domain. This process results in another function that describes what
frequencies are in the original function. However, the transformation is often given a
more specific name depending upon the domain and other properties of the function
being transformed. Moreover, the original concept of Fourier analysis has been
extended over time to apply to general situations and the general field often known as
harmonic analysis. In this project, the common approach in obtaining Fourier analysis

will be discussed.

21 DISCRETE FOURIER TRANSFORM (DFT)

The main concepts of discrete Fourier transform (DFT) (Bergland 1969, Duhamel et.
al. 1988) are central of most DSP processor. The DFT is a Fourier representation of a
finite-length sequence which is the most important fundamental operation in digital
signal processing and communication system (Gold & Radar 1969, Smith 2007).
However, the computation complexity of the direct evaluation of an N-point DFT
involves a long phase computational time and large power consumption. As result of
these problems, it is important to develop fast algorithm. There are numerous
viewpoints that can be taken toward the derivation and interpretation of the DFT
representation of a finite-duration sequence. The sequence of X(n) that is periodic with

period N so that X(n)= X(n+kN) functions for any integer value of .

It is possible to represent X(n) in terms of Fourier series that is by the sum of sine and
cosine values or equivalently complex exponentially sequences with frequencies that
are integer multiplies of the fundamental frequencies 2z/N associated with the

periodic sequence. The same representation can be applied to finite-duration sequence.

10

The resulting Fourier representation for finite duration sequences will be referred to as
the DFT. Sequence of length N by a periodic sequence can be represented by a
periodic sequence with period N, one period of which is identical to the finite-duration

sequence. The sampled sequence signal in frequency is defined as:

@.1)

The DFT X(w) is a function of continuous-frequency variable ®, and the summation in
equation (2.1) extends towards positive and negative infinitively. Therefore, the DFT
is a theoretical Fourier transform of a digital signal. However, it cannot be
implemented for real applications. It is the sample of the signal in time domain at a

particular time and can be expressed as:

I Fa s
. XiLLjoir —
6 R §

Ry
)

s
(.

Lo—

2

(2.2)

The frequency analysis of a finite-length sequence is equal to the sample of
continuous frequency variable o at N equally spaced frequencies w;= 2nk/N for k = 0,

1, 2,... N-1 on the unit circle. These frequency samples are expressed as:

N1 - N-1
X% jZmiken -
rET pN N —E A% P .
Xkl = F xinle F = Y xi{niWwkn -1
i 7 R / L)W
A

i
I
[=]
P
i
[=]

23)

where the twiddle factors are defined as:

{2 2wkn 2mkw
Wi = e_"(T)k" = cos(7;)—j sir (ﬂ:—)

N (2.4)

The DFT is based on the assumption that the signal x(n) is periodic. Therefore, X(k)

for k = 0,1, ..., N-1 can uniquely represent a periodic sequence x(n) of period N. the

11

inverse DFT is the reversed process of the DFT. It converts the frequency spectrum

X(k) back to the time domain signal x(n). (Kuo & Gan 2005).

w-i Wi
R e 1
o 4% PR P iar L -
alzal = __ % VIiblaJallkTeji¥ = ___ % VILVIAT KR 3 = N1 LY p—
xin)=—) X{kle — » X{yw- s ow=01 . N—1
N L N
=0 ®=b

Direct computation of an N-point DFT according to Equation (2.3) requires N(N-1)
complex additions and N(N-1) complex multiplications. The complexity for
computing an N-point DFT is therefore O(N?). With the contribution from Cooley and
Tukey (1965) the complexity for computation of an N-point DFT can be reduced to

O(Nlog:(N)).

Based on the explanations given, the algorithm was developed to achieve high
efficiency of DFT calculations, hence resulting in the introduction of a fast Fourier

transform (FFT).

2.2 FAST FOURIER TRANSFORM (FFT)

Although the DFT method is very clear and straight forward, it is quite inefficient. As
the number of input data in the DFT increases, the amount of necessary mathematical
calculations such as additions, multiplications or data manipulations become excessive
which is undesirable in DSP processor. Hence much effort has gone into developing

alternative and more efficient ways of implementing DFT.

In 1965 Cooley and Tukey developed the use of FFT in order to save time and
avoid unnecessary complex calculations. Nowadays, FFT is an important tool in DSP
applications. The FFT is an efficient DFT algorithm (Oppenheim & Schafer 1989). As
discussed, computing a DFT of N points in the obvious way is reduced to O(N log N)
operations when the /og is to the base-2 by applying FFT technique.

12

If the function to be transformed is not harmonically related to the sampling
frequency, the response of an FFT looks like a sinc function. Aliasing (leakage) also
reduces the resolution and negatively affects the frequency domain. However, aliasing
reduction is at the expense of broadening the spectral response. There are many
distinct FFT algorithms involving a wide range of mathematics, from simple
complex-number arithmetic to group theory and number theory. The next section will
describe the history of FFT processor followed by expressing the other research work

on different FFT structure in detail.

2.3 THE FLOATING POINT FFT ALGORITHM

As discussed in Chapter I, in order to implement high performance and high efficiency
DSP processor, it is imperative to increase the precision and dynamic range

accordingly. Some issues make the frequency spectrum inaccurate.

The first is that the measured frequency will be subject to quantization error
with respect to the real frequency. This is caused by the fact that the FFT only
computes the spectrum at discrete frequencies. This error is said to affect the
accuracy. The second effect is that of spectral leakage. This effect becomes very
important when small amplitude harmonics are close to large amplitude ones since
they become hidden by the energy distribution of the larger harmonic. Furthermore,
the fixed internal arithmetic calculation of the FFT processor injects noise in the

frequency spectrum. To reduce the effects, the floating-point technique was applied.

The floating-point techniques allow numbers to be represented with a large
dynamic range. Therefore, floating-point arithmetic enables the reduction of overflow
problems that occur in fixed-point arithmetic. Although it is at the expense of
throughput and chip area size, the new architecture is designed and investigated to

avoid undesired effects in floating-point FFT algorithm.

Based on IEEE 754 standards, floating-point arithmetic provides higher

precision and a much larger dynamic range. Therefore, floating-point operations

13

support more accurate DSP operations. Table 2.1 compares the efficiency between

fixed-point and the floating-point FFT processor:

Table 2.1 Fixed-point and floating point FFT processor efficiency

Fixed-point FFT Floating-point FFT
16-bit or 24-bit 32-bit
Limited dynamic range Large dynamic range
Overflow and quantization errors Less error
Higher frequency Low frequency
Less silicon area More silicon area
Cheaper More expensive
Low power consumption High power consumption

As illustrated in Table 2.1, implementing floating point FFT architecture scarifies the

high frequency and the chip core size, which resulted in high power consumption.

24 THE FLOATING POINT FFT APPLICATION

In particular, the FFT processor is widely employed in harmonic measurement
(Biswas et al. 2009, Farhang-Broujerdy & Gazor 1994), signal processing (Jain 1989,
Schafer & Rabiner 1973, Jain et. al. 1979) communication system (Adams 1987,
Dovel 1989, Smith et. al. 1990, Stearn & David 1988) and many more.

Generally, there are differences in application between fixed-point and floating
point FFT processors. Fixed-point processors are mostly used for large-volume
products such as modems and wireless phones. It is also applied in consumer audio
applications such as MP3 players, multimedia gaming, digital cameras and speech
coding. Among these different applications, floating point 1024-point radix-2 FFT
processor is applied in image processing radar, high resolution motor monitoring,

high—end audio applications such as ambient acoustics simulators, professional audio

14

encoding and audio mixing. It is also appropriate to be used in sound synthesis and
prototyping. In this book, the implementation of high precision FFT processor was
applied in the harmonic spectrum for motor monitoring applications. However, the
design can be utilized in ambient acoustics, speech and signal processing systems

(Schimmel et al. 2009) as well.

In general, effective performance of harmonic analysis operating in practical
environments may require suppression of noise from the wave form. The design of
advanced system control monitoring involves careful considerations of the rotation of
the motor, transducer locations and digital signal processing. The high dynamic range
in the motor vibration signals is very helpful but hard to obtain (Rabenstein & Zayati

1999).

Furthermore, many signal processing applications require algorithms that are
robust to reverberation such as noise cancellation algorithms in the system aids and

must function in a wide variety of reverberant conditions.

Similarly, it is often desirable that the performance of motor movement recognition
systems do not suffer in presence of reverberation. Hence, it is necessary to design
high precision FFT processor to recognize the signal spectrum in the authentication
systems and this processor significantly affects monitoring applications in terms of

high efficiency.

To conclude, Table 2.2 shows the FFT algorithm application in different

fixed-point and floating-point architectures.

15

Table 2.2 Fixed-point and floating-point FFT processor applications

Fixed-point FFT Floating-point FFT

Low resolution disk drive Radar , Image processing

High-end audio application,
ambient acoustics simulators
Professional audio encoding
/decoding and audio mixing
Sound synthesis in professional
audio and video coding /decoding

Consumer audio application
Channel coding

Communication device

Prototyping
4G OFDM Transceiver

High resolution motor monitoring

The high performance FFT processor can find application in instrumentation and
communication system, which will be discussed. However, our concentration in this

research work is based on instrumentation.

2.4.1 Instrumentation

High resolution motor monitoring and instrumentation is the major application, which
is focused. Modern monitoring techniques commonly use high performance FFT
processor. Vibration or current spectra are often unique to a particular series of motors
or even particular motors. When a motor is commissioned or when it is in a healthy
state, a reference spectrum is monitored which can be compared later with the new

status of the motor spectrum (Gieras & Wing 2002).

In addition, white goods appliance with blowers and compressors, heating
ventilation and air-conditioning (HVAC) systems, industrial servo drives, automotive
control systems and variable speed control of AC electrical machines make use of
high-resolution FFT processor (Mathwork 2010). Each motor can be used either in
generator or in motor mode. Combined with linear and nonlinear elements such as
transformers, lines, loads, breakers, etc., they can be used to simulate
electromechanical transients in an electrical network. They can also be combined with

power electronic devices to simulate drives. However, it is significantly imperative to

16

design a high performance motor control system while they are running. Furthermore,

the harmonic study instruments are a challenging task.

Hence based on above explanation, it is needful to apply the high resolution
floating point FFT processor in performing a harmonic analysis of the motors and
vibration monitoring (Biswas et al. 2009). The proposed FFT unit allows computation
of the fundamental component of voltage and current while the motor is active in the

network. The advantages of the proposed high performance system are to:

e Enable the use of real-time algorithms for more precise and accurate control.
e Yield better power efficiency and small die core size.
e Enable spectrum analysis to be performed by using a single chip.

e Reduce system complexity and low latency

As an example, Figure 2.1 shows the fundamental component and total harmonic
distortion (THD) of certain motor-based appliances on its harmonic versus the

magnitude.

c1] I . i

R R R

z : : :

e o] S SERRRTRRS B IR

c : : :

] " '

11 S5 R S EREEE

=1 H | '

ST 1 S R

== ']]

= H 1 1

B |
gl i ok "

1] 10 20 30 40 AD ED 70 30

Harmonic order

Figure 2.1 Harmonic analysis of the motor using FFT processor

17

2.4.2 Communication Systems

Beside the instrumentation applications, the updated version of FFT that is the
floating-point FFT processor (Enis et al. 1997, Jont & Rabinner 1977) can be used in
four-generation (4G) standard communication systems. The 4G refers to the cellular

wireless telecommunication standard is a successor to 3Gs and 2Gs.

The 4G mobile communication systems are expected to be standardized and
commercialized sometimes between 2010 and 2020. Currently 4G utilizes orthogonal
frequency division multiplexing (OFDM) (Nassar 2002, Zhigiang & Nassar 2005) as

transceiver in higher data rate transmission.

In order to grasp a better understanding of the differences between 3G and 4G
systems, some criteria will have to be looked at. Amongst which, speed is one that is
accepted by the standards bodies with regards to the maximum data rates supported.
One of the main advantages of upgrading from a 3G system to a 4G is speed. The 3G
systems, which possess a high-speed packet, access (HSPA) supplies up to
approximately 15-20 Mbits/s downlink and about 5-10 Mbits/s uplink. Meanwhile, the
4G systems are designed to be an improved rate that supports 5 to 10 times the
existing rates of 3G, with greater than 100 Mbits/s or more in the downlink and over

50Mbits/s in the uplink (Friedmann 2007).

With the advent of fourth generation (4G) (Lefevre & Okrah 2001)
communication systems, it has become increasingly important for electrical engineers
to develop high standard transceiver to cover 4G requirement. Cellular phone systems
have never experienced more than 30-Mbps data transmission even in the current 3G
(Ojanpera and Prasad 1998) standard; therefore, as a totally new scheme, the OFDM
and orthogonal frequency and code division multiplexing (OFCDM) scheme (Atarashi
& Sawahashi 2001, Flock et al. C.1995) is proposed for 4G. The techniques are
widely employed in data delivery systems over the phone line, digital radio and

television and wireless networking systems (Wu & Zou 1995, Paiement 1994).

18

On the other hand, wireless LANs are already able to provide up to 54-Mbps
data transmission even in the current standards, such as IEEE802.11a (IEEE 1999)
and HIPERLAN/2 (ETSI TR 2000) , although the service provision is still limited for
stationary or low mobility users. Therefore, if a future wireless LAN standard, which
might be similar to the current OFDM-based standards (Couasnon & Monnier 1994,
Nee and Prasad 2000) with a bit higher transmission rate, and is able to cope with high
mobility of users it can then be termed as 4G systems. The expectations from 4G are
high in terms of data rates, spectral efficiency, mobility and integration. The future 4G
wireless network infrastructures will consist of a set of various networks that use
transmission control protocol (TCP) as a common communication protocol. Besides
that, in order to satisfy the high data rate requirement efficiency in supporting
multimedia services, OFDM 1is considered as one of the most compromising
candidates for the physical layer standard of future generation mobile
communications. For these reasons, a mobile system based on OFDM is being
intensively considered as the next generation standard by 4G committees such as
IEEE 802.16¢ and IEEE 802.20 (Kim & Yoon 2005), and is proving to be a possible
multiple access technology to be used in 4G in terms of high performance and

efficient components.

However, OFDM itself comes with its own challenges such as linearity
concerns, efficient internal FFT and phase noise (Qaddour 2006). Hence, the proposed
floating-point FFT is a viable choice to function in 4G OFDM transceiver due to its
high efficiency. The OFDM offers several advantages over other types of modulation
schemes in the improvement of transceiver reception and communication in 4G
communication system as well as saving bandwidth. However, implementation of an
efficient high performance IFFT/FFT is an important key issue in OFDM hardware
design. In the OFDM system, the sub-carriers are created using IFFT in the
transmitter, and FFT is used in the receiver to recover the data. The IFFT and the FFT
complement each other in function and the most appropriate term depends on whether
the signal is being received or generated. In cases where the signal is independent of
this distinction then the term FFT and IFFT is used interchangeably. Hence, a high-
speed high-resolution FFT/IFFT processor is required for parsing and processing the

data.

19

Furthermore, in real world applications, the resolution of ADC has continued
to increase in order to obtain clear signal industry. The resolution rises from 16-bit to
32-bit to ensure signal accuracy. It is required for DSP processors such as floating-

point FFT, to provide higher precision to handle signals with larger word length.

Figure 2.2 shows the conventional MCM transceiver whilst Figure 2.3

illustrates the OFDM transceiver with utilizing FFT/IFFT algorithm as modulator.

20

IC

Joye[NpOWr 11/ LA PIA 19A1008Ue1) WAAO Db 9YL €T 9m3Lg

15 c
H °
3 o
> <] 4 o nd
INAINQ et 144 > S m 2 S 1441 e JNU|
°
g 8
2 2
e
9SION
JOAIQOSURT) NDJA [BUOIUSAUO)) 7°7 AIn3I]
> a < N J01ejnpopy <
> -
. - - L] L] -
> H H H H H H m
S e B @— ndu|
INAINQ e m W + ¢ Jojeinpopy w
m (x g
= Z 101|INPOIN 2
9s|oN | lojejnpoly
J

2.5 LITERATURE REVIEW

In 1965, Cooley and Tukey introduced a novel FFT algorithm. They not only reduced
the computation complexity in DFT calculation, but also increased the regularity for
implementation; they are very popular in modern VLSI implementation. They
demonstrated the simplicity and efficiency of the ‘divide-and-conquer’ approach for
DFT computation and made the FFT algorithms widely accepted. They applied the
new technique to break down a problem into two sub-problems of the related type.
The sub-problems are then independently solved and their solutions are combined to
give a solution to the original problem. The conventional Cooley-Tukey radix-2 FFT
algorithm requires 192 complex butterfly operations for a 64-point FFT computation.
Considering that, one fixed-point FFT unit has to be computed within 4 ps, one
butterfly operation has to be completed within 20.8 ns, which leads to 96 MHz
operation frequency for a single butterfly FFT unit when each butterfly operates on 2

clock cycles. The system requires a higher clock rate.

Later, in 1977, Thong and Bede investigated accumulation of round off error
floating point FFT. They discussed the statistical model for round off error to predict
the output noise to signal ratio (NSR) of the two common FFT algorithms, decimation
in time (DIT) and decimation in frequency (DIF) algorithms. They introduced a new
approach to unify error in FFT algorithm. This method was tested for radix 2 and

arbitrary radix.

Tseng et al. (1979) considered the implementation of FFT structure using
arrays of ROM. The arithmetic operations were based entirely on residue number
system (RNS). Their research work developed optimum procedures for choosing both
scaling factors and the position of scaling arrays in the structure. This design was
applied for high-speed convolution filter implementation with the RNS. The filters

were experimentally verified in a speech processing application.

In 1996, Hui et al. introduced a new fixed-point FFT architecture and chip

design for motion compensation based on phase correlation. They designed a low

22

power FFT processor for use in digital television applications. The proposed 64-point
FFT was fabricated using 0.6 pum CMOS technology which comprises 0.5 million
transistors in a die area 7.8 x 8 mm? with 90-96 dB dynamic range at the FFT output.
This processor used 24-bit internal precision at 16.1 ms/sec. The Multiplication br/sec
was calculated 62.2 billion in 1 W power consumption. The maximum clock
frequency at which the system operated on was 36 MHz. Figure 2.4 shows the
proposed Radix-4 FFT architecture introduced by Hui (1996):

Input—» Input formatter

16-point
Commutator

Coeff
ROM

Radix-4 Twiddle multiplier

Computation
array

64- point
commutator

Coeff
ROM

Twiddle multiplier

Output
Formatter [Output

Figure 2.4 Radix-4 FFT architecture introduced
Source: Hui 1996

23

Melander et al. (1996) presented an efficient design of 128-point radix-2 FFT
processor for OFDM applications. This fixed-point algorithm implemented
successfully in 0.8 pum CMOS technology library. It was able to calculate the FFT
procedure within 80 ps. The core size was measured as 27 mm” and the total area
including /O pad 37 mm? respectively. The proposed system could operate with

maximum clock frequency of 120 MHz with supply voltage of 3.0 V.

Later, the implementation of 1024 pipeline FFT processor was presented by He
and Torkelson in 1998. The proposed FFT was based on Radix-2> algorithm. The chip
was fabricated under 0.5 pm CMOS technology and took an area of 40 mm® with a
3.3 V power supply. The sampling frequency was 30 MHz with signal quantization
noise ratio (SQNR) of 30 dB for white noise input.

Frigo and Johnson (1998) discussed adaptive software architecture for the
FFT. They proposed an adaptive FFT program that tunes the computation
automatically for any particular hardware. They compared their program known as
FFTW, with others implementations of FFT on seven platforms. They claimed that
development of an FFTW-like system requires knowledge of programming languages

and compilers.

Later, Lihong et al. (1998) implemented the 8000 fixed-point 64-point FFT
algorithm base on radix-2/4/8 in 0.6 pm CMOS with power supply of 3.3 V for
DVB applications. The chip was capable of computing an 8K FFT for every 200 pus.
I/O bit were 20 to 24 bits. The chip was fabricated with 1.3 M transistors with a core
area of 107 mm?” and chip size of 140 mm’. The power consumption was 650 mW

when the input frequency is 20 MHz.

In 1999, Li and Wanhammar designed and implemented 0.35 pm CMOS high-
speed low power 1024-point pipeline FFT processor with flexible internal data length
and novel processing element. The proposed FFT completed the calculation within

40 ps.

24

They introduced their design for wide coverage mobile radio modem with 10 users of
2 Mb/sec each. The Radix 4 single path delay prototype commutator architecture FFT
was selected to optimise the power consumption. The implemented core area was
measured as 3.1mmx3.4mm and dissipates less than 200 mW at 1.5 V with throughput
of 25 MHz.

Beukelman and Bierens presented the design of the fast floating-point FFT
processor in 1999. The FFT performed 1024-points floating-point complex FFT with
4 memory banks in DSP applications. The internal hybrid floating point data format
(2x24 mantissa+9 bits exponents) resulted more than a single floating-point level of
accuracy and dynamic range applications. The SNR for 1K complex FFT was 130 dB
with the maximum clock frequency of 100 MHz. The data rate was determined as
2x50 ms/s for 2 FFT processors. The FFT processor was based on the design and there
was no implementation result reported. Figure 2.5 shows the FFT processor structure

introduced by Beukelman and Bierens.

FFT Processor 100 MHz

FFT Core

Mul

Converter || Converter Converter | Input Reg " Output Regl

t ¢ t 1 v
i{_m Multiplexer _>| FIFO |_24>

) Control
interface < oo,

Figure 2.5 Floating-point FFT processor
Source: Beukelman & Bierens 1999

25

In 1999, Baas introduced a low power high performance 1024-point FFT
processor that was fabricated by 460000 transistors under 0.7um CMOS standard for
the DSP application. The proposed 20 to 24-bit fixed-point radix-2 FFT system
operated with 3.3 V power supply in order to calculate its function within 30 ps while
consuming 845 mW. The maximum clock frequency was 173 MHz at 3.3 V power
supply. The FFT processor occupied 5.985x8.204 mm? and it was fully functional on

first-pass silicon.

Yeo et al. (2002) demonstrated an efficient scheme using reduced precision
and word length optimization to reduce power and increase the performance of FFT in
the transmitter for IEEE 802.11a WLAN applications. They claimed that with the
input reduction bits during transmission, the power consumption was reduced
considerably. They designed a 64-point radix-4 DIF-FFT processor. They selected the
word length of input data as 10 bit. Although the power consumption measurement
has not been shown in the paper, they illustrated that the number of calculation was

significantly reduced.

Son et al. (2002) proposed a high-speed 256-pint FFT processor for OFDM
based on Radix-4 algorithm. The 20-bit pipeline fixed-point FFT architecture was
modelled by VHDL and logic synthesis and was performed using the Samsung 0.5 pm
SOG cell library. The total gate count was 98326 excluding the RAM. The processor
could operate with 42 MHz clock frequency. The proposed processor could calculate

256-point complex FFT in 260 clock cycles (6 ps).

Yong in 2003, proposed a method of high speed 512 complex fixed-point
radix-8 FFT processor. Although there was no report of his implementation, he
estimated the maximum clock frequency of 160 MHz and the latency of 4096 (12.8
us) clock cycles in parallel FFT architecture for DSP application. The internal bit

width was considered as 20 bits.

Later on, Dabbagh and Eshghi (2003) constructed the self-timed 8-point

pipeline floating point FFT processor. The self-timed technique was used to overcome

26

a global clock overhead and distribution problem in synchronous FFT processors due
to a large area size of floating-point arithmetic units. They suggested using the single
shift registers instead of barrel switches in floating-point adder to reduce the required
area size. Although they did not mention how much this technique could improve the
area and the throughput, MATLAB simulation and VHDL implementation result

comparison were given accordingly.

Xin Xout
Tl EEH P P P e e

Mux Mux Mux

Figure 2.6 Pipelined FFT processor architecture
Source: Dabbagh & Eshghi 2003

In recent decade Jen et al. (2003) designed and implemented a programmable
64-2048-point FFT/IFFT processor to cover the different specifications of OFDM
applications. They implemented the processing element (PE) by using coordinate
rotational design computer (CORDIC) algorithm to replace the multiplier based PE.
Additionally, they proposed m/4-pre-rotation and modified EEAS-Cordic VLSI
architecture to reduce the iteration number and quantization noise. Finally, the FFT
processor was implemented with TSMC 0.35 pm CMOS technology. The die area of
the FFT was 12.25 mm® including 204832 bits memory. The chip operated under

80 MHz clock frequency and met most of the standard requirement.

In 2004, Miyamoto et al. designed and built a 36-bit FFT Processor based on
the two-stage cached-memory architecture, which integrates 552000 transistors within

> with CMOS 0.35 pm triple-layer-metal process. The

an area of 2.8x2.8 mm
Proposed processor could execute a 512-point fixed-point data format, one-
dimensional FFT in 23.2 ps (3063 Clock cycle). The maximum clock frequency was

133 MHz with the power consumption of 439.6 mW at 3.3 V power supply.

27

A new continuous—flow mixed-radix (CFMR) FFT processor was proposed by
Byung & Myung (2005). They used the MR (radix-4/2) algorithm and a novel in-place
strategy. The proposed algorithm supported fixed-point data. The pipeline CFMR FFT
processor using the 0.18 um SEC cell library consisted of 37000 gates excluding
memories, required only 640 clock cycles for 512 point FFT and run at 100 MHz.
Figure 2.7 shows the proposed CFMR FFT processor.

| I/O Interface |
mt t t AL A t
\A YvYyYyv
- Address >
Memory 1 - A »> Memory 2
4 Banks -t Genljar:iattlon P 4 Banks

AAAA |||| |||| AAAA

| Data Interchange |

Iy vy

Radix 4/2
Butterfly

YYVY
| Data Interchange |

Figure 2.7 CFMR FFT processor
Source: Byung and Myung 2005

Shyue et al. (2005) designed a method for testability and fault tolerant for FFT
processors based on M-testability conditions for module level systolic FFT arrays.
Their M-testability conditions guaranteed one hundred percent (100%) single-module
fault testability with a minimum number of test patterns, according to the proposed
design fault tolerant approached at the bit level and the multiply-sub-tract-add (MSA)
module level were proposed. This proved that the resulting architecture is simpler as
compared with previous work and the reliability of the FFT system increases

significantly.

28

Chin et al. (2006) constructed a low power 64-point FFT/IFFT architecture and
chip adopting the retrenched 8-point FFT/IFFT (R8-FFT) and an efficient data-
swapping method based output buffer unit. Their concerns were the area, power,
latency and pending cycles for the application of IEEE 802.11a WLAN standard.
Consequently, the design based on the new method was completed and the synthesis
report illustrated the chip power consumption of 22.36 mW under 1.2 V" at 20 MHz in
CMOS process. The WLAN standards require the FFT calculation to be within 3.2
us. However, the proposed design needs 72-clock cycle when the timing budget is
444 ns. For the post layout, the core area was 1.66 mm’ and the whole chip size was

2.58 mm>.

In 2006, Chin et al. proposed low multiplication complexitiy 256-point FFT
architecture for WiMAX 802.16a systems. The proposed FFT architecture utilizes
cascaded simplified radix-16 single-path delay feedback (SDF) structures. The
proposed structure required one complex multiplier and 56 complex adders for
supporting the 256-point computations. As a result of this, the output throughput rate
of FFT was estimated up to 35.5 Ms/sec with 0.18 um standard cell technology. The
system maximum clock frequency was 32 MHz in FPGA and 51.5 MHz. The total
gate count and power consumption were 173875 gates and 162.7 mW respectively in

1.8 V supply voltage.

A novel 128/64 point FFT/IFFT processor for ‘multiple-input multiple-output’
(MIMO) OFDM based IEEE 802.11n WLAN baseband processor was constructed by
Yu & Chen (2007). The unfolding mixed radix multipath delay feedback FFT
architecture was applied to deal with multiple data sequences efficiency. The proposed
FFT/IFFT processor was designed in a 0.13 pm CMOS process. The core area was
660x2142 pm®. At the operation clock rate of 40 MHz, the proposed processor could
calculate 128-point FFT within 3.2 ps. The maximum clock frequency was 100 MHz

with the power consumption of 5.2 mW from the prime power simulator.

Ochi (2008) proposed 64-point floating-point FFT with parallel architecture
for wireless application. He focused to improve the area size and dynamic range

sequentially and designed a 16-bit Radix-4 FFT processor with a 64-serial data. Both

29

the butterfly circuit and weight multiplications were carried out in parallel in the
various stages. In addition, the parallel architecture reduced the latency by 89 clock
cycles whilst the conventional FFT processor has 136 clock cycles latency. In terms of
speed, he implemented a 16-bit FFT with maximum clock frequency of 120 MHz and
32-bit FFT with 97.7 MHz clock rate for floating point arithmetic. Its ALUTs is 8261
and 30815 respectively. The architecture of floating-point arithmetic for his proposed

design was seen in Figure 2.8:

Fixed Point
Fixed point to Fixed point to
Floating point Floating point
Multiplier/ Multiplier/
Divider Divider
Floating point to Floating point to
Fixed point Fixed point
Fixed point

Figure 2.8 Block floating point arithmetic
Source: Ochi 2008

In 2008, Zainal et al. presented a new study over logics circuit operation in sub
threshold and threshold region. They developed an FFT processor as an example of
digital wireless circuit. The low power consumption of a radix-2 pipeline FFT with
low voltage power supply was evaluated. The design was simulated using HSpice
level 49 models in 0.18 pym CMOS technologies. The maximum throughput was
measured as 100 MHz with the power consumption of 320 mW when power supply

was 1 V.

Hojin et al. (2009) discussed 2-dimentional (2D) FFT. They developed a

systematic method for improving the throughput of 2D-FFT implementations on

30

FPGAs. They applied unrolling technique to deploy multiple processing units within a
single 1D-FFT. The 2D-FFT design was implemented and evaluated for two different
sizes of images 256x256 and 2048x2048 respectively. The maximum available

memory for their design was 128 MB operates on 40 MHz frequency.

In 2009, Xin et al. designed and implemented fast memory addressing scheme
for radix-4 FFT Implementation. They proposed methods by utilising extra registers to
buffer and re-order the data inputs of the butterfly unit. It avoided the module in the
address generation hence the critical path was significantly shorter than the
conventional radix 4 FFT implementations. The proposed architecture was
implemented on an FPGA board and is also synthesized by CMOS 0.18 um
technology. They used pipeline 1024-point FFT in their design. Each real and
imaginary part used a 16-bit data which resulted in the maximum throughput of 182

MHz with the total gate count of 176746 cells.

Zhang and Meng (2009) presented a memory-based architecture of 1024-point
FFT processor customized for OFDM-based communication systems. They designed a
DIF pipeline FFT algorithm for WLAN, DVB-T and ADSL and adopted an efficient
memory access scheme to achieve considerable power consumption and cost
reduction results. Finally, the VLSI implementation of radix-2 FFT processor was
carried out in a 0.13 um CMOS technology. The estimated area and power
consumption of the proposed FFT processor were 2.96 mm’ and 268 mW respectively

with the maximum clock frequency of 100 MHz and operating voltage of 1.08 V.

Finally Gijung and Yunho (2010) designed the scalable FFT processor for
MIMO-OFDM-based SDR system which can support the variable length of 64,128,
512, 1024 and 2048 point data.

By reducing the required number of nontrivial multipliers with mixed radix
(MR) and multi-path delay commentator (MDC) architecture, where they found that
the complexity of their systems was dramatically decreased. The implementation was

done in hardware and synthesized to the gate-level circuits using 0.13 pum CMOS

31

standard cell library. The proposed architecture had a 46k gate count and it could be

operated with the maximum clock frequency of 40 MHz.

To review the history of the floating-point arithmetic unit, the previous research
work was investigated. Narasimhan et al. (1993) proposed an 8-stage floating-point
adder for the FPGA. The specifications for the adder stated that it should work at
62.5 MHz in 2004; Thompson et al. presented a decimal floating-point adder with 5
stages that is compiled with the current draft revision of IEEE-754 standard. The adder
supported operations on 64-bit (16- digit) decimal floating-point operands. Initial
synthesis testing and evaluation was done and performed using the Synopsys design

compiler and LSI Logic’s Gflxp 0.11 micron CMOS standard cell library.

Later, Chi (2005) presented a high-speed double-precision floating-point adder
using custom-designed macro modules and other advanced optimization technology.
Based on SMIC six-layer-metal CMOS process, he achieved a 4-stage pipelined double
precision floating-point adder, which could complete a floating-point addition in
7.72ns. The total gate count in this system is 37977 gates. All the results show that the
effort is taken to achieve low latency and area, high resolution and speed by
introducing the new algorithms. Similar works were also represented within year 2005
to 2009 (Chi et al. 2008, Shi et al. 2008, Xenoulis et al. 2005), to demonstrate
engineers effort in increasing the capability of floating-point calculation. However,

there are insufficient available resources pertaining to floating-point arithmetic.

2.6 SUMMARY

This chapter describes the DFT algorithm and its applications. It then narrows down to
the introduction on the development of DFT by Cooley and Tukey (1965). They called
their design as FFT processor. It has engaged in the description of the application of
the FFT processor which is the subject of this research and has also made a
comparison between the floating-point and fixed-point FFT processor. The advantages
and disadvantages of implementing FFT in floating-point architecture were also

considered. In this book, an effort is taken to implement a novel algorithm of floating-

32

point 1024-point radix-2 FFT processor to overcome the disadvantages and achieve
high resolution and high dynamic range in DSP applications. Consequently, the
literature study presented gives an outline of the relevant fields that are required and
used in the duration of this research. In the next chapter, the study will focus on the
research methodology employed and a detailed explanation of the FFT processor

structure.

33

CHAPTER III

FAST FOURIER TRANSFORM ARCHITECTURE

INTRODUCTION

As discussed earlier in the previous chapter, FFT algorithm computes an N-point
forward DFT or inverse DFT (IDFT) where N is 2”. The FFT is a family of algorithms
that efficiently implements the DFT. The basic principle of FFT algorithms is the
“divide-and-conquer” approach, which decomposes N-point DFT into progressively
smaller DFTs, thus reducing the computational load as compared with that of the

original N-point DFT.

Dividing an N-point data sequence into two N/2-point sequences and
performing the DFT on these two sequences individually results in the order of
2(N/2)* = N*/2 complexity as compared with the original N* operations in an N-point
DFT. Further computational reduction can be achieved by dividing these two
sequences with N/2 samples into four sub-sequences with N/4 samples and performing
an independent N/4-point DFT on these four shorter sequences (Gentleman & Sande

1966).

The process of dividing can be continued until a 2-point DFT is reached. In
addition to the dividing process, the periodic and symmetric properties of twiddle
factors can be exploited to reduce the computational load further. Table 3.1 shows the
comparison between the calculation of direct DFT and FFT when a different number

of N is applied.

34

Table 3.1 Comparison of calculation in DFT and FFT algorithm

DFT Radix - 2 FFT
Number of
points Complex Complex Complex Complex
Addition Multiplication Addition Multiplication
N N(V-1) N Nlog,N (N/2)log, N
4 12 16 8 4
8 56 64 24 12
16 240 256 64 32
32 992 1024 160 80
64 4032 4096 384 192
127 16256 16384 896 448
3.2 FFT TYPE STRUCTURE

To calculate FFT algorithm, there are two well-known methods identified as DIT-FFT
and DIF-FFT calculations (Hemmert & Underwood 2005, Shiqun zheng & Dunshan
Yu 2004, Thulasiram & Thulasiraman 2003). Both algorithms introduced perform the
same functioning. In general, FFT processor has many types in terms of Fourier

calculation. Taking into account different types of FFT algorithms are:

e Different radixes, such as radix-2, radix-4, etc. and mixed-radix algorithms.

e DIT and DIF.

e Real and complex algorithm.

3.2.1 DIT Radix-2 Butterfly FFT Processor

As it discussed earlier, the FFT structure will divide the input sequence into odd and

even sequence. The number of stream in FFT is N = 2" when m is positive integer.
Xe(n) =x(2m),m=0,1, ..., (N2) -1 3.1

Xo(n)=x2m+1),m=0,1,....,(N2)-1 3.2)

35

Based on the DFT definition and combination of the FFT concept, X (k) can be written

as:

N-1 \zJ 7)1
“ﬁ: w1 w1 s st
Y AY S e awlem AY S rer Tomle AN . snzarh2m+ll ke
Al = 2 xinlW.,"™ = 2 xl AW 2 xldm + LW,
wTES L RS W fH e w /H A rd n
n=0 m=0 m=0
(3.3)
Since W™ = Wy , the equation will be simplified as:
N N
() (7)1
x(k) = Z x (M)WiTs + Wy Z x, (M)W k=01,..,N—1
m=0 m=0 z
3.4

W;¥ which are defined as twiddle factors, and are complex variables with unit

amplitude and different phase angles. The 8-point FFT utilises the twiddle factors
from Wi¥ to ;. The first twiddle factor is W22 = 1. All twiddle factors are distributed

around the unit circle. Figure 3.1 shows the twiddle factor for 8-point Fourier

transform. The twiddle factor WiF repeats itself after every multiple of N. The twiddle

ks

factors are periodic and for 8-point FFT twiddle factor 0 and 8 are equal.

36

Figure 3.1 8-point FFT twiddle factor

EAT [A
By assuming X, (k) = E:‘iolxs (myW% and X, (k) = E:jolxo (m)WE™ | this

symmetric property provides a reduction in calculations as:

Fporan s P _ TECAY
i X (Y +WEX (), E=01 =i—1
) \ X) WX (k), £=01,..,(-)1—-1

ViV — \2s

Xim)= 4 i 3.5
[T Y rawkwr F10w ¥ __ VY “
[X (k] —WSX_(k), k=1—-1 N —
L TUEAS il = i S \a3 7

In general, a radix 7 butterfly FFT will be created when N = r". In this book, radix-

2 structure as it is the most important radix butterfly that can be concentrated on. The

concept of radix-2 will be expanded to cover other radix type structure.

The Butterfly calculation is the fundamental concept of the FFT algorithm and
its structure is illustrated by Figure 3.2 when the 2-point data is applied.

37

X(k)=X,(k)+ Wy X, (k)

X, (k) X(k+N/2)=X,(k)-WEX, (k)
Figure 3.2 2-point butterfly in DIT FFT algorithm
x,(n)
X, (0)
X(0) = P X(0)
w N\ /
X(4) =] _ > X(1)
4- point DFT X.(2) \\ /f
X(2) = > X(2)
X(6) ——p X(3)
x,(n)
X(1) —» X(4)
X(5) —» _ - P X(5)
4- point DFT X,) ; // 4 \\
X(3) =i / \ > X(6)
X(7) N X,03) Wy -1 > X(7)

Figure 3.3 Final decomposition of 8-point DIT FFT

To achieve better concept of the radix-2 butterfly FFT calculation, it is assumed N = 4.

Hence FFT algorithm can be expressed as:

X =%, W' k=0123 (3.6)

X = xoWi4 2, W 4+ x,WH £+ x w3 3.7

38

Since Wﬁ =1, it is substituted as

%= (2o + 223+ W (x; + 2,03 (3.8)
Now Py and Oy will be defined as:

X =P+ WigQ, (3.9)
Hence for 4-point data X is expressed as:

Xo= Py +W3Q, (3.10)

X, = Py +WiQ, G.11)

Xy = P, +W3Q, (.12)

X3 = P3 +W3Q, (3.13)

Since Py and O are periodic with period of (N/2), the values for X, are defined as

below:

o= Py +W3g, (3.14)
X, = P, +wig, (3.15)
X, = P, +W3Q, (3.16)
X;= P, +W3iQ, (3.17)

Based on the explanations given, a radix-2 butterfly FFT is decomposed into M
stages, where M = log,N since 2% = N. In each stage, N/2 complex are multiplied by
the twiddle factors and where N complex additions are required. Therefore, the total
computational requirements are (NlogyN)/2 complex multiplications and NlogoN
complex additions. Figure 3.4 demonstrates the flow graph of the final decomposition

of 4-point DIT-FFT.

39

Stage1 Stage 2

Figure 3.4 Flow graph of the final decomposition of 4-point DIT-FFT

As it is clear from the calculation of the 4-point FFT, two stages are required and each

stage has 2 butterfly calculations.

n

B, = x5+ TZWE (3.18)
P,=x,+ x, WS (3.19)
P, = xp+ x, W3 (3.20)
Qp = %1+ xsWi¥ (321)
Q, = %+ 2 W3 (3.22)
@y = xy+ x3W3 (323)

Consequently, expanding the radix-2 butterfly calculation for 8-bit data will result as

Figure 3.5.

40

STAGE 1 STAGE 2 H STAGE 3

x(0) © o X(0)
o >< \ / \ /
x(4) © 8 o X(1)

X(2)

x(6) > = - > © X(3)
_ o X(4)

R 6 P W/ANY
0 >< \ Wy

x(5) ©
x(3) © / > \ o X(6)
2 3
x(7) & 2 ; We - o X(7)
‘\) ;
S N Complex
BliRgvarsad 2 logoN Multiplications

Inputs

Figure 3.5 Flow graph of the final decomposition of 8-point DIT-FFT

Based on Figure 3.5, the input data must be stored in a non-sequential order for the
computation to function appropriately. In fact, the order in which the input data are
stored is in bit-reversed order. As an example for 8-point FFT, bit-reverse block

changes the location of three binary digits as shown in Table 3.2.

Table 3.2 Bit-Reversal process for N=8

Binary Index Bit-reversed index
000 (0) 000 (0)
001 (1) 100 (4)
010 (2) 010 (2)
011 (3) 110 (6)
100 (4) 001 (1)
101 (5) 101 (5)
110 (6) 01 (3
111 (7) 111 (7)

41

If three binary digits is the representative of the index of the sequence x(n), then the
sequence value x(n,n1n9) is stored in the input array position X(nonn,). The advantage
of this bit-reversing is the separation between the odd and even numbers. The even
numbered samples are located at the top half of the module and the odd numbered
samples are located at the bottom half. Figure 3.5 shows the data location clearly.
Formerly, such a separation of the data can be carried out by examining the least
significant bit (LSB) no, in the index n. Next the even and odd sequences are each
sorted into their even and odd parts. Thus the necessity for bit reversed ordering of the
sequence x(n) is seen as a result of the manner of FFT calculation. To show the
overall structure of DIT-FFT algorithm, Figures 3.6 and 3.7 provides the concept of
DIT-FFT when bit-reversed is applied.

a

1=01.2,.,n-1

Bit reversed

€ =y b =ay
[=0]1,.,n/2-1 1=0,...n/2-1
Y
DFT DFT
Length: n/2 Length: n/2
o1 s
i=0,1,..,n/2-1 i=01,.,n/2-1
Y
n/2

Butterfly operation

Figure 3.6 Flow chart of Radix 2 DIT-FFT Structure

4

b, = ay
[A,
DFT
Length 2
b =
a, — — 4,
Bit-
Reversed
a Co =0y o 4
2 — > 2
DFT
Length 2
a & =4 A
3 — E— 3

Figure 3.7 4-point Radix-2 DIT-FFT Structure

3.2.2 DIF Radix-2- Butterfly FFT Processor
DIF-FFT calculation is similar to the DIT-FFT algorithm. As far as FFT calculation is
involved, the time domain sequence is divided into two sub-sequences with N/2
samples:

{x(0), x(1), ..., x(N/2-1)} (3.24)

{(X(N/2), X(N/2+1), ..., x(N-1)} (3.25)

The DFT concept of x(n) expressed as :

() ¥t
XE=) x(mWr+ Y x(n)wrk

wy/z)-1

= Z (W + Z x(n+ N/2) W™ “f?}k

(3.26)

43

B _,

Given that W, —1)* equation (3.26) can be simplified to :

AN
[—i-1
Azs
. ™ o . -
vil-y — M labfant L F_ANK a1 R/ VITATRE
ARy /S OIXUL T LTI T AN ey
¢ . N
=0

(3.27)

Later, Equation (3.27) will be expanded into two parts including even X(2k) and odd
X(2k+1) samples. By using the twiddle factor characteristic, Equation (3.27) is

simplified to:
2kn — markn (2k+n _ o onarkn
wﬂ - WNIZ ’ H";, - WN WN,-"Z
(3.28)
(31
I A PN { Ny
Xz = Yy lxinldxini+—11WE =
8 £ ri I=~\"=r 1 ~ 1l NjZ
La L A L71
#w=0
(3.29)
Ny N~
I=i-1 I=i-1
\27 A2/
— " AT = —
- . N ' il T 1 AT
Vi L 1Y = b laellaat e [aa L | WA AR — N e () TP TAFTLE
X{(2k+ 1} D lxin) —xin+ o HWYWYL Y x, (WS,
FAa i .0 bt A - e
n=o n=i
AT AN
IL.—nA 1 __a
LS e T Ry | L
\Z/
(3.30)

Based on the explanation given, Figure 3.8 shows the heart of DIF FFT algorithm
which is butterfly as well as Figure 3.9 which illustrates the concept of DIF FFT for 8-
point FFT.

x(n)

x (n+N/2)

Figure 3.8 2-point butterfly in DIF-FFT algorithm

44

TN e o
o X1(1) - X(4)
XM ‘\\ / / w 4pointDFT [
X1(2
NN ; gt
X3) X1(3) _ X(6)
X(4) L » X
> X(5)
X©) / / \\] o 4-point DFT
1 X2(2 w2
X(6) i N) - |, x®
X d 1 X2(3) W, - X(7)

Figure 3.9 Final decomposition of 8-point DIF-FFT processor

The output sequence X (k) of the DIF-FFT is bit-reversed, while the input sequence
x(n) of the DIT-FFT is bit-reversed. In addition, there is a slight difference in the
butterfly computation. As shown in Figure 3.2, the complex multiplication is
performed before the complex addition or subtraction in the DIT-FFT. In contrast, the
complex subtraction is performed before the complex multiplication in the DIF-FFT
as shown in Figure 3.10. The process of decomposition is continued until the last stage
is reduced to the 2-point DFT. Since the frequency samples in the DIF-FFT are bit-
reversed, the bit-reversal algorithm must be applied to these frequency samples in
order to obtain the natural order of frequency samples. Similarly, the DIF-FFT

algorithm also uses in-place computation.

45

X1(0)

X0 :\ f ' ' 2-point —> X0
X1 . X1(1) ; t | Butterfy X
X(2) :‘\\ / / X2 i — o — @
H H -point
X(3) \\\ //f H H Butterfly > X(6)
X(4) ¢ —{ 2. p0int — X
X(5) -1 X2(1) W o4 H Butterfly X(5)
X(6) "/ / d \\ xag 1| i 2-point [— X(3)
T " -poin
-1 X2(3) wg 4 -1 wg o Butterfl
X(7) c./ N o : a/ AN e x)
Stage 1 Stage 2 Stage 3

Figure 3.10 Internal calculation of 8-point DIF-FFT processor

To show the overall structure of DIF-FFT algorithm, Figures 3.11 and 3.12
provide the concept of DIF-FFT when bit-reversal is applied.

46

a

1=012,.,n—-1

'

Partitioning

¢, =a

ni2+1

1=0,1,..,n/2-1

i Y

b =a,
1=01,.,n/2-1

n/2

Butterfly operation

E; =4,

D, =4,

i=0]1,..,n/2-1
Y

i=0,1

Y

DFT
Length: n/2

DFT
Length: n/2

vy

Bit reversed

Figure 3.11 Flow chart of radix-2 DIF-FFT Structure

Do — A(k
DFT
Length 2
1 = Az‘
Bit-
Reversed
En - AI‘
DFT
Length 2
= A,

Figure 3.12 4-point radix-2 DIF-FFT structure

47

3.3 COMPARISON OF DIT-FFT AND DIF-FFT ARCHITECTURE

Based on the introduced DIT and DIF structures, the input data in DIT-FFT is
bit-reversed while the output is in natural order. For the DIF structure, the input is in
normal order while the output is reversed. However, both the DIT and DIF can go
from normal to shuffled data or vice versa. Furthermore, considering the butterfly
diagram, in the DIF architecture, the complex multiplication takes place after the

adder/subtractor calculation.

To apply the radix-2 FFT structures, the conditions are that both the DIT and
DIF algorithms require the same number of operations and bit-reversal to compute the
FFT. The overall structure of the FFT processor is depending on the applications, the
hardware implementation, and convenience. If the design is focused on high speed,
the processor has to take the most efficient approach and algorithm to perform the
FFT calculation accordingly. In this book based on design, hardware implementation
and proposed algorithm, the DIT-FFT architecture is selected to function in achieving

higher efficiency.

3.4 FFT PROCESSOR ARCHITECTURE

In 2009, Xilinx Logic core introduced the available FFT architecture processors. The
proposed FFT processors were designed to offer a trade-off between core sizes and

transform time. These architectures are classified as follow:

e FFT Processor with radix-2 pipelined serial I/O architecture
e FFT Processor with radix-4, parallel I/O (Burst) architecture
e FFT Processor with radix-2, parallel I/O (Burst) architecture
e FFT Processor Radix-2 lite, parallel I/O (Burst) architecture

The pipeline serial I/O allows continue data processing, whereas the burst parallel 1/O
loads and process data separately by using iterative approach. It is smaller in size than

parallel but has longer transform time. In the case of radix-2 algorithm, it uses the

48

same iterative approach as radix-4 with the difference of smaller butterfly size that
differentiates it. But the transformation time is longer. Finally for the last category,
based on radix-2 architecture, this variant uses a time multiplexed approach to the

butterfly for an even smaller core, at the expense of longer transformation time.

Figure 3.13 shows the throughput versus resource among the four architectures
as follows: all the four architectures may be configured to utilise a fixed point
interface with one of the three fixed-point arithmetic methods (un-scaled, scaled, or

block floating-point).

Resources &

Serial
® architecture

® Radix-4 lite
Burst 110

e Radix-2
Burst I/0
o Radix-2 lite
Burst I/0
Throughput

Figure 3.13 Comparison between available resources of FFT architecture

3.4.1 FFT Processor with Radix-2 Pipelined, Serial I/O

In this design the n-stage of radix-2 butterfly are connected as a serial structure. Each
unit of radix-2 butterfly has its own RAM memory to upload and download data. The

input data will be stored in the RAM while the processor simultaneously performs

49

transform calculations on the current frame of data and load input data for the next
frame of data and unload the results of the previous frame of data. The processor has
the ability of streaming data in for FFT calculations. In the scaled fixed-point mode,
the data is scaled after every pair of radix-2 stages. The block floating-point mode
may use significantly more resources than the scaled mode as it must maintain extra
bits of precision to allow dynamic scaling. Therefore, if the input data is well
understood and is unlikely to exhibit large amplitude fluctuation, using scaled
arithmetic (with a suitable scaling schedule to avoid overflow in the known worst

case) is sufficient and resources may be saved.

The input data is presented in natural order. The unloaded output data can
either be in bit-reversed order or in natural order. When natural order output data is

selected, an additional memory resource is utilized.

Figure 3.14 illustrates the architecture of the pipeline serial I/O with individual

memory bank which connects in a serial structure.

Serial 1 Serial 2 Serial n

L]
. ‘

I Memory I I Memory I I Memory I I Memory I
Sl::z;“ —»I Radix-2 |—>| Radix-2 |—>| Radix-2 |—>| Radix-2 ';boa-

Stream
output

Y

Output reversed [

Figure 3.14 FFT processor with pipeline serial I/O Architecture
Source: Xilinx 2009

3.4.2 FFT Processor with Radix-4, Burst I/O

Radix-4 structure accepts 4 input data simultaneously whereas radix-2 takes 2 input
data to perform FFT calculations. The 4 input data uploaded to the FFT processor,
cannot be uploaded while the calculation is underway. When the FFT is started, the

data is loaded. After a full frame has been loaded, the core computes the

50

transformation. The result can be downloaded after the full process is over. The data
loading and unloading processes can be overlapped if the data is unloaded in

digit- reversed order.

Figure 3.15 shows the radix-4 structure when 4 input data are loaded for FFT

calculation.

ROM for
Twiddles

Data
rRaMo 1 -1 |

Input Data

Data
RAM 1

RADIX - 4

Switch

Data
rave HH -] —»]

Data
rams T a1 —a] —|

A
:
!

Output Data

YYVYY

Figure 3.15 FFT Processor with radix-4 architecture
Source: Xilinx 2009

3.4.3 FFT Processor with Radix — 2, Burst I/O

The mentioned FFT processor utilises radix—2 butterfly calculation to execute FFT
arithmetic structure. In spite of radix—4 with burst I/O processor, which the input data
can not simultaneously load and unload, the radix-2 processor accepts the input data

during the FFT processor and data can be simultaneously loaded and unloaded when

51

the output samples are in bit-reversed order. The twiddle factors are stored in the

ROM blocks whilst the output and input data will be stored in separate or mixed RAM
blocks.

Figure 3.16 shows the radix-2 structure when 2 input data are loaded for FFT

calculation.
ROM for
Twiddles
Input Data *
o Data .
RAM 0 i >

RADIX -2

Switch
Switch

\

Data

RAM 1 > > —> _|

\

Output Data

Figure 3.16 FFT Processor with radix-2 burst I/O architecture
Source: Xilinx 2009

3.4.4 FFT Processor with Radix — 2 Lite, Burst I/O

FFT processor with radix-2 Lite architecture uses one shared RAM, hence reducing
resources at the expense of an additional delay per butterfly calculation. The
multiplier in this structure multiplies the real part of complex number in one clock
cycle and the imaginary in the next. In this architecture the data can be simultaneously

loaded and unloaded if the output samples are in bit-reversed order. In this

52

architecture sine and cosine twiddle factor coefficient saved in the ROM and the
output data will be saved in a single RAM. Although this proposed architecture saves
the resources, but the throughput is significantly limited by the FFT structure due to
the sequence calculations. Figure 3.17 shows the radix-2 Lite structure when two input

data are loaded for FFT calculations.

ROM for
Twiddles

Y

Input Data
Data -
RAM 0 o RADIX - 2

————» Qutput Data

Figure 3.17 FFT Processor with radix-2 Lite burst /O architecture
Source: Xilinx 2009

3.5 FFT PROCESSOR AND INPUT SIGNAL

In the previous section the fundamental concept of the FFT processor was introduced.
For the linear shift invariant systems a representation of the input sequence as a
weighted sum of delayed unit sample sequences is considered to lead to a
representation of the output as a weighted sum of delayed unit sample responses. The
fundamental property of linear shift-invariant system is steady—state response to a
sinusoidal input and it is sinusoidal of the same frequency as the input, with amplitude

and phase determined by the system. It is the property of linear shift-invariant systems

53

that makes representations of signals in terms of sinusoids or complex exponentials
(Fourier representation) very useful in linear system theory. It is considered that the
sampled rectangular signal as ideal low pass filter is entered to the FFT processor unit.
Deriving the Fourier Transform of a single rectangular pulse of width 7 (-N/2, N/2)

and height A (Figure 3.18) produces sinusoids sinc function.

012 3 N-1

Figure 3.18 Single rectangular pulse

7/2

/2
X(w)= jAe'f“dt:—ie-/“ (3.31)
—z/2 Jo —z/2

_% ejwr/z _e—jwr/z B ATSII’I(C()T/z)
® 2j (wr/2)

Hence the frequency response possesses the figure of sinc function which is
shown in Figure 3.19. As x(n) is extended to a large number of periods, the sincs will

begin to look more and more like impulses.

54

Magnitude frequency responce

1 T T T T ~ T T T

i i i i [\ ! ! ! !

| | | A R | | |
S iy S

| | | o | | |

I I I [T T I I I

| | | [T | | |
P S S U O S SO O S

. I I I [I I I

| | | [B T | | |

i i i A | i i
Y0 171 G S S

° | | | N | | | | I

2 | | | | | | | | |

3 I I I i I | I I I

£ | | | v | |\ | | |
B e A

1 | | 1| I |i I | s

0/,\/\\

NZZ N R N AN

i i A i 1\ ! ! !
P S A S R R

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

0.4 I I I I I I I I I
-5 -4 -3 -2 -1 0 1 2 3 4 5

samples

Figure 3.19 Rectangular frequency responses

3.6 SUMMARY

In this chapter the principle of the FFT was introduced. The conventional FFT as two
types of DIT-FFT and DIF-FFT processor was described and a comparison was made.
The chapter was described the performance of different type of FFT processors could
be different based on the applications, the hardware implementation, and convenience

of the particular research projects.

Furthermore, the schematic of different FFT processors were presented and its
advantages were explained. Four FFT processors were introduced and identified as
(i) radix-2 pipelined serial /O architecture, (ii) radix-4, parallel /O (Burst)
architecture, (iii) radix-2 parallel I/O (Burst) architecture and finally (iv) radix-2 Lite,

parallel I/O (Burst) architecture.

All the described FFT processor was based on fixed-point architecture and
then, is trying to improve resolution, power consumption, speed as well as area.
However moving to floating point architecture has obtained this requirement and this

is the subject of the coming chapter on floating point architecture.

55

CHAPTER IV

THE FLOATING-POINT PARALLEL PIPELINE (FPP) RADIX-2 FFT
PROCESSOR

As stated in Chapter I the objective is to design floating point 1024-point radix-2 FFT
processor that has low power consumption, high-resolution and high-speed
specification. This chapter elaborates and establishes the architecture in order to meet
the stated requirement. This chapter is commenced with introduction to the floating-
point number, and then followed by presenting the proposed architecture. Finally the
performance of individual components is explained with the discussion of proposed

system advantages.

The detailed hardware implementation framework of the project is indicated in
Figure 4.1. The architecture of the proposed architecture is implemented by the

utilisation of the VHDL and CAD Tools.

The project is continued in order to achieve the goals to enhance the previous
FFT processor research work. The hardware code is transferred to the UNIX machine
to check the Fourier transform properties in gate level by CAD tools (Synopsys and
Cadence). The workflow will be executed to the next stage if the design meets the
desirable specifications, which is the FPGA prototype and testing. Concurrently to
that, the design is synthesized, the timing verified and finally simulated at gate level
on the 0.18 SILTERRA and 0.35 MIMOS process technology.

The comparison was also done between these two technologies in terms of
their performance (speed, power consumption, area). Based on the architecture and
design specifications, the hardware design flowchart of the proposed radix-2 FFT

processor is illustrated in Figure 4.1.

56

Start

Y

Review of FFT system

y

Architecture design and implementation
of the Proposed floating-point FFT

Y

Programming VHDL code |«

L]

Synthesize and Analyze by
Xilinx, Cadence and
Synopsys tools

Yes

Y v

Synthesmse“:):rrl\;hmos and FPGA Prototype
Comparison and Result Analysis & Test by logic
Analyzer
- End

Figure 4.1 Hardware design methodology framework

Hence the focus is on achieving high performance floating-point FFT processor

architecture to cover signal processing in harmonic analyzing applications. The

57

system is designed and implemented to achieve high resolution and high dynamic

range and at the same time meet fixed-point specifications.

4.1 DATA STRUCTURE

In realising the floating-point-based arithmetic for the implementation on the 1024
point FFT processor, it is thus necessary for the data to be presented in floating-point
format. Hence implementation of floating-point register and biased exponent are
discussed in detail in this chapter. It is followed by design architecture of the proposed
floating-point parallel pipeline 1024 point (FPP) FFT processor.

4.1.1 Floating — Point Data Format

In floating-point format, the data is translated based on power and mantissa in decimal
system. This notation can be expanded into the binary system. Representing data in
power and mantissa system gives the storing data capability a much greater range of
numbers than if the binary points were fixed. Numbers are represented approximately
to a fixed number of significant digits and scaled using an exponent. The base for the
scaling is normally 2, 10 or 16. The typical number that can be represented exactly is

of the form:

Significant digits x base “7*""

Floating-point refers to the ‘truth’ that the radix point; which refers to the decimal
point or in computers is known as the binary point, has the capability to float. This
entails the event to occur anywhere that is relative to the significant digit of the
number. Thus, a floating-point representation, with its position indicated separately in

the internal representation is a computer’s recognition of a scientific concept.

Although the benefit of floating-point representation over fixed-point (and
integer) representation is much wider range of values, but the floating-point format

needs slightly more storage (to encode the position of the radix point), hence when

58

stored in the same space, floating-point numbers achieve greater range at the expense

of precision.

In addition, the speed of floating-point operations is an important factor of
performance for computers in DSP application. Hence the implementation of high
performance system requires applying efficient and fast floating-point processor
which is competitive with the fixed-point processor. Various types of floating-point
representation have been used in computers in the past. However in the last decade,

the IEEE 754 standard has defined the representation.

According to the IEEE 754 standard, the single-precision is chosen to
represent the floating-point data. The IEEE standard specifies a way in which the three
values described can be represented in a 32-bit or a 64-bit binary number, referred to
single and double precision, respectively. In this project single precision is selected to

function.

For the 32-bit numbers, the first bit (MSB) specifies the sign, followed by 8
bits for the exponent, and the remaining 23 bits are used for the mantissa. This
arrangement is illustrated in Figure 4.2. The sign bit is set to zero if the number is
positive, and the bit is set to 1 if the number is negative. The mantissa bits are set to

the fractional part of the mantissa in the original number in bits 22 to 0.

Sign Exponent Fraction
7 0 22
1-bit 8-bit 23-bit
IEEE-754

Figure 4.2 32-bit floating-point registers

59

4.1.2 Biased Exponent

The exponent stored in floating-point format had to be in biased structure. Biased
format ensures no negative power is saved in the floating-point register. The exponent
is biased by {2°7*} — 1 , where e is the number of bits used for the exponent in
floating-point register. Biasing is done because exponents have to be signed values in
order to be able to represent both tiny and huge values. It turns out that biasing the
exponent results in simpler circuitry for computing the magnitude of the two floating-
point numbers. The two's complement, the usual representation for signed values,
would make comparison harder. Hence, the exponent is biased before being stored by

adjusting its value to put it within an unsigned range suitable for comparison.

The mantissa is normalized to binary representation of the number which is
multiplied by 2 raised to the power defined by the exponent. As an example to encode
118.625 as a float, the sign bit assign by zero. To find the exponent and mantissa, first
the number is converted to the binary format which is 1110110.101. Next normalize
the number to 1.110110101x 2%, which is the binary equivalent of scientific notation.

The exponent is 6 and the mantissa is 1.110110101.

The exponent must be biased, which is 6+127 = 133. The binary representation
of 133 is 10000101. Thus the floating-point encoded value of 118.625 is 0100 0010
1111 0110 1010 0000 0000 0000. Binary values are often referred to in their
hexadecimal equivalent which is 42F6A000.

In this project, it is assumed the mantissas are shifted after the point and the
exponents have been increased. It means that the integer value of the fraction number

is equal to zero. (e.g. [9.5]10 = [0.1001 1x2%1)

4.2 STAGE REALISATION OF 1024 POINT FPP- FFT PROCESSOR

Since the main purpose of this project is to design and implement the high

performance 1024-point floating based radix-2 FFT processor algorithm that

60

conserves energy that most satisfies the constraints, selecting the efficient algorithm
(Figures 3.14-3.17) has large impact on the performance of the proposed FFT

processors.

Since the introduced algorithm can be used for computation of fixed-point
architecture, in this project, the effort is taken to present a new algorithm that supports

the floating-point architecture.

In spite of existing fixed point FFT architecture, the proposed radix-2 FPP-
FFT is freed of having a local memory for each individual part (Figure 3.14) since it
has a shared memory application. A fine-grained distribution of loops that will
implement the FFT functions at each level will result in effective parallelization. The
proposed method proves high performance of the 1024 point FPP-FFT algorithm and
its architecture will be discussed in detail. The principle architecture is based on using
a radix-2 algorithm in floating-point format to calculate 1024 point FFT structure. The
proposed processor takes the advantages of (i) shared memory to store the input and
output data and makes the system as single chip. Hence, it reduces hardware
complexity. Furthermore (ii) the entire individual arithmetic unit are designed to
operate within 1 clock cycle to increase the maximum clock frequency. Additionally
(iii) the butterfly structures is in parallel and pipelined architecture to minimize delay
caused by the FFT calculations and finally (iv) the strong controller with collaboration
of address generator unit ignores the need of using N numbers of butterfly unit, since
radix-2 calculation is carried out within one butterfly unit that results reduction of
power consumption, area and avoid system complexity. The proposed design is
implemented with optimizing the previous processor architecture (Figures 3.14-3.17)
to enable the system in maintaining a reasonable clock rate. The throughput of the
operation is limited by the amount of available logic in the target device. Figure 4.3
illustrates the main block diagram of the 1024-point radix 2 FPP-FFT processor in
detail.

61

K
D>
s v
3 — =
3 s §
g g <
°
N
S Radix 2
] RAM Butterfly
— Bit
T e [
4
3
3 — ®)
° =| Output data Valid
N o 8
3 i $
E / 3 £
£ < Q - ROM
5 Read ROM
g
A Write RAM ﬂ
——
| Controlier Address Generator 2
s
T N
8 | &
£ Controlling Signals 3
2 3
- x
2 I(} >
8 |

Figure 4.3 1024 point radix-2 FPP-FFT block diagram

As shown in Figure 4.3, there are six major building units in the proposed
1024 point radix-2 FPP-FFT architecture. These units are shared memory unit, bit
reverse, butterfly arithmetic unit, smart controller, ROM stage and finally address
generator unit. The floating-point input data acts as a variable streaming architecture.
The variable streaming architecture allows continuous streaming of input data and
produces continuous stream of output data. In the next section, each unit will be
investigated separately. Detailed design of the critical components is presented in next

section.

4.2.1 Bit Reverse

The bit-reverse block parses the interleaved data sample into reverse set of serial data
before entering into the FFT processor. Figure 4.4 shows the re-arrangement pattern

required for the n-bit bit reverse block. The input data is the sampled original signal

62

and in the output data is reversal of the input data. The FFT time domain
decomposition is carried out by a bit reversal sorting algorithm. This involves re-

arranging the order of the N time domain samples by counting the bits in binary.

(- X[n-1]
X[0] - X[n-2]
X[1] - X[n-3]
X[2]
[J
[J
[
XI8] » X[9]
Xl > X[8]
[J
[J
[J
X[n-3] > X[2]
X[n-2] » X[1]
X[n-1] \) » X[0]

Figure 4.4 Bit-reverse block

4.2.2 Radix-2 Butterfly Architecture

The difference between proposed design and the conventional type relies on the
architecture of the data path and the technique of butterfly calculations. The proposed
design achieved high efficiency and high resolution FFT calculation within a limited
time by utilizing the unique parallel and pipeline techniques and employing the
floating-point approach. With the new architecture, the area was reduced due to
having only one butterfly structure in the processor system. An intelligent DSP
controller with collaboration of radix-2 butterfly makes the FFT calculation possible

due to the supervision of data path. Furthermore, the FFT calculation process requires

63

K
. - jare . . .
that the twiddle factor terms (of the W¥ =& ¥ type) be available in some time,

where & ranges from 0 to (N/2)-1.

Figure 4.5 shows the internal schematic of the pipeline butterfly algorithm
with the parallel architecture whereas Figure 4.6 shows the implementation view of
the butterfly architecture. To improve speed calculations in the radix-2 butterfly
algorithm, the pipeline registers are located after each addition, subtraction and
multiplication blocks. Hence, the pipeline butterfly algorithm keeps the final result in
the register to be transferred to the RAM by the next clock cycle. In addition, the
parallel architecture splits the data in real and imaginary format and increase the speed
of FFT calculation by 50%. This radix-2 FPP-FFT algorithm is exactly executed after
(N/2Log,N)+11 clock a pulse which proves the improvement in compare with
conventional radix-2 FFT processor. The 11 clock pulses delay is created by 11
pipeline registers in adder, subtractor and multiplier in a serial butterfly block.
Additionally, parallel design of the FFT algorithm decreases the calculation time

significantly.

Result1_Roal

Pipel

reoxzindu)
s1siboy

g
g
arsiboy s01siBoy

» i
Pipeined noating point || & ‘subtractor Resultz_Real
maltilior 3
nput_Roat H v ﬂ
s g
Pl
[
B S I PP I
- s multiplier 3 ‘subtractor | Real Part
H g g
N
Piotined H
¢ foat - esult1_imaginary
g
By E
g & 2
I @ Pipelined &
> g] ‘Subtractor T sulz_maginary
g multiplier 2 g
Inputt_imaginary E] — ‘ W
g y
- g
g
5 § ? E
H H muttipler H [adder E Imaginary Part
<

Figure 4.5 Proposed Radix-2 butterfly structure

64

—=pileATINO™d A" ans Aeuibew

ol sapun~d~A~qns seuiBew
oy Ian0™d A "qns Aseuibewy

@—iinsai 6 A qns Kueuew

—pileATIN0™d"A"ppe Keuibew
—=nolIopun~d K" ppekseuibewy
oy 1A0™d A ppe ueuibew)

I"d"A"ppe”/

Imaginary_sub_y_
p_add_sub

Fo

S9

A[3Ionnq g-XIpel JO 2Injod)IyoIe [RUIU] 9'f 2INS1]

alqeus ¢

q nduid A"ans™/

e indurd A qns AUy Beujme—

Imaginary_sub_y_
p_enable

~d~A"ppe~/

k|

& induid” A" ppe” Areuibewi=

ndui"d"A"ppe”A

"dKans A
pileAIn0™d A~ qns seuBew

PllEATIN0SINW™ppe~Aseuibew)

=moy 3apun”sjnw”ppe Aieubew
—=moyIan0 i ppe KieuiBeuw

Imaginary_sub_y_p_enable=—o

ISt
Cllme

Kejop
e indurd K gnsKreuiBew|m—g d A

ISt
Cllome

=0y s3pun"ZInui KseuiBei=
=0l TI3N0ZINW s uiBem—
2w/

Iqeus” sinw ™ ppe” Aeuibew| =

I Indui"sinwppe” Areuibew =

{

add_sub

Imaginat
add_y_|

o

°

“sinwppe A

€ jnduisnui"ppe A

leAT N0 Zinw Ay Beuwi—

o induzinui-Keubewg b

Znu
Leminduznueubewr® € £

P
3
o

2
5%

9|qeus ¢

E a1qeu aeus ©

5™ nuAeuibew| siceus Y

PIIEATING™ L N AJeuBeL i
=0y "19pun” jnwueuBew
oy TIaA0” W AseuBe—

add_sub

i

=0 indui™ InwKreuib b7,
[nU R uBew—g A

e indumnwAeubew—@ BX

The radix-2 butterfly unit is responsible for calculating the complex butterfly

equations.
e ad — dooosed | TAPE vt (4 1)
Uui._ w1 — b_ WL L T F¥ A~ Jl'._ [224 .
gutnut? = inputl — W* X input2 4.2)
outputs = inputl — W™ X input2 .

To calculate the butterfly equations, it is necessary to initiate the RAM. An external
processor loads the data in the RAM in bit-reverse format. As shown in the Figure 4.3,

the radix-2 butterfly unit is designed based on DIT-FFT architecture. If
outputl = X, +iY, , output2= X, +i¥,, and W' =X , +i¥, inputting into

Equations (4.1) and (4.2),we have:

Lo 1orrr — I 1w wewr L LAY §) W sl IR ANRVE ¢ 1
Ko TV = (8 T Ak X =V o XY i TV T & XY+
T ;o
¥ o X X0t
W t2r]
- s w3
v L =V _1IV w@ oV w1l
Mpg2 T &l p2 L1 gk A7 Lok S~ Li2)]
s ey o wewr oar e w21
TLif.a — LAk A Y., T 1.k ANt
il AW i2 W 254

Thus, each butterfly requires four multiplication units (two for the real and two for the
imaginary) and six addition units (three for the real and three for the imaginary part).
If the above equations are implemented using fixed-point calculations, the error is
expected to be high due to round-off, overflow and coefficient quantization errors
(Ifeachor & Jervis 2002). Thus in order to reduce the error as well as to achieve high-
resolution output, the floating-point adder and subtractor are used to replace all the

fixed-point adder and subtractor.

66

4.2.3 Proposed Floating Point Adder/Subtractor

The performance of the butterfly is greatly depending on its arithmetic units. Hence,
this section will emphasize on the structures and focus on the design and
implementation of efficient high performance floating-point adder/subtractor for the

FFT algorithm.

By taking into consideration the previous research for the floating-point
adder/subtractor, new architecture is proposed to function in arithmetic unit. Based on
IEEE-754 standard (1985) for floating-point arithmetic, 32-bit data register is
considered to allocate mantissa, exponent and sign bit in a portion of 23, 8 and 1 bit
respectively. The advantages of this adder are that (i) the bias power is applied to

complete the calculations and avoid using unsigned values.

Additionally (ii) the floating-point adder unit performs the addition and
subtraction using substantially the same hardware as used for the floating-point
operations. This minimizes the core area by minimizing the number of elements.
Furthermore, (iii) each block of the proposed floating-point adder/subtractor operate
the arithmetic calculation within only one clock cycle that results high throughput and

low latency for entire proposed FFT processor.

Figure 4.7 shows the new structure of the floating-point adder when it is
divided into four separate blocks. The algorithm of the proposed floating-point adder

is presented in Figures 4.8 and 4.9.

67

89

I1oppe jutod-3unjeo(y Jo weISerp onewayos AL, /' I3

Hnsay
s

PlIEA JInsay

abejs azijewioN

|
K

‘

Pipeline Register
T

abejs
08qnS / PPY

1
Pipeline Register

abejs Juawubly

-

Pipeline Register

K—

abeys asedwo)

KT—

&

£

sinduy

¥2012

plEeA

Power_A < Power_B Power A Power_A > Power_B
Power_B
3
SHR Mantissa_A H SHR Mantissa_B
Power_A <= Power_A + 1 5 |Power_B <= Power B+ 1

Operation

L] L

Subtract

g 1emod

Subtract ADD
Operation

[E&Mantissa_Result <= Mantissa_A + E&Mantissa_Result <= Mantissa_A +
not(Mantissa_B) + 1 Mantissa_B

Mantissa_Result <= not(Mantissa_Result) + 1
Sign_result <= not(Sign_A)

No

Mantissa_Result = 0

Result is Yes
normalized

No

Shi Mantissa_Result
Power_result <= Power._result - 1
Shr E&Mantissa_Result

Power_result <= Power_result + 1

Figure 4.8 Floating-point adder algorithm

69

owubly

essnuen Bunoesans /Buppy

Burziieurion

69

Compare_Result <= Power_A - Power_B

N
° , Result <0

Shift rlgh! Mantissa_B as much as

Power_resun <= Compare_result

esult

Shift rlght Mantissa_A as much as
‘ompare_Result)
Fower_result <= not(Compare_Result) + 1

No

B®ADD _SUB =0

Sign A ®Sign

E&Mantissa_Result <= Mantissa_A +

E&Mantissa_Result <= Mantissa_A +

Mantissa_| Result <= not(Mantissa_Result) + 1
A)

ign_result <= not(Sign__

Yes

Result is

normalized.

Shl Mantissa_Result
Power_result <= Power_result - 1

[ore |

not(Mantissa_B) + 1 Mantissa_B
N
© _Mantissa_Result =0
Yes
ve
s E

No

Shr E&Mantissa_Result

Power_result <= Power_result + 1

Figure 4.9 Optimized floating-point adder algorithm

70

obe3s aseduio)

Juswubly

esspue bupoesqns / BulppY

Burzieuson

The purpose of having separate blocks is to share the total critical path delay
into three equal blocks. As discussed before, these blocks calculate the arithmetic
function within one clock cycle. However the propagation delay can be associated
with continuous assignment (Ciletti 2003) to increase the overall critical path delay
and for the slowing down of the throughput. Hence in this design, the effort is taken to

reduce the delay for the arithmetic calculations.

Based on combinational circuit design, the output of each stage depends on its
input value at the time. The unique structure of this adder enables feeding of the
output result in the pipeline registers after every clock cycles. Hence, the sequential
structure is applied for the overall pipelined add/subtractor algorithm to combine the
stages. The processing flow of the alternative floating-point addition/subtraction
operation consists of comparison, alignment, addition/subtraction, and normalization

stages.

a) Comparison Stage

The comparison stage, which compares two input exponents, is shown in Figure 4.10.
This unit compares the exponent 4 and B and gives the result of the next stage. This
comparison is performed by two subtractors and the result is declared by

compare_sign bit.

The internal architecture of the comparison stage with the consideration of the

minimum gate cell used is illustrated in Figure 4.11.

71

Power_B Power_A Power_B

Power_B — Power_A

Mantissa_A Mantissa_B
Sign of Result
Power_A — Power_B U U
1 0 / 1 0

u Power_B Power_A
Compare_Result u U

1 0
Multiplexer

I

Aligned_Power

Mantissa_To_Align

Compare_Sign

Figure 4.10 The schematic of comparison stage structure

sign_bit
(P @ aligned_power
r N\
power_a ©-
power_b Q-
|-@ compare_result
sign_bit
sign_bit
mantissa_a @]
—@ mantissa_to_align
mantissa_b @ 0
sign_bit

Figure 4.11 The internal architecture of comparison stage

72

b) Alignment Stage

While the effective operation is determined by the components, the
comparison stage and alignment stage lead us to align the mantissa and exponent
accordingly to warrant having the same exponent in two operands. The significant
point is to design the function so that all calculation performs within one clock cycle.
The basic operation of the aligned mantissa and normalized block is ‘shifting’. Every
shifting needs one clock cycle which causes huge propagation delay to align 32-bit
operand. Hence, the advanced algorithm is designed to avoid having high latency on

aligning stages.

According to the data result by the comparison stage, the alignment stage
shifts the mantissa and transfers it to the adder/subtractor stage. The number of
shifting will be selected by the comparison stage output. However every stage of the
proposed floating-point adder algorithm is executed within one clock cycle. Figure
4.12 illustrates the alignment stage structure whilst the internal architecture is shown

in Figure 4.13.

73

<)

S

S

S

S

S

8

ISY

S S o

S 2

% <

= 55§

o 2 =2 =2

2 = =

= 3 &

A Imlmlg’)
S P 5 o 0o
S 1
S & S o 9o
8| > > >
S = § § §
S & S 2 3
S 2 2 =2
S S < =
S I =R N
S = SIS
12 0,

2 1
" i Compare_Result
Multiplexer

Mantissa_A

Mantissa_B

Compare_Sign ‘ ‘

0 1
Multiplexer

NG
A} Multiplexer

Aligned_Mantissa_A Aligned_Mantissa_B

Figure 4.12 The schematic diagram of the alignment unit

74

sign_bit

{

N

Zero

—@ shifter _decoder_out

_align
[]

mantissa_to_ali

Figure 4.13 The multiplexer architecture of the alignment stage

c) Addition Subtraction Stage

A model for the proposed adder/subtractor unit which can perform in the floating-
point adder/subtractor structure is presented in this section. The major requirements
and structure to achieve this aim are described and algebraically verified. In general,
the adder/subtractor unit sacrifices a large space of the wafer and power consumption
to obtain high speed especially in the floating-point data structure. Furthermore, it is
necessary to use additional execution time and hardware logics for the renormalization
in the next stage. Thus the performance improvement and cost-effective design is

achieved by optimizing the component accordingly.

75

The proposed design is implemented to calculate both the positive and
negative mantissa by taking complement format. As shown in Figure 4.14 and 4.15,
there are logic gates involved with the stages which cause higher delay propagation

through the circuit.

Not(Mantissa_B) Mantissa_B

1 0 Sign_A
Multiplexer @ Sign_B
ADD_SUB

Carry_in

Mantissa_A

Sign_A

Sign_Result v
Carry_Result ADD_OR_SUB

Mantissa_Result

Figure 4.14 The schematic of addition/subtraction unit

As shown in Figures 4.14 and 4.15, the smart algorithm is designed for
add/sub unit to utilize two’s complement for the operand if it is required and
combined addition and subtraction in the same hardware block diagram. In addition to
save the power consumption, the proposed architecture offers power savings due to
the simplification of the data paths. By ignoring the shifting blocks and combining the
adder and subtractor the power-effectiveness in the overall system is significantly

reduced.

76

LL

QINJ0JIYOIE JIUN UOTIORIIGNS/UOIIIPPE AU G ' 2InS1g

ynsai”ubis e-ubis _ _
JInsas”A1leo qns—Jo ppe
(0] (0] ans”ppe
3 O
2
@ -ubis
_% \ Q : -
g B
2 N 2
I 5 5
o3 |1 e-ubis
3 _ _\
s 0
- +
+ Mg essnuew b
JInsaJ” essijuew
dwae) }nsal” essiuew
by g~ essiuew paubieTjou _ _ O
g essiuew paubie

e~ essijuew” paubie

In Figure 4.15, if carry result is equal to “0”, it means the mantissa_result_selector
output is dependent on carry in. The mantissa_result temp will be selected if the
carry in is equal to “0” where the mantissa result temp 2’complement will be
selected in vice versa situation. The output will be mantissa _result temp

automatically if the carry_result is equal to “1”.

The Sign_result output is dependent on the sign_a and sign_b. This means that
if the carry result turns to “0”, the sign_result will be selected by the carry in. In
addition if the carry in is equal to “0”, this means that the sign_b is positive and the
sign_result will be chosen by sign _a. The carry in value is “1” with sign b is

negative and sign_a which will hence clarify the final sign.

d) Normalized Stage

Floating-point numbers are generally stored in registers as normalized numbers. This
means that the most significant bit of the mantissa has a non-zero value. Employing
this method allows the most accurate value of a number to be stored in a register. For
this purpose, the normalized stage is required. This unit is located after the add/sub
stage. The output signal representing the add/sub block leads to zero digits of an un-
normalized result of the calculation operation. The normalized block ignores the
digital value of zero from the MSB of the mantissa and shifts the mantissa to imply

value of one in digital as MSB in mantissa.

Figure 4.16 shows the internal structure of the normalized stage. In this
architecture the multiplexer with different figures is replaced with the shifter to avoid
propagating delay all over the system due to the shifting section. However this
structure still creates certain delay but it compensates the significant number of

shifting delay in 23 bit mantissa and speed up the system calculations.

78

Mantissa_Result Power_Result

Mantissa_Result

‘ Carry_Result

N
Subtract Normalizing Add Normalizing Block
Block
N\
ADD_OR_SUB % N/

1 0 X1 0
Multiplexer /g Multiplexer

/S

Normalized_Mantissa % Normalized_Power

ynsay~ublg

1 0
Multiplexer

Normalized_Result

Figure 4.16 The schematic of normalized unit structure

In this structure sub normalized mantissa, sub_normalized power,
add_normalized mantissa and add normalize power are calculated separately and
they are transferred to the last multiplexer. The result will be scaled depending on the

add _or_sub control pin and outputted to the next stage. Figure 4.17 illustrates the

internal architecture of normalized unit in detail.

79

normalized_result

t

08

JIUN PAZITEWLIOU JO AINJO)TYIIL [RUIAIUI O], /] ' oInS1]

qns—Jo ppe e
ynsas~Aued
amod ™ pazijewlou” ppe
Insa " Jamod:
©
\—\— ynsal”Aues
0
uew ™ pazijewuou” pp
: Ces 1-asm>
wmm_«:wE\.owN__wE_ocln:ml— pazijewlou” essjuew gns —
N
N
4
022 o:ze
Hli‘_lev— 0's¥ QEQI::m+Immm_Em_>_ T«_:mw_\u nueu —Q
lomodpazijewlou gns
0:L
o

ynsal 1amod

qns 10 ppe

ynsai”Aued

" essijuew

d ynsal

NS~ Jamol

e) Combination of Floating point Adder/Sub Unit

The combinations of the comparison stage, alignment stage, addition/subtraction stage
and normalized stage as sub-units of the proposed pipeline floating-point
adder/subtractor provides the fast efficient pipelined arithmetic unit to achieve the
minimum latency for arithmetic calculation. The adder architecture is converted to

pipeline architecture by locating the I/O pipeline register in the circuit architecture.

Figure 4.18 shows the input/output (I/O) structure of the proposed pipeline

floating-point adder/subtractor.

—
Valid_Result

Valid

—>
CLK ——»
Pipelined floating point C

ADD_SUB
adder / subtractor Result

Input_B

Input_A

Figure 4.18 I/O structure of the proposed floating-point adder

Figure 4.19 indicates the architecture of the proposed combination pipeline
floating-point adder/subtraction when the single precision is applied. The output of
the sequential adder will appear within four clock cycles when the input operand and

clock are asserted to the system.

81

f sut ¢

3

3
S
g

1
0
peor

3

resut

e

peol

3 & §‘
i g |
2 5 4

L H
o s & 3

S % £ wnseriemed
T 1 T T
K <]
¥ g, H
E £ g
8 g §

_stage

Add_sub_stag

ay.esul fmcany_rosu

nom_signed_power

| —signed

manéssa b

Aligning_stage

so_bfmalgned,

add_sub_algned_power

g onpare s

o)

n_mantissa_to,_a

BEE

mantssa_to_algr-

Y

sign_signe_poner

Compare_stage

1y s

é‘

s

manissa

b

add_sub_add_sub

a0

a4,

g2

501 2

sin.

pua

w2 =
e | & e
g peoy

sign.t

Figure 4.19 The proposed pipeline floating-point adder/subtractor architecture

82

4.2.4 Proposed Floating —Point Multiplier

The number representation is based on the same principles as the single-precision and
double-precision formats defined by the IEEE 754 standard. However, the multiplier
shown here uses a single precision normalized mantissa and eight-bit exponent only.
The project in hand has developed the architecture for partial-product reduction for the
IEEE standard floating-point multiplication, leading to a structured high speed
floating-point multiplier. The shortening of the data path is desirable because they
require shorter wires and therefore support faster operation. The former approach uses
a reduction scheme based on combination unit and connects it as parallel architecture.
Implementing floating-point multiplier is easier than floating-point adder since it does

not require alignment stage.

The processing flow of the alternative floating-point multiplication operation
consists of multiply stage and normalized stage. Figure 4.20 shows the overall block
diagram of the proposed multiplier whist the flowchart of the multiplier structure

constructed is shown in Figure 4.21.

2 FF b
g ﬁg g
5 3
8 v &
5
g
k7
2 & =
S Multiply Stage [T E [T Normalize Stage [> 3
£ & &
3
&
a
N

Figure 4.20 The schematic diagram of floating-point multiplier

83

(start)

A 4

Mantissa_Result <= Mantissa_A X Mantissa_B
Power Result <= Power A + Power B
Sign_Result <= Sign A @ Sign B

A 4

Power Result <= Power_Result - bias

Mantissa_Result is
normalized

Mantissa_Result = 0

y

Result <=0 Shift left Mantissa_Result
Power Result <= Mantissa_Result - 1

abejs Ajdpinpw

abejs azijewioN

(END

Figure 4.21 The flow chart of floating-point multiplier

84

As it is clear in the Figure 4.21, the bias power format is applied to avoid having
negative exponent in the data structure. Additionally, the multiplier is pipelined, so
that the initial result appears after the latency period where the result can then be
obtained after every clock cycle. Figure 4.22 shows the schematic symbol of the
proposed floating-point multiplier. This multiplier offers low latency and high
throughput and is IEEE 754 compliant. This design allows a trade-off between the
clock frequency and the overall latency by adding the pipeline stage.

Valid ———» L
Valid_Result
CLK ——» -
Pipelined floating point :
Multiplier Result
Input_B
Input_A

Figure 4.22 The schematic symbol of the proposed floating-point multiplier

a) Multiply Stage

The floating-point multiply stage is designed to perform single precision
multiplication represented in the IEEE 754 standard. The multiply stage consists of
the three units as sign, exponent and mantissa which work in parallel. In the multiply
stage while the exponent of input operand accumulates, the mantissa will multiply

consequently. The output sign is the XOR of two sign bit input.

The internal architecture of pipeline floating-point multiplier is shown in
Figure 4.23. Note that the multiplier uses the bias exponent when encoding the result

of multiplication, as long as this does not lead to a loss of precision.

85

input-a =0

input-b =0

. sign-a power_a mantissa_a
input-a

o—_ T |

input-b sign-b power_b mantissa_b

]

input-b =0
extra_bit D

extra_bit D

input-a I=0

input-b =0

mantissa_a
mantissa_b

2
Yes=1

ower_sum [8] =

power_sum [8] =0 |S=]

power_sum [7] =0

?

power_sum[g] =0 Yes =1

No=0

?
power_sum [7] =1

power_sum [6:0] =0

[1—

masntissa_temp ?
[23:0] =0

I

l Jnsas"ubis

L[o:gz] dwsay essnusew 1 [0:8] wns™1amod

l yapun

Figure 4.23 The schematic architecture of the proposed floating-point multiplier

86

b) Normalized Stage

The second stage of the floating-point multiplier performs the normalization of the
output obtained from the first stage. The normalization is the last and most
complicated part of all the stages. This unit initially calculates the amount that the
mantissa needed to shift to the left. In order to avoid the delay propagation in the
circuit, the multiplexer is designed to perform the shifting within one clock cycle.
Figure 4.24 illustrates the structure of the normalized stage in detail. Furthermore, the
architecture of the normalized stage and the overall pipelined floating-point multiplier

are given in Figures 4.25 and 4.26 respectively.

5 5
= 2
2 2
o o Power_Result 1
E D
7] %]
g g
Q0 Power_Result
o
‘ ‘ ‘ ‘ MSB of Mantissa_Result ‘ ‘
1 0 / \ 1 0
Multiplexer - . » Multiplexer
Normalized_Mantissa g
Q
3
P g
000 é D
3
S
1 0
Multiplexer

Normalized_Result

Figure 4.24 The structure of the normalized stage in the proposed multiplier

87

88

Jorpdnnw pasodoid oy ur 98e)s pozijewIou Y} JO 9ININIYDIR O], G7'f 9InS1]

Q
- °
MOj} 19no - m [0:8l4omod zabeys
2 5
@ o
[H
g g
g
=
[0:8] ynsas Jamod b
| =ON
0=S9A
0 = [g}]esspuew™ zabejs
&
[1:z1]essnuew zabels
Jnsas-ubis
_ __ = “ [0:11] ynses"esspuew _o”N\:
[GH] [0:2]) essiuew” gabeys

JnsaJ”essnuew JInsas Jemod

I =ON
0=S9A

0 = [gl]esspuew™ zabejs
&

JinsaJ"ubig ubis~zobejs

MOJ} Japun @

L =ON
0=S0A
0 =papun gabejs
&

68

1o1pdnnw pesodoid oy Jo 91M09)1YdIE OJBIPIWLIAIUL O, 97 { 9InS1]

-3

- =
228
— - & Japun” zebi —
MOJ} JapUN @=—q oy sapun [o:z1] e abess I 4 n vinwbay —Allt%.s Lo epun
328
L% a
[0:z1] essnuewzabels Allo“N:mmm_EmsummmsmIIEAl [0:21 lesspuew™| o6 {1 1:cz]dwey ess) l0:c2] d
——-0 g-ndui
\SOCI‘_w>O T Moy 1eno
obejs ozijewioN - abejs™Adiynw
22 8
2% 2
[0:5] somod~zaBels {0:glsomod " zab " FALIEY] —AIIS gliemod | [0:g]wns ™. d [0:8] wns™1emod
——0 e-jndu
228
[0:02] ynsa) @=——q [0:0zlunse:
ubis~zabe)s 6is™z0b LInwBes 61| 96 ub Wnses"ubis
-
223
pleA Ino @ "o { opinuwibe: JE s|qeus
1 K 0 a9

4.2.5 Controller Architecture

The smart controller unit significantly affects the efficiency of the 1024 radix-2 FPP-
FFT processor. Furthermore, small die area can be achieved by designing high
performance controller for the FFT processor. In this architecture the controller needs
is designed with the pipeline capability. The global control unit provides the control
signals to the different parts of the FFT processor. Additionally, several paths are
switched between the data input and data output in architecture design and the data
path is controlled. Figure 4.27 shows the block diagram of controller and its

connections with others FFT unit.

Output Data Valid

RAM | Butterfly processor

Input data valid

Write RAM

Read ROM
Controller ea

Counter

Address Generator

> Result Ready

Controlling Signal

Figure 4.27 Block diagram of controller unit

To calculate 1024 point radix-2 FFT processor, it is necessary to have log,N
stages which are 10 stages for 1024 point data. Furthermore, each stage calculates ;

butterfly that is 512 butterfly calculations in this design (Figure 3.5). Hence there are
two counter in corporation with the controller to count the stage number of the

processor and the number of butterfly calculation. The proposed intelligent controller

90

with the processor architecture of only one butterfly to reduce power consumption and
area, combine the counter and address generator to produce the required address and
locate it in relevant position for further radix-2 calculation. Figure 4.28 shows the

smart controller state machine which controls the proposed radix-2 FFT processor.

There are several control signal pins in the smart controller to clarify the
presence of correct output after finishing the current cycle of FFT calculation. The
control signal pin transfers the information through the RAM, ROM, butterfly and
address generator (Figure 4.27). The proposed design controller is operating using
state machine. The controller unit was detaied into sub-blocks including the sequential
and combination units. Figures 4.29 and 4.30 illustrate the sequential and combination
unit separately. Sequential unit is responsible of updating the state of the processor
whereas the combinational unit detailed the states individually. The state machine
controller waits for processor core to complete FFT calculations to write data points to

the memory.

91

ysiui4
Juone|nojed
Asy
aulyoew
djels
abeigTIxeN

JIUN 12[[0NU0D J10J WeISeIp J00[q AuIYdRW JelS 87t 2INS1]

6

Apeas jnsay

SMUsIULY
UM~
abejs jo pua

UM e|qeus JayIuS
M J3junod

A9 ¥20l

obejsTj0 pua

J13)unod
abejg
woy

uonEe|nojed
144

pi~s|qeus plea
ssaippe

13)Unod Jojoe4 e1ep svenul
obeis Jeed 184/ il

A9 ¥2ol

ajejgussald -—

€6

JIun I19[[0NU0D JO WiiLIos[e [enuanbag gz 23]

les|n AlID

0 = 9je)g M AluQ

&M AluQ =
aje)s jJuasaid

I = 9je)g ajum—AluQ

0 = 9)eIS ajeNdlen

2aje|nojes =
aje)sTjuasaid

ajejg IXaN
= 9)e)S Juasaid

SOA

| = ajes ajenoles

oN

josoy = 9je)g Judsald
SOA

J

l¢—— 9je)S T IXON

v6

JIUN IO[[OIIUOD JO WIILIOS[E UOTRUIqUIO) ()¢'f 2INS1]

ysiui4 = 3je}SIXaN |-
si941o
ysiuid = ojeygIxeN [
ysiuld = 3Je)S IXON |
ysiui4 = ajejgTIxaN - —
aum Aluo
M Aluo P
= 9jeIsTIXeN -
aum—Ajluo
= ajejsTIXaN
M Aluo
=218 XN ajenojes
aje|nojed - 1959y = ajelgJuasald
= ejeIsTIXeN T saA
aje|nojen
= 8jeIg IXeN

Based on Figure 4.29 and 4.30, the reset state is rich every time the reset input
is asserted. The following calculate state is reached after the reser input signal is
removed. At the calculate state, the following actions can be requested: initialization
of memory, result reading of memory or calculation of a new FFT. The memory
initialization is done by putting the data and address into an appropriate bus and

asserting the proper input read signal.

The input data and address are latched into a processor and the data is stored
into an internal memory at the bit reversal address. The results can be read through the
request for the read data procedure. This is done by putting the address to be read and
asserting the read input signal. The requested data is read from data bus. The FFT
process is calculated by entering to the calculate state. The controller changes the state
to the finish state when the processor finishes the calculation to indicate the

processing is over.

4.2.6 Address Generator

The address generator has an important role in the radix-2 FFT computation, since it
delivers for each computation stage, the addresses of the input/output data in an
appropriate way. The main objective of the read/write address generator, which is
treated as part of the I/O system, is to provide a block of memory addresses in or from
which the introduced butterfly’s input data or the processed butterfly’s output data is
collected from or stored into the specific provided memory address locations. This
unit grants memory address to the processor, so that it can access the right positions.
To explore the symmetry of the time-decimation process, the calculation flow requires
that the data access do not occur in a consecutive way. Therefore, the actual address
depends on the current stage of computation which implies that many counters are

needed. Address generator architecture consists of three sub-blocks:

e ROM address generator
e Read address generator

e Write address generator

95

The ROM address generator produces the reading address for #* in the ROM module.
The reading address represents the address of the twiddle factor which must be taken
to feed the butterfly structure. This address generator is designed to select the specific

twiddle factor for the butterfly calculations.

Meanwhile, the Write address generator is designed to save the result of the
butterfly calculation in the proper location in the complex RAM. The proposed smart
address generator is designed to provide the correct result for the next stage of the
butterfly in 1024-point radix-2 FFT calculations. The architecture of the Read address
generator is similar to the Write address generator. The butterfly will save the data
result after reading from the certain address and input it to the butterfly, in the
previous address line. The reading RAM select control signal ensures the correct
location of data in the complex RAM. Figure 4.31 illustrates the architecture of the

address generator in detail.

()
Address Counter RAM Address 1
clk RAM Address 2
Reset Read Address Generator End of stage
Stagd Counter_Enable RAM select RD
clk ROM_Address

clr

ROM Address Generator
Counter_inc

ROM_stage_counter_enable Finished_reading

clk RAM Adress 1

RAM Address 2
clr

End of stage
Write Address Gnerator o

Finished write

Counter_inc

Stage shifter enable RAM select WR

\ J

Figure 4.31 Internal structure of address generator unit

96

4.277 Memory Modules

The memory modules are used for the storing input and output results with 1024
complex long-words of 32-bits registers. The implemented architecture for the
memory is shown in Figure 4.32. The capacity of the memory is 1024-point data for
real and imaginary data. In our implementation, we only use single shared RAM
architecture and this implemented as a single-chip FFT processor. The proposed
design makes the radix-2 FFT architecture entirely independent of the type of FPGA
board since it has on board memory system. Furthermore, each complex RAM has the
capability of saving real and imaginary input data separately. Figure 4.33 shows the

detailed RAM unit architecture as the component of the wide RAM modules.

As illustrated in the Figure 4.33, the memory module is programmed with a
dual-in-line header to provide the appropriate location for storing input and output
result in each stage consequently. It is composed of two delay memories and
multiplexer which allows straight through or crossed input-output connection as
required in the pipeline algorithm. The memory unit also contains the controller trig.
The controller which is connected directly to the memory modules takes the
responsibilities of transferring data through the memory and arithmetic blocks
ensuring that no data conflict occurs within the complete process of FFT calculations.
This is another advantage of proposed smart memory modules, by which data can be
read and write in the memory simultaneously without sending bubble data in the FFT

processor.

97

Input2

Input1

Write_select

Writing Add

Writing Addi 1

Reading

Reading 1

Read_select

<
(3
\{
Complex RAM
o A
(
a
-
©
{ \ §
N\
Complex RAM
)
Ty
3
s
3
s

_k\o

Figure 4.32 Internal structure of RAM unit

98

—

output1

—

output2

Complex RAM
Real input >
. Dual port RAM
Writing Address » (Real) >
Real output
Reading Address >
A
Write
Y
N
Imaginary input
Dual port RAM N
. >
(Imaginary) v
Imaginary output

Figure 4.33 Internal structure of complex RAM unit

Beside the RAM modules, there is an on-chip ROM memory, which stores
sine and cosine coefficients. Since in trigonometric circle, amplitude of sine and
cosine in each quarter circle is the same and they are different only in sign, hence the
intelligent designed controller change the sign of twiddle factors to the relevant
coefficients in order to decreased system complexity. By storing only half of the
coefficients from 0 to N/2, the hardware complexity of the proposed FFT processor
will decrease as well as power consumption and area. Therefore only N/2 position
memory is required. The ROM used in proposed 1024-point FPP-FFT architecture
applies look-up table architecture. The content of the ROM block is W* coefficient.
Each W coefficient is a complex number and it has two parts comprising of real and
imaginary side. Hence the ROM block has two individual outputs to split complex
coefficient into two parts. One output has been allocated for real and the other for the

imaginary part.

99

4.3 ADVANTAGES OF THE PROPOSED PROCESSOR

In this section, the advantages of the architecture of the 1024-point rdix-2 FPP-FFT
processor will be discussed. The technical advantages will be analyzed in the next
chapter. The design architecture of the proposed 1024 point radix-2 FPP-FFT
processor made use the standard components in the library where the result was
optimised accordingly. However in order to improve the processor, further speed and
power optimization by using the modified architecture of the processor were

implemented. The new architecture is introduced by the following methods:

e Speed and power improvement by design and implementation of novel fast
floating-point adder and multiplier.

e Speed and power improvement by combining the parallel pipeline architecture
in the proposed radix-2 butterfly design.

e Obtain high resolution by applying the floating-point architecture with the
competitive factor such as speed, power consumption and die area for FFT
processor in compare with fixed-point FFT processor.

e Design complex dual RAM for single-chip FFT to make the design relaxed
depending on the different types of FPGA board.

e Storing the input data and output data in a single complex RAM to reduce the
hardware complexity for the conservation of the power consumption.

e Storing only half the size of the twiddle factor (N/2 factor of W*) to reduce the
hardware complexity in the ROM stage.

e The implementation of the combination of each individual component with the
same latency and by connecting it to the sequential stage as the pipeline
architecture improved the speed significantly.

e Designing the new equation for the latency in the proposed FFT processor.
The data will execute storage in the RAM exactly after (N/2logl))+11 clock
cycles.

e Designing a smart controller to arrange the overall FFT processor within a

single parallel butterfly to reduce the power consumption and die size.

100

4.4 SUMMARY

In this chapter, the proposed 1024 floating-point parallel pipeline radix-2 FFT
processor architectures were designed and implemented. All the components of this
processor were evaluated separately and the algorithm has been designed. The new
algorithms were explained and performed to increase the resolution and throughput of
the FFT architecture. The overall system was called single-chip processor with high
accuracy. The proposed design was implemented by the utilisation of the single
precision data (32-bit) where it is compatible to switch to a lower bit number. The
structural advantage of the proposed system was discussed in detail. The advantages

of the proposed 1024-point radix 2 FPP-FFT processor are sorted accordingly.

101

CHAPTER V

FUNCTIONAL VERIFICATION OF FFT SPECTRUM

This chapter starts with the conventional MATLAB simulation of 8-point radix-2 FFT
which will form as reference for comparison. The simulation will be expanded to
1024-point radix-2 FFT calculations. The next chapter will be followed by a detail
implementation of the 1024-point floating-point radix-2 FFT processor in HDL
language. In order to see resolution improvement, implementation of FFT floating

point based will be completed.

5.1 8-POINT FFT SIMULATION MODULE

An 8-point radix-2 double precision FFT processor system was modelled using the
MATLAB to allow various parameters of the system to be varied and tested. To
ascertain that the FFT processor functions correctly, it was simulated using complete
radix-2 arithmetic for 8-point FFT structure. By using MATLAB software, a model of
FFT processor including adders, multipliers and multiplexers was designed and
simulated. In practice, FFT computations are performed a one-dimensional array with
new values overwriting old values. The data is in bit- reversed format. Alternatively, if
the input sequence is in bit-revised order, the output sequence is in normal order. The
output will be screened out accordingly. Figure 5.1 illustrates the random input sample

given to the structural FFT blocks as real and imaginary.

102

=]

-

o]
B

e

5]

g
M

e

-

[s]
B
W

-

o]
&
oY

el

=]
c
@

a

[s]
1
]

0.2
Outs

[s]
c
23

e

03 Out17

0
£

A
=]

o]
5

a

[s]
5
I

a

-

£.2
n Out13

a

.

-

o]
5
o

5l

Q
E

=
=]

Figure 5.1 The input sampled data for 8-point FFT calculations

The data is injected into the 8-point double precision radix-2 FFT processor. There are
16 data (8-real and 8-imaginary) which are entered to the bus and will be changed as
bit reverse format. Figures 5.2-5.5 show the MATLAB simulation of the 8-point

radix-2 FFT processor using the butterfly structure. The internal architecture of the

103

processor is designed in detail (Figure 5.4). As shown in the figure 5.4, there are 3
stages for 8-point radix-2 FFT and each stage consists of 4 butterfly architectures. To
calculate 8-point FFT, 4 twiddle factors are used to complete the calculation. Each
individual butterfly unit by taking the relevant twiddle factor and two complexes input
calculates the radix-2 FFT equation respectively. The result will transfer to the next

stage for further FFT calculation.

Out2
Out?
o
0.4-0.9857i
Out5 0.4+0.4
0.4 -0.1657i
oue
0.4 + 0.1657i
OutT 0.4-04i
0.4 + 0.9657i
Outz
FFT - 0.4-0.9857i
Outs 0.4+0.4i
0.4-0.1857i
EiF)
outto
0.4 + 0.1657i
FFT D4-04
Out1
0.4 + 0.9657i
OutiZ
Outi2
Outis
Out15
Outi6
OutiT

Figure 5.2 Simulation of 8-point FFT processor (MATLAB Toolbox)

104

SOI

10552001d 41 Z-XIper jutod-g Jo uonenuils gVILVIN - €S nSL

aLno 8 __A./
1m0
gHng gel A./.
1m0
bLno baul A./
phn0
EHNG £al A./
eno |
Zung Zu
.‘l/ ZHnQ
(T b A./
Lm0
auno amul A./
onnQ
ang Ul
A./ ano
gng m__A./. [ooooweutisr | [o]
ang [ooooxsutisl | [o]
[ng t_A./ [o000 x=y [o]
g [
@ng m__A./. [ooooxsutisl | [o]
e [eooax=utsr | [zo-]
ang ol (o000 x=u lis) [o]
A./m:o N [wesa=utsl | [go]
2] ¥l A./ _
wng
o - [ooo0 %=y s} [o]
A./ o [os0z x=u lis) [eo]
02/8EFEOE0G6 0 o - [oopox=utisl | [o |
A./ [vesr==ulis) | [zo]
ang -
[ooo0 %=y s} [o]
(0] ¥ _—.n _

901

10ss0001d [4] Z-XIpe1 jurod-g Jo [eInjonms [euIdju] 'S 231
— e |

Slmeng

i

1 -+
. .l
3
nl + C)
A e
Add2 x
BR
BR
COo—1 L == n
B #
,—p WR . dd ¥R
e Wi "
a BW Multipler n
wi Add3 1l
-44 \

Figure 5.5 MATLAB simulation of butterfly unit in Radix-2 processor

Due to complete radix-2 butterfly calculation, the twiddle factors are injected
to the FFT processor. As shown in Figure 5.6, it is required to store twiddle factor in
the ROM. The next section explains how twiddle factors are calculated to store into

the ROM. As illustrated in Figure 5.4, there are only four different twiddle factor

zmn j

values in the 8-point FFT processor. To calculate twiddle factors, W = e & for N

= 1024 MATLAB software can provide the calculation.

107

Imaginary

i
0 400 600 800 1000 1200

Figure 5.6 Twiddle factor when N = 1024

Based on the computed twiddle factors, they are loaded into the ROM which is inside
the proposed radix-2 FFT architecture.

Although this representation of twiddle factor produces an additional latency at
the beginning of the FFT computation, at this particular instance, it could be ignored
during the analysis of latencies. After computing the twiddle factors and inputted it
into the FFT simulation structure, the 1024-point FFT processor will calculate the
Fourier transform and the final result will be stored in a separate file to compare it

with the implementation of the Fourier transformation result.

108

Presented is the 8-point double precision architecture. The project has been
moved onto simulation of 1024 radix-2 FFT processor. But due to the complex
structure, it will not be detailed the simulation structure. It is only showed the
simulation result of overall processor followed by VHDL implementation of proposed

processor for 1024-point radix-2 FFT in next chapter.

5.2 1024-POINT FFT SIMULATION RESULT

The MATLB software provides the output simulation of double precision 1024-point
FFT processor and the twiddle factors. To find the system resolution, the
implementation results are compared with the simulation output. The random input
data was tested for the 8-point FFT processor whereas the rectangular signal with
amplitude of 2 coded as a single precision floating point data for testing the proposed
1024- point FPP-FFT. Table 5.1 shows the MATLAB simulation output of the
conventional 1024-point FFT processor when N = 1024. Each number is represented

by real and imaginary parts.

Table 5.1 Expected MATLAB simulation results for radix-2 FFT processor

MATLAB FFT (x)
Input x(n) = 1024 samples

Real Imaginary

244 0
222.1080845 -86.46028488
163.4574705 -149.9863166
86.44938802 -175.7548947
13.94525101 -161.9378169

-35.05249811 -119.5011318
-51.77981999 -67.19575906
-39.7275488 -23.97775135
-11.78182712 -2.044340937
15.98247349 -3.230116609
31.04140023 -19.92463871
28.87413771 -39.69060396
13.51218305 -51.26607916
-5.614881197 -49.25132592
-18.75209068 -35.60650715

109

Figures 5.7 and 5.8 show the amplitude and the phase of the rectangular sampled
signal respectively when the 1024-point FFT processor is applied. As shown in the

figures, the sinc signal for the amplitude and linear phase are created to prove the
linearity of the processor and its stability.

)
»)

(A
a

250

r‘,

N
8

[
w
(=}

MATLAB FFT, N = 1024 samples

Amplitude

e ""‘-’

>
>

)
?
|

200
250 | 4
L00 |

<

“.
| ‘
|

0
50
4
e
F
o
0

100

150

Pl

Figure 5.7 MATLAB simulation of amplitude frequency response of

the rectangular input signal

The representation of a sequence by the transformation of the FFT processor is not

restricted to the given—sample response of a system but can be applied to any
sequence provided that the series converges.

110

N

b
in

=
Fy

0 4 |\ T T \ T \
II‘l 50 \l i00 1 is0 Z00 Q| A0 w (2,{?1:)'
R S W R \

=
—
.‘._.---O/ —*

-2

.

Figure 5.8 MATLAB simulation of phase frequency response of
the rectangular input signal

MATLAB

To control the internal calculation of floating-point radix-2 FFT processor, the
obtained by the proposed FPP-FFT processor needs to be compared with the

MATLAB simulation module was designed (Figure 5.9). However the final result

simulation as de facto and fixed-point radix-2 FFT processor
implementation result.

111

48!

aimonys eyep jutod Suneoyy Jo uone[nwis gV I1LVIA 6'G 2131

ELhEdsg

guoisBauc 3dA)| B18g

Juoisieaucg adh) B1B8g
ZLhEdag
4 pmauon
LS8 pepg

guoismaucy 3dA| B8

L LfEidag

guoissaucy 3di)| B18g

N
TLOEFELY

oLiEdsg

Lheid=sig

Input Signal with noise

PROPOSED FLOATING POINT FFT APPLICATION

Harmonic Measurement
Figure 5.10 shows the noisy input signal in time domain while Figure 5.11 illustrates

the frequency spectrum of input signal when floating-point FFT applied versus the
Figures 5.11 and 5.12 noise floor appears in high resolution floating-point FFT

As stated in Chapter 1I, we can apply the processor for harmonic measurement or
frequency response when fixed-point FFT utilized (Figure 5.12). As shown in the

power spectrum measurement due to its high performance.
whereas this noise appears as nulls in fixed-point FFT processor.

5.3
a)

i i ¥
i i i i
i i i i
I I I I
l | | |
- Bl L e +
| | _ | | | | |
| | | [| | | | |
i i i i i i i i i
i i i i S i i i
e w
| | [| | | | |
| | | | e L | |
T s e 2 A R
T | | | | ©
Lo o o==e Ll 11 __]
| | [| | | N
i 1 | i i i
I i —— 1 | I I I I
| | | T |
O D R IS ey o RV IS R =}
1] | -]]] I3
| | | | [| | |
i i i i i i i i
i i i i \\Mv i i i i
| | | T ! | [te}
i Bt Rty Rty el) S e R e
| | I B R | | | | |
| 01 | | |
| | | | | |
| | —_ | | | | |
e e e e
i i i i i i i i
I I I A/// l I I I I
| | | I | | | |
| | —— 1 | | | | |
e e v 7
| | | T | | |
| | —T | | | |
i i T i i i i
I I I i T I I
I I I I I L I I o
W ¥ ® N - o T oq % ¥ ®

time (milliseconds)
113

Figure 5.10 The noisy input signal in time domain

Frequency Spectrum

=
Fry
= g
k=i ©
o m | | | | | | | | | ~
I I I I I I I I I
T T T T T T —T— 3 & I I I I I I I I I
I I I I I I i | | | | | | | | |
I I I I I I I = mb | | | | | | | | | o
I I I I I I [— = oLl _l_______L___59
| | | | I i |2 h~4 | 1 1 | 1 | | | | <
e R R I (I T =Q < I I I I I I I I I ~
| =]
| | | | | | [= I I I I I I I I I
| | | | | | | = | | | | | | | | |
| | | | | | —_— = | | | | | | | | |
! ! | | | | [= = I I I I I I I I I o
i it it it I (I =19 = I I] L] I | | L (=]
I I I I I I I = 3 I R
| | | | | | — — | | | | | | | | | ~
| | | | | | [=} | | | | | | | | |
S N N E N R A] ,www‘ww =] ! ! ! | | | | | |
T i i i | | (i B | | | | | | | | |
| | | | | | — = | | | | | | | | | o
i i i I | —— n Lo LUl __L___%9
| | | I I I = > g i i i i i | | | | =
N R T E Y R IR I . —18 12) 2 | | | | | | | | | ~
T T I 0 | | T =™ o= -2 | | | | | | | | |
I I I I I I I 3 X m 3 I I I I I I I I I
| | | | | | = £ | | | | | | | | |
| | | | | | = P o > | | | | | | | | | o
Lol Ll ___L_________ [—— 5 O o e e < =)
[l I I | | | r— R - > | | | | | | | | | ©
I I I | | | = 5] = 2 | | | | | | | | |
					T = [}									
						3 m]								
A S A R R] =8 & =) W.														
]] i i			Q L @ I I I I I				o							
						= = = I L	L	I i	L					
I I I I I I — 2 L i i														
I I I I I I] =														
wwwww L Ll i _1—_18] I I I														
					— I I I									
					Aﬂ\MM - m									
— i ; — 9														
i T T T T — . I														
B F\W\MMIMMMM\% m i														
i] =										
I I I I I I —														
					[E— g									
					[m I									
b - L L L B B e —] Q														
			I I ——] o L											
I I I I I I = = |
I I I I I I P = |
I I | I I I T — |
I I I I I I — s I
o o o o o o o o — i
=) o B4 15} « - = I
. I
v
(5]
=
E (ap) apnydwy
F

Frequency (Hz)
114

Figure 5.12 The harmonic measurement of noisy signal with fixed-point FFT

b) Power Spectrum

At the same time, proposed 1024-point radix-2 FFT processor can be applied for

power spectrum measurement. Since the energy of the signal are expressed as:
(k)| (5.1

where X(k) is in frequency domain and x() in time domain.
It is important to note that 1X(k)|? is defined either as the energy spectrum when the
signal x(n) is of finite duration or the power spectrum if the signal is a periodic
sequence (Sen & Woon 2005).

P = T IX(R)I? (5.2)
The power spectrum is created by floating-point radix-2 FFT calculation to analyse
the frequency components of signals. The spectrum is adequate for spectral analysis
on the condition that the signal does not change its characteristics. For time-varying
signals, single block fixed-point FFT-based power—spectrum estimation is not suitable
for extracting or displaying time events since it is not accurate. Hence high resolution
floating-point FFT power spectrum block rises up to function. Figure 5.13 shows the

power spectrum of the signal x(n) when the high resolution radix-2 FFT processor is

applied.
Power spectrum
10 ; ; ; ; ; ; ; ; ;
" R R R R R R A
fgWEMMQWWWwMV\T | T | i | T
| Y I I I I | | |
|
LU i el it el i bty
I \“ I I I I I I I
I \“ I I I I I I I
e e S Rt S A S N
I I \‘ I I I I I I I
- I I I I I I I I I
% 5 e it e S
g | [} | | | | | | |
L R N R e e N R AR
i i i i i i i i
B - . | i | i
| | | | | |
I I . I I I I I
K r = i | |
| | | |
| | |
i I I
| | | |
-35 L L L L L L L L L
50 100 150 200 250 300 350 400 450 500

Frequency (Hz)

Figure 5.13 The MATLAB simulation of power spectrum using floating-point FFT

115

54 SUMMARY

In this chapter, the simulation result of the 8-point radix-2 FFT processor which
utilises-sMATLAB tools is presented, and then followed by the extension of 1024-
point FFT MATLAB simulation. The simulated FFT processor was examined by
rectangular signal as input signal. The frequency response (amplitude and phase) of
the sampled rectangular signal by using the FFT processor are given to prove the
stability of the processor due to the phase linearity. To stage realisation of the FFT
processor the individual block diagram was designed and simulated and a particular
model to perform floating-point data testing was considered. In order to find the
system resolution, the result of the FFT processor was stored. Later on, the actual
output data produced by the proposed FPP-FFT processor architecture will be

compared with the simulation result.

116

CHAPTER VI

IMPLEMENTATION RESULTS

Chapter V detailed the proposed algorithm as 1024-point floating-point parallel
pipeline radix-2 FFT processor. The hardware implementation of the algorithm will be
presented in this chapter so the FPGA and ASIC implementation of FFT can be
achieved. Figures 6.1 and 6.2 illustrate the framework of proposed FFT

implementation in detail.

As stated in the figures, first the RTL behavior description of design is
programmed and verified to proceed for FPGA implementation. The procedure is
continued by attaching the library cell and constraint file for ASIC implementation.
Later, the proposed designed is transferred to the gate level synthesis and elaboration
to complete post-simulation stage. The software tools such as MODELSIM and
NC-launch in Synopsys post-simulate the behavioral and netlist of the processor

respectively.

After post-simulation in front end VLSI implementation, we moved forward to
the back end implementation by 0.18 pm SILTERRA technology and 0.35 MIMOS
technology library. The netlist design with attaching the SDC constraint and 1O pad is
transferred to floor planning and place and route process to optimize the design and

achieve the specification. The implementation detail is shown in Figures 6.1 and 6.2.

117

Design Specification

—1 -

RTL Behavioral
Description

|

RTL Functional

Testbench

Verification

<

Standard

Cell
Library

Figure 6.1 VLSI Front end design flow of the project

FPGA
Implementation

RTL Synthesis

Constraint

|

Gate Level Netlist

l

Gate-level Simulation

<

Timing Analysis

<

SDC

To Back End

118

LIB. Library LEF. Library Netlis/tJ SDC Timing 10 Pad

Floorplanning (power
planning, core area)

|

Cell Placement

l

Clock Tree Synthesis

|

Detail Route

|

Timing, area and
power Optimization

|

(Optimization result >

Figure 6.2 VLSI back end design flow of the project

6.1 HARDWARE IMPLEMENTATION OF 1024 POINT FPP-FFT

In order to verify the functionality of the 1024-point FPP-FFT processor, the VHDL
code for the overall system was developed and downloaded to the FPGA board. To
realize the hardware for algorithm, Xilinx and MODELSIM- EDA tools were used to
synthesize and to simulate the design. In summary, the FPGA prototype processes are

listed in (i) and (ii):

1) VHDL coding for the processor and simulating the design by
MODELSIM simulator.

119

MODELSIM results are shown after implementing individual units. The MODELSIM
simulation results illustrate the output and the intermediate input signal of the

processor top/sub-modules in FPGA board.

There are six sub-modules in the design which are bit-reverse, ROM, RAM,
controller, butterfly and the address generator. In the next section the implementation

of the proposed architecture will be discussed.

6.1.1 Top-Module of the Radix- 2 FPP- FFT Processor

The implementation of the proposed processor was done for a range of design
parameters. The top-design of the processor with the I/O pins is shown in Figure 6.3

whilst Figure 6.4 illustrates the chip design of the FPP-FFT.

CLK> RESULT_READY >

INITIALIZE RESULT_REAL(20:0)
RESET » RESULT_IMAGINARY(20:0)
RD_RESULT »

RD_RESULT ADDRESS(9:0)
INIT_DATA(20:0)

INIT_ADDRESS(9:0)

' hd

Input Pins Output Pins

Figure 6.3 Input/Output pins of the FPP-FFT processor

120

— INIT_ADDRESS=<9:0= RESULT_IMAGIMNARY=20:0> ——

—— INIT_DATA=20:0=

—— RO_RESULT_ADDRESS<9:0=

— CLK RESULT_REAL=20:0> ——
— INITIALIZE

—— RO_RESULT

—— RESET RESULT_READY ———

Figure 6.4 FPP-FTT processor top level

When the FFT has completed the transformation of the input block, the core asserts
the RD_result and outputs the complex FFT transform of real and imaginary results.
The RD_result signal indicates the first output sample. The input and output of the
FFT are both in natural order that is 1...N. The output data is in single precision
format. The single precision format could be expanded to the double precision format;
however, this precision provided enough information to conclude about their impact

over the latency, throughput, and resources consumed and maximum frequency.

Figures 6.5 — 6.7 show the overall implementation of the proposed FFT
processor which consists of the ROM and RAM unit, the butterfly Radix-1I, the

controller and the address generator.

121

14!

J0ss0001d [.1.4-ddq Iurod Suneory pauradid jutod-4zo1 pesodord ¢'9 aIn3ig

o[mpow NOY

N
[N}
i

o

o

s

T
et

L wremrai

]

rEERe

e

e

et] —
T —
N — S —

e

b .

e

AN

-t oo e

ﬁ I0)BIQUSD) SSAIPPY

JIun IS[[0IU0))

e isal)

Appronng [-x1pey

? E d[npowr NV

£Cl
10s50001d [1.J-dd.] JO In0Ae[[eIolABYeg 9'Q AIn3Iq

Figure 6.7 Internal behavioral layout of FPP-FTT processor

Table 6.1 shows the summary of Xilinx ISE synthesis for the overall proposed novel
architecture of FPP-FFT processor.
124

Table 6.1 Proposed FPP-FFT Processor specification

HDL Synthesis Report

Timing Summary

Registers Flip-Flops 1175
Shift Registers 43 (6%)
LUTs Slice 4419 (23%)
Logic Slice 2584 (13%)
RAM Cells 1835 (35%)
10s 88 (40%)
Memory usage (MB) 254 (40%)
Multiplexers 77
Tri-states 98

Minimum period (ns)
Maximum Frequency (MHz)
Min. input arrival time (ns)
Max. output required time (ns)
Total equivalent gate count
Total Number of Path

Total Number of Destinations

4.391
227.747
3.788
6.774
998678
220310
5926

As shown in Table 6.1 the new architecture of 1024 point radix-2 FPP-FFT processor

is able to operate with the maximum clock frequency of 227.7 MHz.

6.1.2 Bit Reverse Implementation

The overview of the bit-reverse in 7-bit module is given in Figure 6.8. Although the

functionality of this block is relatively simple, it is imperative to figure out the output

as Fourier transform. However the system specification is given in Table 6.2.

[input(0)
[input(1)
TG

Figure 6.8 Bit-reverse implementation

The internal structure layout of the bit-reverse is shown in Figure 6.9. The interval

gate in the bit-reverse structure leads bit change location from the input and injects it

into the output. Hence the output of the processor is in reverse style.

125

Table 6.2 Bit-reverse specifications

HDL Synthesis Report Timing Summary
LUTs Slice 22 Max. combinational path delay (ns) 4.96
Logic Slice 22 Total JTAG gate count for IO 672
10s 14 Total Number of Path 105
Memory usage (MB) 133 Total Number of Destinations 7
Tri-states 7

Figure 6.9 Internal structural layout of bit-reverse

To test the bit-reverse implementation, MODELSIM tools provides the interval signal

as the input and output to prove the system functionality as shown in Figure 6.10.

126

6.1.3 Radix-2 Butterfly Implementation

As previously stated, radix-2 butterfly architecture is the heart of FFT processor.
Therefore, high performance implementation of the radix-2 butterfly will directly
affect the system efficiency. Figures 6.11-6.13 show the implementation of the
butterfly architecture as discussed in Chapter V. The control pins such as enable, reset
and valid open the gate for data to transfer among the stages and these are a part of
radix-2 controller. The system was synthesized using Xilinx ISE synthesis tools where
Table 6.3 clarifies the system specification. The layout architecture of the radix-2
butterfly is given in Figure 6.14. The novel architecture of radix-2 butterfly is
achieved by the floating-point parallel pipeline structure with the cooperation of the

advance arithmetic units (adder, subtractor and multiplier).

Table 6.3 Proposed butterfly specification

HDL Synthesis Report Timing Summary

Registers Flip-Flops 977 Minimum period (ns) 3.563
LUTs Slice 1714 Maximum Frequency (MHz) 280.674
Logic Slice 977 Min. input arrival time (ns) 4221
RAM Cells - Max. output required time (ns) 8.055
10s 216 Total equivalent gate count 40714
Memory usage (MB) 161 Total Number of Destinations 970

Total Number of Path 5926

In enabling the achievement of high speed processor, the design located pipeline
registers in the radix-2 butterfly processor architecture. The pipeline architecture
keeps the data for one clock cycle for synchronization in order to increase the system
efficiency. Figure 6.15 shows the input and output signal of complete proposed radix-
2 architecture using MODELSIM simulation tools. The input in appearance of the
positive clock edge is entered to the proposed FFT processor and later, the output

which is the Fourier transform form is appeared in the output port.

128

6¢Cl1

s10)s13a1 aurpadid yym 2ImodIydIe A[JIonng g-XIpey []°9 2In31

[B
P e
-~
bl m
k]
B P wE SEn
B &
. Ml
_— PR
" e ——]
I £ == T | B T I il
&
e
.
T e e
e ——]
T — e e emis I ws —

7179 2mgrg

Figure 6.11

arme spgmel—
s

e
=

sz
rmms s
ropet
e

-y

] L

X a<20:0>

X_P<20:0>

X_Q<20:0>

Y a<20:0=

Y_P<20:0>

Y_Q<20:0>

a_ENABLE

CLK

P_ENABLE

Q_ENABLE

RESET

X_H_0<20:0>

X_H_1<20:0>

Y_H_0<20:0>

Y_H_1<20:0>

VALID

Figure 6.12 Top- module of Radix-II butterfly architecture

130

) (B L [

]

|

E

|

il

:

|
w?%%ﬁmt

L
]

ﬂ
|

Figure 6.13 Internal butterfly architecture

131

43!

A[J101)nq Z-X1peY JO INOAR] [BIOIARYSQ [BUINU]]9 2INTI]

eel
A[3Ionnq g-x1pey jo [eudis yndino pue nduy G1°9 anJrg

sd |9E L0, g josing

a) Floating Point Adder/Subtractor Implementation

As discussed in Chapter IV, the floating-point arithmetic units in radix-2 butterfly
comprises of four (4) stages called comparison stage, alignment, add/sub and

normalized stage.

The implementation of the pipeline floating-point adder/subtractor was
modeled in VHDL code and simulated by MODELSIM software. The design was
synthesized by Xilinx-ISE software and downloaded to the FPGA Virtex II. The
synthesis result shows the system specification of each stage of the pipelined floating -
point adder/subtractor separately. Finally the overall system synthesis results from the

combination of the mentioned stages are given in Tables 6.4 — 6.8.

From the Xilinx ISE synthesize report; it was found that the minimum clock
period is 3.592 ns (the Maximum Frequency is 278.428 MHz) for the floating-point
adder/subtractor. Furthermore, the minimum clock periods increased sharply after

add/sub stage was applied.

This issue can be explained by utilizing the FPGA adder to calculate the fixed-
point arithmetic. However the speed result is high enough to cover the subject. To
enhance the maximum clock frequency, high speed prefix adder (Burgess 2004) can be

applied to calculate the fixed- point arithmetic for future work.

The proposed adder implementation results are shown in Figures 6.16-6.21.
The estimated latency of the design for 32-bit resolution is 4 clock cycle due to its
pipeline structures. The specification tables of the proposed floating-point

adder/subtractor are given in Tables 6.4 — 6.8.

134

Sel

2IN)00JIYOIR JEUIUI Jojoenqns/Iappe jutod-Suneory 1se 91'9 aInSig

Al

; a8eig EN:mchZg ﬁ e3e1s gNs/aqyv : o8e1g JuowusIy w ﬁ 23e1g uosLedwor) g

Figure 6.17 Fast floating-point adder/subtractor layout

136

LEL

amyo)IyoIe Jeurdjur ageys uostedwo) 179 2SIy

S = |

e

A e s |
e A PR =T

e
(=T T

L..g

8¢l

2IN)00)IYOIe [RUIAUL A3E)S JUSWUSIY 6]°9 9In31]

|
T T
IIERITRAE

6¢l

2IMOAIYOIE [eUIUI 9FE)S 10)0RNqNS/IOPPY (079 AINTI]

L s

IR - ! e L

a0

E0= =0 oov]

s et AT = A W=

llllllllllllllllllllllllllll

I ﬂ
I

Wb

al architecture

140

Figure 6.21 Normalized stage intern

Efficient algorithm of high resolution high speed low area floating-point
adder/subtractor with reducing mean latency for FFT in high resolution applications
was designed and investigated. Each stage of the floating point adder/subtractor unit,
calculates the arithmetic operation within 1 clock cycle. The result will be entered to
the pipeline register which in turn will result in a reduction of the latency. The unique
structure of this adder ignores the shifter cell and replaces them with multiplexer to
reduce the delay propagation through each cells. The evaluation indicates that the
proposed pipelined adder is attractive due to its high resolution (32-bit floating point),
low area (6691 gate count) and low latency of 4-clock cycle. The maximum frequency

for this adder is 278.428 MHz.

Table 6.4 Comparison stage specifications

HDL synthesis report

QTY
Design statistics
No. of I10s 103
No. of multiplexer 4
No. of Xor 0
Slice number 42
(2%)
Timing report
Minimum period (ns) 1.031
Maximum frequency (MHz) 969.744

Minimum input arrival time before clock (ns) 1.988
Maximum output required time after clock (ns) 2.775
Total equivalent gate count for design 893

Total memory usage (MB) 59

141

Table 6.5 Alignment stage specifications

HDL synthesis report

Design statistics

No. of IOs 126

No. of multiplexer 2

No. of Xor 0

Slice number 15
(10%)

Timing report

Minimum period (ns) 0.847

Maximum frequency (MHz) 1181

Minimum input arrival time before clock (ns) 4.032

Maximum output required time after clock (ns) 2.775

Total equivalent gate count for design 2211

Total memory usage (MB) 65

Table 6.6 Add/subtractor stage specifications

HDL synthesis report

Design statistics

No. of I0s 71

No. of multiplexer 1

No. of Xor 1

Slice number 68 (4%)
Timing report

Minimum period (ns) 2.377
Maximum frequency (MHz) 420.76
Minimum input arrival time before clock (ns) 2.299
Maximum output required time after clock (ns) 2.779
Total equivalent gate count for design 1615
Total memory usage (MB) 69

142

Table 6.7 Normalized stage specifications

HDL synthesis report

Design statistics

No. of I0s 70

No. of multiplexer 4

No. of Xor 0

Slice number 201 (13%)
Timing report

Minimum period (ns) 2.062
Maximum frequency (MHz) 484.919

Minimum input arrival time before clock (ns) 5.522
Maximum output required time after clock (ns) 2.775
Total equivalent gate count for design 3687
Total memory usage (MB) 61

Table 6.8 Overall Floating point adder/subtractor specifications

HDL synthesis report

Design statistics

No. of I0s 104

No. of multiplexer 11

No. of Xor 1

Slice number 349 (22%)
Timing report

Minimum period (ns) 3.592
Maximum frequency (MHz) 278.428

Minimum input arrival time before clock (ns) 2.534
Maximum output required time after clock (ns) 2.779
Total equivalent gate count for design 6691

Total memory usage (MB) 70

143

As shown in the results, the total slice number in the overall pipeline floating-point
adder is less than the sum of the each cell block. It is due to the advance
configurations which avoid repetition of similar slice and the reuse of the similar slice

again.

The advance design algorithm leads to have the minimum equivalence of gate
counts (6691 gates) results in area saving and power conservation reduction that
satisfies low area and low power on the chip core. This value is 37977 gates as found

in previous research work (Huang et al. 2005).

Maximum Frequency (MHz)

[
[
=]
—_-

oy
=

400 B Maximum Frequency
200 (MHz)
0

Figure 6.22 Adder stage frequency comparison

Beside the maximum clock frequency, the total equivalent gate was counted for each
individual stage of the floating point adder/subtractor to give estimation for the area

calculation in the silicon.

Figure 6.23 shows the total equivalent gate count whilst Figure 6.24 shows the

speed comparison of the proposed floating-point adder/subtractor versus previous

similar research works.

144

_

D A =F oY e

Figure 6.23 Adder stage frequency comparison

f_ﬁ____

e

-____ I _f oy
TTTTRTRRn -._H_;, :
Wi | .-
[

g
~

2008

2007

1| _f enzoy

———— -i [L¥]e Y RET]

2006

2006

——_— —i uosduioyy uyor

2004

———— ! ' UeyuiseleN

1993

=3
2
!
Z
=

1993

———— ! 1ZUaq]

1993

300 A

250 A

8

[

o
L

i

,mw
=

o] [}
L

Figure 6.24 Floating-point adder speed comparison

The floating-point adder/subtractor produces the output of the arithmetic calculation

after the 4-clock cycles. This delay is considered as low latency for the floating-point

adder/subtractor unit when it is compared with previous research works for floating-

145

point architecture in recent years and is most suitable for high efficiency architecture.
Figure 6.25 compares the latency of the adder for different research work whilst
Figure 6.26 shows the appearance of the output after 4-clock cycle in the proposed
adder/subtractor.

Latency (Clock Cycle)

* Floating Point Adder History /

~
w
]

wn
—
w

Narasimhan D.
John thampson

]

e
@

Figure 6.25 Floating point adder latency comparison

146

Lyl

ejep ndino se Jnsoy

ejep Jndur se g pue v [eudis ;ndino sojoenqns sappe Jutod Suneold 9z'9 omsig 3RO

I

b) Floating-Point Multiplier Implementation

As discussed, the floating-point multiplier consists of two stages known as the
multiplier stage and normalized stage. To design the floating-point multiplier, the
propagation delay for each unit is only one clock cycle. Figure 6.27 illustrates the
internal architecture of the proposed multiplier whilst Figure 6.28 shows a part of the

32-bit multiplier layout in detail.

o

I
i
L

L

nnnnn

il

Tk

il (i

Figure 6.27 Multiplier internal architecture

148

Figure 6.28 Multiplier internal architecture layout

The Xilinx ISE synthesize software produces the specification of the proposed
floating-point multiplier which is given in Table 6.9. As shown in the table, the
maximum clock frequency of this multiplier is 322 MHz and the system is more
relaxed in gate count in compare with adder/subtractor unit due to multiplier does not
require the alignment stage. The overall gate count available in proposed floating-
point multiplier is 4878 gates. The floating-point multiplier unit performs the
multiplication within two clock cycle; hence the latency of the multiplier is very low

and is suitable for high performance architecture.

149

Table 6.9 Proposed floating-point multiplier specifications

HDL Synthesis Report

Timing Summary

Registers Flip-Flops 202
LUTs Slice 78
Logic Slice 24
RAM Cells -
I0s 101
Memory usage (MB) 134
Multiplexers 3
Tri-states 53

Minimum period (ns)
Maximum Frequency (MHz)
Min. input arrival time (ns)
Max. output required time (ns)

Total equivalent gate count
Total Number of Path

Total Number of Destinations

3.1
322
4.216
4.705

4878
1785

26

The MODELSIM simulation result of the multiplier is shown in Figure 6.29 .This

figure proves the two clock cycle latency for the proposed floating-point multiplier.

150

IST

[eusis indino Joridnnu jutod Suneol] 679 2m31] wiep indut se g pue v

BSSHUBIA
2 1omod ‘us1g se Jnsoy

6.1.4 CONTROLLER UNIT ARCHITECTURE

As discussed, the data path is controlled by a controller unit which is a state machine
with all necessary control signals to synchronize the movement of data through the
different blocks of the data path. Figures 6.30 and 6.31 illustrate the architecture of the
controller unit. The states consist of storage and control of the twiddle factor and its
movement through the stage and reading the proper input data. It also consists of the
storing of the result after the FFT calculation was executed accordingly. The
multiplexer sends the input vectors to the permutation which permutes the data and

sends them to the butterfly calculation.

——AD END OF STAGE RD AD ADDRESS COUNTER INC RD ——
AD_COUNTER INC WR ——
—— AD_END_OF_STAGE_WR
AD_ROM_COUNTER_INC ———
— | AD_FINISHED_READINGAD_ROM_STAGE_COUNTER_ENABLE ——
AD_STAGE_COUNTER_ENABLE_RD ——
—— AD_FINISHED_WRITE
AD_STAGE_SHIFTER_ENABLE_WR ———

AU_RESULT_VALID AU_DATA VALID ——

AU _FACTOR VALID ——

—cLK
RAM WR ——
—lCRr RESULT READY ——
ROM_RD ———

Figure 6.30 Top- module of controller unit

152

€51

2IN)O0IIYOIE [BUISIUT IO[[ONU0) [¢'9 2SI

]
e
™ I
o] (-
— _
- — |
SR RO Y =
T e S L O e S T -
i
D | YA Lz]
TN s o Oy | i O o |

122!

IN0AL] INOAIYDIIL IA[[ONUOY) 7€'9 NI

The Xilinx ISE synthesize result shows the total equivalent gate of 312 with the
maximum clock frequency as 1 GHz for controller architecture. The specification of

high performance controller is given in Table 6.10.

Table 6.10 Proposed controller specifications

HDL Synthesis Report Timing Summary

Registers Flip-Flops 2 Minimum period (ns) 0.937
LUTs Slice 9 Maximum Frequency (MHz) 1067
Logic Slice 2 Min. input arrival time (ns) 1.329
RAM Cells - Max. output required time (ns) 3.445
10s 18 Total equivalent gate count 312
Memory usage (MB) 120 Total Number of Path 43
Multiplexers - Total Number of Destinations 22
Tri-states 31

6.1.5 RAM and ROM Architecture

In order to obtain the FFT core with the required flexibility, it is necessary to identify
an efficient strategy to integrate the butterfly processor and the communications
scheme with memory. The proposed single-chip implementation of FFT processor in
this book is to provide flexibility with an internal ROM and RAM; which are to store
the twiddle factor and the input/output data respectively.

Although this architecture increases the active core area, it however leads the
processor to operate independently regardless of the different external devices in the

scene of memories.

Figures 6.33 and 6.34 show the architecture of the entire memory systems. The
RAM with the dual complex RAM structure occupied larger active core area as
compared with the twiddle factor ROM. The specification results provided by the
Xilinx ISE synthesis software shows the particular of each individual memory cell.

(Tables 6.11-6.12)

155

!

]

{ l—il .

Figure 6.33 ROM internal architecture

PR

i
]

Tl

I 1 A
L
-

Figure 6.34 RAM internal architecture

156

The Xilinx ISE synthesis software results of the internal layout architecture of RAM

and ROM are shown in Figures 6.35 and 6.36 respectively (illustrate the synthesis

software results).

Table 6.11 Proposed RAM specifications

HDL Synthesis Report

Timing Summary

LUTs Slice 734 Min. input arrival time (ns) 3.443
Logic Slice 734 Max. output required time (ns) 5.085

Max. Combinational path (ns) 5.739
Dual port RAM 4 Total equivalent gate count 333641
10s 234 Total Number of Path 8672
Memory usage (MB) 237 Total Number of Destinations 1408
Multiplexers -
Tri-states 31

Table 6.12 Proposed ROM specifications
HDL Synthesis Report Timing Summary

LUTs Slice 254 Min. input arrival time (ns) 3.685
Logic Slice 254 Max. output required time (ns) 2.989
Statistic ROM 1 Total equivalent gate count 6915
10s 52 Total Number of Path 2092
Memory usage (MB) 139
Multiplexers -
Tri-states -

157

8S1
INOAR[2INMOAIYIIR INOY 9€°9 2InJ1]

S[[9D T16 Aoede)
SIPD INOY

NV [enp xordwoo
SI19D $201 :Ayoede)
S[IPD VY

6.1.6 Address Generator Architecture

In order to enable parallel access to the memory units and in-place calculation, it is
necessary to have the 1024 point radix-2 FPP-FFT processor address schemes to
utilize by the address generator. This address generator architecture requires
substantial logic unit including read address generator, write address generator and
ROM address generator to generate the address and register, in order to buffer the
outputs of each butterfly operation. The function of each state was discussed in
Chapter IV. The specification table (Table 6.13) and the internal architecture (Figures
6.37-6.41) and the logic layout (Figure 6.42) of the address generator are given

respectively.
Table 6.13 Proposed Address Generator specification
HDL Synthesis Report Timing Summary

Registers Flip-Flops 62 Minimum period (ns) 2.257
LUTs Slice 65 Maximum Frequency (MHz) 443
Logic Slice 120 Min. input arrival time (ns) 2.249
RAM Cells - Max. output required time (ns) 5.328
10s 53 Total equivalent gate count 1519
Memory usage (MB) 135 Total Number of Path 198
Multiplexers 4 Total Number of Destinations 29
Tri-states 8

As seen in the table, the address generator is able to operate with the maximum clock
frequency of 443 MHz which is preferable for high performance the DSP processor.
To verify the I/O port of the address generator, Figure 6.37 shows the top-module of

this unit in detail.

159

—{ ADDRESS_COUNTER_INC_RD RAM ADDRESS1_RD<7:0> ——

RAM_ADDRESS1_WR<7:0> ——
— CLK - -

RAM _ADDRESS2 RD<7:0> ———
— CLR
RAM_ADDRESS2_WR<7:0> ———

—— COUNTER_INC_WR
-~ ROM_ADDRESS<6.0> ———

—— ROM_COUNTER_INC END_OF STAGE RD ——

END_OF_STAGE_WR ———
—{ ROM_STAGE_COUNTER_ENABLE itk -

FINISHED_READING ———
— STAGE_COUNTER_ENABLE_RD
FINISHED_WRITE ———

— | STAGE_SHIFTER_ENABLE_WR
= = - RAM_SELECT WR |——

SELECT RD —

Figure 6.37 Top- module of address generator unit

As shown in the Figure 6.37, the address generator by functioning the control pins
such as counters, read and write pins, enables and end of the stage pins, and with
mutual aid of intelligent controller provides the required address for RAM, ROM and
radix-2 butterfly unit.

In addition, there is a selective bit reverse sub-block in address generator
architecture to sort the output address accordingly. The generated address will allocate
for further calculations. The smart function of the address generator decreases
hardware complexity significantly and result shows low-power consumption in entire

proposed radix-2 FPP-FFT processor.

160

Read Address generator
(Figure 6.39)

ROM Address generator

(Figure 6.40)
Az T T]
[T T, T wE
[Eon STAGE COUNTES Shas {ENISHED READNG:

Write Address generator
(Figure 6.41)

Figure 6.38 Address generator internal architecture

161

1

(onBWAYoS) 2IN309)IYOIE [RUIIUI JOJRIQUAT SSAIPPE PBY 6€°9 231

¢oElE==000y v }
] FSwrE S NNOD SowlE |
pEasnang o
aze e mnreT.
P ¢
e — To==n
e e aoEeryn o |
e
B
g e e
2o mnre.
O Swlemann DM LEI NNOS STSMOaY
Sovis S0 o TOWASTSOTONT eDeemmnes o i et
L -
L |
-
T o= = ive anciL |
o
e
! ~OEeinEnD eDEeina

€91

(onEWAYDS) 2INJOIYDIE [EUIOIUT J0JeIouaT ssaIppe NOY 0’9 oInS1]

L DMIOYEY OIHEINIS

el =g
TEva
—
—=] win s
— a3 v
—] TELNdLNG) fi=)
1353
M
o0 O BEINNOD |
.—./‘| [y
~e=-nonge WD
—
i P
) Lol

91

(oneWwaYOS) 2INJOYIYOIE [BUIAIUL J0JRIOUDT SSAIPPE AJLIA [°9 2InS1]

e

Selective bit reverse

Figure 6.42 Address generator internal layout

165

991

[eudis ndjno 103e10Ud3 SSAIPPY ¢'9 AINTT,]

sdgoon| o

uone[naeds
1.4 I0J PoIOA[AS SSAIPPY

Aiowaur 0} LIA
29 peay se uid jonuo)

6.2 DOWNLOADING TO FPGA (Xilinx ISE software)

The overall architecture was synthesized by Xilinx ISE software and the result is
shown in Figure 6.44. In order to verify the functionality of the 1024-point radix-2
FPP-FFT processor, the synthesized code is downloaded to the Virtex I1I- XC2V1500-
6-FG676 FPGA board. Xilinx and MODELSIM Next, EDA tools were used to
synthesize and to simulate the design. The output signal of the proposed processor is
shown in Figures 6.45-6.47. From Figure 6.46, the total clock cycle required to
implement the FFT computation for our proposed architecture is 5131 cycles and this

cycles number is in agreement with the computation complexity derived from

(N2Zlog:N)+11 which ¢, gives 5131 clock cycle if N =1024.

The result of the proposed 1024-point radix-2 FPP-FFT processor after a
successful completion of synthesis place and route (PAR) process is shown in Figure
6.48. These results are tabulated in Table 6.1. In addition, Table 6.14 shows the
accuracy of the 1024-point radix-2 FPP-FTT processor in contrast with 1024-point
radix-2 FFT simulation result and fixed point conventional radix-2 FFT
implementation result. It compares the values obtained from the simulation and
implementation of fixed-point and floating-point when the same input signals are
applied for the processors. Hence, the proposed single precision floating-point FFT
processor proves the resolution less than £0.01 % error whereas the resolution in
fixed-point FFT processor is less 0.1 % error. As it is clear from Table 6.14, the
proposed 1024 point floating-point FFT indicates the performance improvement

which is strongly preferable for high performance application.

167

891

yesTor- 1019°6- 11ST 6~ 6¥19°6- COSTEIST 61" L61188%19°6-
ceeT s c005°€l €99T° 16~ cIsel 916L099T 16~ SOE8ITISEl
0189°6¢- LSL8'8T 9069°6¢- 1¥L8°8C 96€09069°6¢- ILLETYLE 8T
LETO'61- £6£0°'1¢ wee6l- PIv0' 1€ 1L8E9YC6°61- €C00r1v0° 1€
08¢ e- £€86°S1 [10€T ¢~ £€86°S1 6099110€C°¢- O6VELYTRO'SI
€ee0c LELLTT- 0¥0°C- LI8LTI- LE6OYEV0C- CILTBI8LII-
€9L6°CT 99CL 6¢- 8LL6'ET- SLTL6¢ SEISLLLO €T 88YSLTL 6¢-
9€61°L9- 66€L'16- 8S61°LY- 68LL' 1S 906SLS61°LY- 666186LL™ 1S~
666£°611- 160°S¢- closell- §Ts0se- 8IEI10S611- 1186¥CS0°S¢-
SLEG'TI91- 0ol 8LE6'191- 09t6°¢l 6918LE6'191- 101STSto'€l
0¥eLSLI- 06£7°98 0¥SLSLI- 061798 LY68YSL'SLI- 088¢£671'98
0LL6 6V~ 09St°€91 0986°6v1- 0LSY €91 991¢€986°6¥1- SOLYLSY €91
105798~ 0066°1CC 109t°98- 0801°¢CC 88178709198~ S¥80801°CCC
000070 0016°€EYC 0000°0 e 0 e

Areurgew| ICER | Kreurgew| ICER Kreurgew| [CER |

sojdwes 1 = (u)x Jnduy sojdwes] = (u)x Jnduy sojdwes] = (u)x Jnduy
(uonejyuduwdduy) (uoneyusudyduiy) (uone[nuis)
LA yutod paxiy [BuonudAu0) 144 yured-3upeorq pasodoig 144 VILVIN

10ss9001d 144 ur synsax uoneyuswd[duwr pue uonenuis ay) jo uostredwo)]°9 9[qeL

2) The verified proposed 1024-point radix-2 FPP-FFT processor VHDL
codes were downloaded to the FPGA using the Xilinx ISE soft tools
and JTAG hardware. The downloading was successfully done and the

routing for the FFT processor is shown in Figure 6.48.

Figure 6.50 illustrates the chip layout of the proposed FFT processor in the FPGA
board after the PAR stage.

PROM XC18V04 Xilinx chip
Clock frequency
selector switch

0 £ aunx

0

© A\
g

Figure 6.44 Implementation of the FPP-FFT processor on the FPGA board

169

0LT

Kouoye] 105s9001d 14 ddd [[BRAQ 949 2InT1]

sd0000gL| g esind

-
=

910K 3000 TEIS =

Teudis ndino 10ss0001d [44 ddd [[BIPAQ GH'9 2In31g sd 0000% /5d 86092507 = Aouore]

| sd L0vavL28Z 0 sd 199972102
T ND | »

| 1asin7)

000000
ed FL066ZLBZ @ >Hmn..n0m.h..n\uﬁnm.m.:nunmnunmu\" TS

JINSa1 Ay - 105$9201g
JAes 0) ssaippe 1adoid oy, 144 Jo ynsa1 indinQ

IL1

Surpoo jurod 3uneory se [eudis ndino J0ssao01d | JJ-ddd Wod-4z01 L9 2In31

jInsax Areurgew]

S O R TR T R T TR T T

1

CLl

ASI XU ul L44-ddd 10F (4Vd) o pue aveld jo uonejuowojdur [yssaoong 479 aingig

TI93 T SEp o dn s3] SemusD, 593014

"3ty B vausan [BwetuE [vl SwE| prw Gl wewn [v desE

o soseis s D
ubjzaq wsusid) Y
15X - azsauuis MY
AJngssadons passed st yorym Tdekien
spessuoy ey opany 22
sso001d 9ZISAYIUAS 29 YVd sy obopey otnsy B
° ‘sensuon Buiu spany
swensuon s 48
seidwa) uonRIURIY TOHA Mo, /0 (F]
214 007 aur] puswweg man 0 [F]
e |
1oquiig aewaLRS Al M3
sompy Ang ubiseq 8o
cmos sensean [
sanog Bugsta Y [

= TP A2t Eq Fpooer\ TAHAL IR/ 3 [IOMelpgEnereq pooep
{PUA ST PPE” PRUBIONTAHANTQHAY) EInPrs- 25e}s Buusy =
(PUN'aS pPe PAUBAATOHATOHAL) k80 ans pre (]
{purgnsTppe pouredid JAHAYTOHAY '} Erorup-qns™ppeTpaugedd (]
{pyasepiBai oususB TOHATOHAY) [Eoneysqeibar oysusb 5 -
. = {PyAeiap B RPVIAHANTAHAY) fenprss-Aejep™eep [p] -1
SUCHHYL, e (PUn A IRV IOHAIOHAY) Erprs-Agewng (] =
_ = = (PY4X MVIGHAYIGHAY) Pnprgsne (3] =
ERORE BOTARLY e (P I0ISUSETSSUPPE” M TOHAY] OHAL) [RIMoRs-Iojessust™ssappe™aiin [F] (31
EH (PyAiojRsauSBTsepPE WOR\TOHANTOHAY) [RInprs-iojeiaust ssauppe™was [a]
_ _ gy (PYnIoIRIRURESSRPPET YL\ TOHANTOHAL) [RInPnis-IoiRieuel ssauppe™wer (]
SasTtncy 4 % Loy o Eon el {PYNI0IRIRURT SSRIPPY\TOHAN TGHAY) lRrpniisojseust ssaippe [f] =
sasTamoD o 0 g5 ». 1087% ~ e]
s o 2 ep b B ﬁwﬁmoﬁ (Ut HRURGESH TOHANTOHAY) jainevag youeais; [
T s S P —— . (PRI TQHANIGHAY) PrpruE i (7] 1
snavag paanoztn sxo08 53658 [pou] asén UmﬁQEOU e i
aon uny zaquemy Butarry wbreag JTaAT . WEEPIGHR IO &
XXPIO™ L3 T0HA Bl
304333 9713 sauTeIasUS] T |
S| HEKY (|2 W i | BAs |

i e = — e e
o= 000G Qvaw) #dung] - [exuiPO” L IGHAVSIEPIO GHA LLVIGHAGH\PURsaIN: - sojebuey paforg - xunny [

€LT
XuIrx Ul IIJ-dd.1 JO sseo01d SISouks [nyssooons g9 2Ingiy

B

v [W T»

v

ATTngssa0ons Pa3sTdNod ,ETsausuAg, 530033

x@Oe 3josuod|

(pazsaiUAS) Alewung uBEag Z 177 NS UBIS3Q 35T Ul AN S3RYN =]

(L = 9TBOT IO STSAST) SUTEC :feTag 1K

S9[npo n

9z6% / 0T£0ZZ :5370d UCTABUTASSD / suied IO I3qUMU TEACL [MPON QNS
(zHWLPL"LZZ :Aousnbaiz) sulee’d :potzad ¥20TD

13, ¥50T) I0F £TeATeue porzad ATNEISQ :AUTEIISUOD BUTWTL)

il

Foreasenus B
QiEnwis wisppoyy 48 =
g - UaUagIse] S3ssad01g

(su) spuooasoueu ur pakerdeTp £9nTEA TTH

4

poday j0 dop
1TTe3aq BUTHTL| | jodey siseuaud 1 - sy - asianesug ey [
o35 - jjonuos - 3sueisurialonuos [
2044/:3) 1LY - NOY - 32uessur oy [
1S - y0|q Y - 3duetsuriyy () @
es3um - 3oueisuissaippe o [¥
2O - 3dueisussaippewon [

Peipvy - 3uessuIssaappe e P

19 °IqeL

SUQLT*9 :AeTsP yled TRUOTIBUTQUOD UNWTXER
SUBLL®S IXDOTS II1IT SWTY PIITbaT 40dIN0 UMWTEER
SuggL°c 13002 2I0ISQ SWIT TeATIZT anduUT WNUTHTH
(ZHRLPL Lzz :Kousnbszd WOWTXeH) SUTEE"§ :POTIad WNUTUTH

oo :apexs pasdg|| PNPAERQ .ﬁ._EEmEm\meum\.mwcmﬁ:_\mm ﬁ =

\\\\\\\\\\\\\\\ wE G2iumua6 - s33sBRi N0 zesep [-

EEA Bug [B212uau3b - J33siBaino Tesep)] -
o Buteenagl | 235iBaruauab - apBariopey [-
ls1631™5uaus6 - s2ysiBarurzerep i ey
——e M-I sibarouus6 - barureiep (A "
35 - Apamng - 33uetsurfypanng [fa) @
o _ o S[npoN QO.H _ I oy/i) 23N - Ay -22uessurne [a] o el
Z | (3m31 II PI TS6 WeX SSUBIEUT E69IDPPE WeZ SSUBIEUT SdOHd/Ezo /) [eanganas - 144 -3nn (4] 2 5
| J——TTE0T MaHA/aHd/euzoy/0) JomewRg - yauagesa)] = |
| Eisi-samy 13538 wZenE-0einex £3 B | FF
4 m HAVIGHAVIGHA' LI\IAHAGHd euzows 5] =
o IGHA"LH 8
| peoT © Ayoremy | BF
| (sw=w ad) zs3ane | TeubTs Toxaued | |8 =ik Logeinuwis [e.oneyag| 1oj saamos |]
- v wasgubisg B[[x @O0 uBisag

2]F228 Af|coss MESXXed WrRaXUBE % €B0

dpF mopufy sjpol ssooi 9nd§ paloly maR wpI 33 &

~ [(pemsawuAs) faewwng ubrsaq] - FSXIGHA LVIGHALNIGHAVGHA\SIZON\: - 103ebinen paloxg 351 B

VLI

10ss9001d 1,14 pesodoid ayy Jo Sunnoix diyo xurry (g 9 23

=

Fhl

NI
; Fodird | i
I it M =
A B
. ol ul
Ry B
e ms 5 1L F T
s 1 < 7]
e 1 e
I £ -

&

Figure 6.51 shows the testing result of the FPGA board and equipment setup
for the on logic analyzer (LA) when the FFT processor is downloaded. The clock
frequency is set on the maximum rate (180 MHz). The LA result shows that the

processor can function correctly as shown in Figure 6.52.

Figure 6.51 FFT processor test circuit using Logic Analyzer

s s N S T

A1
Magnivie CKOQ

LA
MagniVu: A3
LAl
MagniVu: AZ

16 bit was selected to be
tested by LA

Figure 6.52 FFT processor output result displayed on Logic Analyzer

175

The FPGA power consumption depends on the amount of configurable blocks, which
are used for the implementation of the processor. This processor was implemented by
utilizing 0.18 pm and 0.35 pm technologies which are expected to have better
performance compared to the FPGA chip. The results are explained in the next

sections.

6.3 ASIC IMPLEMENTATION (GATE LEVEL SYNTHESIS)

An application specific integrated circuit (ASIC) is an integrated circuit (IC) modified
for particular use, rather than intended for general purpose use. ASIC is often termed
as a system on a chip (SOC) which will bring about greater cost savings and lower
power consumption. The minimal propagation delays can be achieved in ASICs
versus the FPGA. Hardware language such as Verilog and VHDL are used to describe
the system functionality on ASIC.

From the explanations given, the proposed 1024 point radix-2 FPP-FFT
processor is synthesized on ASIC to optimize the area and power consumption by
using Synopsys and Cadence tools. The proposed processor was optimized in
Synopsys tools by the passed to the PC (in the MODELSIM) in order to obtain the
gate level implementation. In this level the processor is post-simulated by Cadence

CAD design tools for implant and the layout is produced.

The technology libraries to execute optimization are SILTERRA 0.18 pm and
MIMOS 0.35 pm. In this section the design is synthesized to convert RTL code into
the gate level (Figure 6.1). The timing constraints are defined to meet the final chip
result. The RTL design code is divided into two parts; the core and chip. The chip
contains the top wrapper module that instantiates this core and puts /O buffer pads
along the ports. In fact, analysis and simulation are required to ensure that the power
supply is adequate. In this section the functionality of the VHDL behavioral proposed
FFT processor is verified by Cadence VHDL simulation. Furthermore, the RTL model
of the proposed FPP FFT design is converted into the netlist (gate level).

176

Using design compiler (Synopsys tool), the design processor is compiled and
executed. Firstly, all the module and sub-module in the radix-2 FPP FFT design are
analyzed to check the VHDL syntax of the design. It is converted into intermediate
format and stored in the specified library. Secondly, the top design is elaborated to
convert the processor into generic gates and logic blocks. The elaboration reports the
memory elements in the FFT architecture. After the elaboration process the overall

system is checked for debugging the error.

Figure 6.53 shows the layout of the FFT processor active core using
SILTERRA 0.18 pm technology. This layout was routed by Encounter tools. Figure
6.54 demonstrates the gate level output result of the processor produced by the
NC-Launch using CAD tools. The output signals are provided from netlist of the

system.

- 2.32 mm -

ww ze'g

Figure 6.53 Active core die of the proposed FFT processor in SILTERRA
technology

177

Figure 6.54 NC-Launch result of the FPP_FTT processor in the gate level

The amplitude signal achieved from the gate level design is represented in Figure 6.55
for the 1024-point input data. The plotted signal illustrates the sinc function produced
by the rectangular input signal. The amplitude output signal functions as Fourier

Transform of the rectangular signal.

S0
P
LT,
T
Vi
.
Y
=
.
)N
=
an %
40
=
-
"
1
1 o
i adiia
a ave
- F
Y
T -
an [L
30 Lt
HI | Y
i =
T "\ P
i = adm
ig - ” _
14 " vy
1 1 R 7%

20

10 u
0 T T T T T T - w(2rf)
0 50 100 150 200 250 300 350

Figure 6.55 The output plot of gate level processor (Silicon)

178

Next, the 1024-point FPP-FFT core is compiled. After compiling, the netlist is
created. The estimated area and power consumption result of the high-speed floating-
point FFT processor in SILTERRA 0.18 pm and MIMOS 0.35 pm technology in

maximum clock frequency is shown in Table 6.15.

Table 6.15 Estimated power/ area of proposed FFT in different technology libraries

The FPP-FFT SILTERRA 0.18 MIMOS 0.35 pm
specification pm technology technology
Active core area (mmz) 2.32x2.32 4.256x4.256

Power consumption

(mW) 640 1198

Table 6.16 compares the proposed design with conventional type of fixed-point
1024 point FFT. The system was synthesized in the design analyzer under the
SILTERRA and the MIMOS technology library.

Table 6.16 Estimated power/area of conventional FFT in different technology

Conventional FFT SILTERRA 0.18 MIMOS 0.35 pm
specification pm technology technology
Active core area (mm®) 9.3426%9.342 15.778%x15.778

Power consumption

(mW) 3.4 9.5

Figures 6.56 and 6.57 show the symbol and schematic view of the FFT

processor followed by internal architecture of the proposed FFT, respectively.

179

Figure 6.56 Symbol view of the FFT processor

The top-module with suffix .db is created which is the /O pad wrapper. Some
constraints need to be defined for the FPP-FFT design. These constraints are
necessary conditions that have to be met for the proper functionality of the circuit.
The most important constraint is related to the signal timing of the system.

Constraints for clock include the period and skew.

Figure 6.57 Schematic view of the FFT processor

180

It is necessary to specify the clock period, to show the maximum speed of the FFT
design. All the constraints are fixed to the design prior compilation. These are
typically applied to the top module and propagated down to the lower level module as
separated step. For defining constraints, the input and output pins had to be set before
compiling the FFT design. The maximum fan-out and timing are determined for
driving pins to change logic values. Within Synopsys there is a power analysis tool
which estimates power consumption under various conditions and configurations.
After defining the constraint, the design is checked to ensure that there is no driving of

multiple ports by a single net and that all constraints are defined at the top module.

The schematic gate level of the different components in the FFT processor is

shown in Figures 6.58 — 6.66.

181

81

Keop eiep oy jo uongjuowd[dwr [euroju] 8G9 aInJr|

usdu

€81
sa[npow AV 2yp Jo uoneuawedui [9a9] doJ, 66'9 2131

¥81

33e3s J030BIqNS/19ppe Jutod Suneory oy Jo uonejuawd[dwr [9Ad) doT, 199 231

S8l
sa[npowr Ny 1od [enp oy jo uonejuswdw [euroju] 799 2In3ig

981

93e)s qns ppe a3 Jo uonejudwR[dwl [eUINU] €99 AINS1

L81

JIo[[013u09) Jo uoneudwWA[dwI [BUIU] $9°9 9INSI]

881

J0jeIOUT SsaIppe oy Jo uoneyudwaldw [9A9] do], G9'9 2IN31,]

7 LS 400N

15 40— ana<_H

681

J0jeIOUT SSAIpPE Ay} Jo uoneyudwRdwI [eUINU] 99'9 AIN3I,]

To conclude, after FPGA implementation and ASIC optimization and with considering available
software and hardware resources, the proposed 1024- point radix-2 FPP-FFT processor was
implemented and tested. Xilinx ISE software and CAD tools in synopsis provide the table of

specifications shown in Table 6.17.

Table 6.17 Summary performance of the FPP-FFT processor

Parameters unit specification

Processor machine Radix - 2 64

Calculation Type Floating-point RESE

Latency (us) 22

Maximum Precision 32-bit ARCH

No. of input data 1024 CONTRIBU

Data rate (Ms/s) 25

Max. clock frequency S s max 227 MHz TION

Signal to noise ratio SNR 192 dB

Power consumption (Silrerra 0.18 4™ library) P, 640 mW

Active core Area (Silrerra 0.18 #™ library) - 2.32mm %X 2.32mm To conclude,

Resolution <0.01% the research
contribution

of this research work is classified in three main categories of algorithm, high performance and

technical aspect which are detailed as follow:

i) Algorithm:

A new algorithm for implementing FFT-based floating point that is capable of utilising high
resolution signal processing, was designed and implemented. The standard floating-point FFT
requires several chips for operation purposes whereas the proposed floating point FFT design

requires only a single chip.

This particular characteristic makes the floating-point radix-2 FFT compatible to be downloaded in
several version type of the FPGA board regardless of the memory size. In addition, with an
extension of independently accessible memory bank it finds its application in high performance
digital signal processing prototyping. Furthermore, to reduce hardware complexity, smart controller

in cooperation with address generator unit is designed and implemented accordingly.

190

it) High Performance

Its high performance could be seen in high speed and high resolution as well as low power and low
latency which are achieved by decreasing the number of calculation (novel architecture), using fast
floating-point adder/subtractor (270 MHz in 32-bit), eliminating unnecessary elements (achieved by
parallel architecture) and designing smart controller in processor architecture. Additionally the
floating point FFT also deserved to know as low latency parallel FFT processor. Furthermore the
pipeline structure of the proposed FFT is presented and implemented to improve the speed in de-
modulator system. The total estimated power consumption for the design after defining the
constraints was less than 640 mW in 0.18 um SILTERRA technologies and 1198 mW in 0.35 um
MIMOS technology. Moreover the number of adders and multipliers used in the proposed butterfly
algorithm are 6 and 4 respectively for radix 2 calculation, which shows the reduction on the used

elements considerably.

iii) Technical Aspects

The proposed FFT algorithm is integrated in parallel and pipeline architecture. This structure with
the use of advanced floating-point adder/subtractor as the summation blocks will provide a speed of

up to 227.74 MHz with resolution of less than 0.01%.

The computation complexity time of the proposed FFT follows the new equation
of (N /2log, N)+11, (N is the number of input data) which is much faster than the complex
computation time for conventional N-point FFT structure O(N log, N) (Losing et al. 2005). The

estimated chip die area has been optimized. The result shows that the active core area is 2.32x2.32

mm? in SILTERRA 0.18 pm technology library and 4.256 x 4.256 mm’ in MIMOS 0.35 um

technology library.

Table 6.18 summerized the system improvement in terms of area, power , latency, resolution
and clock frequency. Whilst Figure 6.67 shows the resolution improvement made by proposed

architectre in compare with fixed point architecture.

191

Table 6.18 Persentage of system improvement

Description Improvement (%)

Max. Clock frequency 20
Max. Clock frequency in floating 1
point arithmetic unit
Power consumption 4
Resolution 10
Latency 50
A %
ccuracy (.
g w00 a—
8 99.92
s 99.9
o
c 99.88
L 99.86 S
Figure 6.67 Fixed-point and proposed floating-point FFT resolution comparison

SUMMARY

In this chapter the proposed 1024-point radix-2 FFT processor was implemented. The design was
launched with introducing 32-bit data single precision floating-point parallel pipeline architecture.

Then it was followed by implementing the sub-components such as radix-2 butterfly and smart

192

controller. The implementation result of the proposed 1024-point radix-2 FPP FFT processor was
provided accordingly. The advantages of this system were stated in Chapter V. Designing high
speed floating-point arithmetic unit such as adder/subtractor (278 MHz), and multiplier (322 MHz),
implementing smart controller to save area and increase system efficiency, design processor as
single chip by implementing complex dual memory and providing pipeline and parallel architecture
leads to present a high performance 1024-point radix-2 FPP FFT processor. In addition, the
comparison was made in simulation of the FFT module and fixed-point conventional FFT
implementation in order to obtain the processor resolution. From the comparison, Xilinx ISE
synthesis report and Synopsis CAD tools, it was found that the proposed processor shows the
accuracy less than 0.01% error in maximum clock frequency of 227 MHz. The latency for
calculating 1024-point FFT is 22 ps. After FPGA implementation, the proposed processor was
optimized in ASIC under SILTERRA 0.18 pm and MIMOS 0.35 um technology libraries. The
estimation power consumption was reported 640 mW in SILTERRA and 1.198 W in MIMOS
technology library with sample rate of 25 ms/sec. The procedure was followed by defining the
constraints and the netlist (gate level) to produce ASIC layout. The design compiler result shows
the die size of 2.32x2.32 mm® in SILTERRA 0.18 um technology and 4.256x4.256 mm® in
MIMOS 0.35 um technology. From the given specification it was found that the proposed 1024-
point radix-2 FPP FFT processor is suitable for DSP application in order to achieve high-speed and

high-resolution performance.

193

CHAPTER VII

CONCLUSIONS AND FUTURE WORK

7.1 CONCLUSIONS

The 1024-point radix-2 FPP-FFT processor is designed and implemented as a stand-alone core. This
core satisfies the FFT size requirement of the 1024-points for a maximum clock frequency of
227 MHz and the resolution of less than +£0.01% error for the DSP application. The overall floating-
point parallel FFT architecture is executed with radix-2 engine. This reference design has the
following features:

i) VHDL-based design.

i) MATLAB bit-accurate simulation with implementation precision of less than +0.01%

error.
iil) Target clock rate at 227 MHz.

iv) Streaming 1024-point FFT as serial input/output data.
v) Floating-point I/O representation to maintain precision.
vi) 32-bit wide I/O data capable of switching to 21-bit I/O.
vii) FFT specifiable on a per-block basis.

viii) Single butterfly architecture that communicate with a high-performance controller.

The research contribution of the proposed radix-2 FFT processor was discussed. The
advantages of the 1024 point radix-2 FPP-FFT processor in order to improve speed, resolution,

area, power consumption and latency are:

194

A novel algorithm for implementation 1024 point radix-2 FFT-based floating-point that
is capable of utilising high-resolution signal processing (< 0.01%). This
improvement obtained 10 times higher resolution in comparison with fixed-point

algorithm. (Table 6.14; Figure 6.68).

The unique combination of the parallel and pipeline structure in the internal architecture
of proposed radix-2 butterfly engine processor. In the proposed engine processor, there
is only a single butterfly (6 adders and 4 multipliers) that it is resulted the reduction of
the components and speed improvement by 20% (227 MHz). (Figure 6.53)

Design and implementation of intelligent controller to compile the overall FFT
calculations within a single parallel pipeline butterfly to reduce the hardware complexity

and result shows low power consumption (640 mW, 4% improvement) and die size.

Design and implementation of novel high-speed floating-point arithmetic unit such as
adder/subtractor (278 MHz), and multiplier (322 MHz). This floating-point arithmetic

unit shows on improvement of 11% in maximum clock frequency.

The memory relaxed design due to utilization of the internal complex dual RAM for
stand-alone single-chip radix-2 FFT processor, regardless of the different type of FPGA
board.

The reduction of the hardware complexity and power consumption by the storing of

input data and output data in a single complex RAM only.

The reduction of the hardware complexity in the ROM stage which stores only half the
size of the twiddle factor (N/2 factor of W¥).

The significant improvement of the speed through a combined individual component

with the same latency and its connection to the sequential stage as pipeline architecture.

195

- Through the fact that the new equation of proposed algorithm was derived and designed
for latency in the proposed radix-2 FFT processor which produce the data exactly after
(N/2log))+11 clock cycles. This equation shows 50% latency improvement compared

with the previous conventional fixed point FFT type calculation.

Based-on above sorted advantages, the proposed 1024-point radix-2 FPP-FFT processor
specifications from the Xilinx ISE software and CAD tools were summarised (Table 6.18). To

conclude, table of improvement for proposed 1024 point FPP-FFT processor is given in Table 6.

7.2 FUTURE WORK

It is suggested to fabricate this research project in order to design floating-point FFT processor and
integrate this chip to apply in condition monitoring (DSP application) and communication system.
Although the floating-point FFT processor is a high-speed processor in comparison with similar
research works, the maximum operation clock frequency can be improved by the application of the
advance fast adder such as the prefix adder in floating-point style for future research and
development. However, with the advent of Nano-technology, the design also can be fabricated to
Nano scaled in order to achieve the higher throughput for improving the system efficiency. Along
that, the wire engineering in Nano scaling will lead to provide better fabrication in Nano

technology.

196

REFERENCES

Adams, J.W. 1987. A subsequence approach to interpolation using the FFT. I[EEE Trans
CAS 37: 623-625.

Ai, B., Jian Hua Ge, Yong Wang, Shi Yong Yang, Pei Liu & Gang Liu. 2004.
Frequency offset estimation for OFDM in wireless communications. [EEE
Transaction on Consumer Electronics 50(1):73-77. DOLI:
10.1109/TCE.2004.1277843.

Atarashi, H., & Sawahashi, M. 2001. Variable spreading factor orthogonal frequency
and code division multiplexing (VSF-OFCDM). Proceeding of International
workshop on Multicarrier Spread-Spectrum and related Topics (MC-S$2001),
pp. 112-122.

Antoine B., Abche, Aldo Maalouf, Rafic Ayoubi, Elie Karam & A. M. Alameddine.
2007. An FPGA implementation of a high resolution phase shift beam former.
IEEE conference on signal and communications (ICSPC 2007), pp 1319-1322.

Baas, B. M. 1999. A low power high performance 1024 Point FFT processor. /EEE
Journal of Solid-State Circuits 34(3):380-387.

Bergland, G. D. 1969. A guided tour of the fast fourier transform. /EEE Spectrum
conference, pp. 41-52.

Beukelman, P. C. R. & Bierens, L. H. J. 1999. Fastest floating-point single-chip FFT
processor. IEEE/ProRISC99, STW/SAFE99, pp: 649-654.

Bever, M., Feder, Ch., Hehmann, D., Schottmuller, C & Stuttgen, H. 1990.
Communication support for multimedia applications. [ET Conference on
Integrated Broadband Services and Network, pp. 115-120.

Biswas, B., Das, S., Purkait, P., Mandal, M. S. & Mitra, D. 2009. Current harmonics
analysis of inverter-Fed induction motor drive system under fault conditions.
International Multi-Conference of Engineers and Computer Scientist IMECS, 2:
1-5.

Burgess, N., 2004. Prenormalization rounding in IEEE floating-point operations using a
flagged prefix adder. /EEE J. Very Large Scale Integrat. Syst. 13: 266-277.
DOI: 10.1109/TVLSI1.2004.840764

Byung G. J. & Myung H. S.2005. New continues-flow mixed-radix (CFMR) FFT
processor using novel in-place strategy. /EEE Transactions on Circuits and
Systems 52(5):911-919.

Chi Huang, Xinyu Wu, Jinmei Lai, Chengshou Sun and Gang Li. 2005. A design of
high speed double precision floating point adder using macro modules. Design
Automation Conference, Proceedings of the ASP-DAC, Asia and South Pacific
2:D11-D12. DOI: 10.1109/ASPDAC.

Chi Wai Yu, Smith, A.M., Luk, W. Leong, P.H.W. & Wilton, S. J. E. 2008. Optimizing
coarse-grained units in floating point hybrid FPGA. [EEE International

197

Conference on Field-Programmable Technology. FPT, pp. 57-64. DOL:
10.1109/FPT.2008.4762366.

Chin-Peng Fan, Mau-Shih Lee & Guo-An Su. 2006. A low multiplier and multiplication
costs 256-point FFT implementation with simplified Radix-16 SDF architecture.
IEEE Conference on Circuits and Systems APCCAS, pp. 1935-1938. DOL:
10.1109/APCCAS.2006.342239.

Chin-Teng Lin, Yuan-Chu Yu & Lan-Da Van. 2006. A low-power 64-point FFT/IFFT
design for IEEE 802.11a WLAN agpplication. I[EEE Conference on Circuits and
Systems ISCAS, pp. 4523-4526. DOI: 10.1109/ISCAS.2006.1693635.

Ciletti, D. M. 2003. Advanced Digital Design with the Verilog HDL. Department of
Electrical and Computer Engineering University of Colorado at Colorado
Springs: Prentice Hall.

Cooley, J. W. & Tukey, J. W. 1965. An algorithm for the machine computation of
complex fourier Series. Mathematics of computation Journal 19:297-301.

Couasnon T. D., Monnier R. 1994. OFDM for Digital TV Broadcasting. Elsevier Signal
Processing 39: 0165-1684. DOI: 1-32. ISSN.

Cummings, M. & Haruyama, S. 1999. FPGA in the software Radio. [EEE
Communication Magazine 37(2):108-112.

Dabbagh-Sadeghpour, K. & Eshghi, M. 2003. A self-timed, pipelined floating point
FFT processor architecture. /EEE Conference on Signals, Circuits and Systems,
1: 33-36. ISBN: 0-7803-7979-9.

Denzil, F., Vijai Raj & Narsimhan D. 1993. Asynthesis tool based design of a 111
MHz CMOS floating point adder with built in test ability. /[EEE ASIC
Conference and Exhibit, pp. 412 — 415.

Dick, C. & Harris, F. J. 1999. Configurable logic for digital communications: some
signal processing perspectives. [EEE Communication Magazine 37(8):112-
117.

Dovel, G. 1989. FFT analyzers make spectrum analysis a snap. Spectrum analysis.
EDN. pp. 149-155.

Duhamel, P. & Hollmann, H. 1984. Split Radix FFT algorithm. /[EEE Electronics
Letters 20:14-16. DOI: 10.1049/e1:19840012.

Duhamel, P., Piron, B. & Etcheto, J. M. 1988.0n computing the inverse DFT. /EEE
Trans. ACoust, Speech on Signal Processing 36(2):285-286. DOLI:
10.1109./29.1519.

Enis C. A., Omer N. G. & Yardimci, Y. 1997. Equiripple FIR filter design by the FFT
algorithm. /EEE magazine of Signal processing 1053-5888/97, pp. 60-64.

ETSI TR 101 475. 2000. Broadband radio access networks (BRAN); HIPERLAN Type
2; Physical (PHY) Layer. ETSI BRAN.

198

Farhang-Boroujeny, B. & Gazor, S. 1994. Generalized sliding FFT and its applications
to implementation of block LMS adaptive filters. [EEE Trans. SP 42: 532-538.

Friedmann, A. 2007. Understanding OFDMA, the interface for 4G wireless. Courtesy
of Mobile Handset Design Line: Texas Instruments (TI) Software Manager,
Communications Infrastructure Group.

Frigo, M. & Johnson, S. G. 1998. FFTW: an adaptive software architecture for the FFT.
IEEE Conference on Acoustics, speech and signal processing, 3: 1381-1384.

Gentleman, W. M. & Sande, G.1996. Fast Fourier Transform for Fun and Profit. In
Proceedings 1966 Fall Joint Computer Conference AFIPS 29, pp 563-578.

Gieras, J. F. & Wing, M. 2002. Permanent magnet motor technology design and
application. Second Edition, Revised and Expanded: Marcel Dekker Inc. ISBN:
0-8247-0739-7.

Gijung Yang & Yunho Jung. 2010. Scalable FFT processor for MIMO-OFDM based
SDR systems. /[EEE International Symposium on Wireless Pervasive Computing
(ISWPC), pp. 517-521.

Gold, B. & Radar, C. 1969. Digital processing of Signals”, McGraw-Hill, New York.

He, S. & Torkelson, M. 1998.Design and Implementation of 1024-point Pipeline FFT
Processor.JEEE Conference on Custom Integrated Circuits. pp. 131-134. DOI:
10.1109/CICC.1998.694922.

Hemmert, K. S. & Underwood, K. D. 2005. An Analysis of The Double-Precision
Floating-point FFT on FPGAs, 13th IEEE Symposium on Field-Programmable
Custom Computing Machines, pp. 171-180.

Hoff J., 1993. A Full Custom High Speed Floating Point Adder. Fermi National
Accelerator Lab.

Hojin Kee, Bhattacharyya, S. S., Petersen, N. & Kornerup, J. 2009.Resources Efficient
Acceleraion of 2-Dimentional FFT Computation on FPGA.IEEE Conference on
Distributed Smart Cameras.JCDSC. Pp- 1-8. DOLI:
10.1109/ICDSC.2009.5289356.

Huang, C., X. Wu, J. Lai, C. Sun and G. Li. 2005. A design of high-speed double
precision floating point-adder using macro modules. Proceedings of the Asia
and South Pacific Design Automation Conference, pp. 18-21.

Hui C. W., Tiong Jiu Ding, McCanny J. V. & Woods F. R. 1996. A New FFT
architecture and chip design for motion compensation based on phase
correlation. /EEE Conference Application Specific Systems, Architectures and
Processor, pp. 83-92.

IEEE Std. 802.11a. 1999. Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications: High-Speed Physycal Layer Extension in the 5-GHz Band.
New York: IEEE Syandard Publication.

IEEE Std. 1985. For binary Floating-Point Arithmetic. New York: IEEE Standard 754-
1985. IEEE inc, pp1-17.

199

Ifeachor, E C. & Jervis, B. V. 2002. Digital Digital Signal Processing: A Practical
Approch. Second Editiond: Prantice Hall.

Jaehee Cho, Namshin Cho, Keukjoon Bang, Myunghee Park, Heeyoung Jun, Hyncheol
Park&Daesik Hong. 2001. PC-based receiver for Eureka-147 digital audio
broadcasting. [EEE transactions on Broadcasting 47(2): 95-102. DOI:
10.1109/11.948262.

Jain, A.K. 1989. Fundamentals of digital image processing. Filtering LPF, BPF, HPF.
Generalized spectrum and homomorphic filtering. Englewood Cliffs, NJ:
Prentice Hall.

Jain, V.K., Collins, W.L. & Davis, D.C. 1979. High accuracy analog measurements
viainterpolated FFT. IEEE Trans. IAM, IM-28: 113-122.

Jen-Chin Kuo, Ching-Hua Wen & An-Yeu-Wu. 2003. Implementation of programmable
64-2048-point FFT/IFFT processor for OFDM-based communication system.
IEEE Conference on Circuit and Systems, ISCAS, 2:121-124.

Jeong Ho Kim, ChoonSikYim. 1995. ADSL/HDSL technologies and applications in
VOD and multimedia services. IET Conference on broadcasting convention, pp.
346-350.

Jihad Qaddour. 2006. High peak to average ratio solution in OFDM of 4G mobile
systems. International Conference on Communications and Mobile Computing,
pp. 337-342. ISBN:1-59593-306-9

Jont B. A. & Rabinner, R. 1977. A unified approach to short time Fourier analysis and
synthesis. IEEE Proceedings of Analysis and Synthesis 65(11):1558-1564.

Ke Liu, HuarongZheng, Jianing Su, Bo Shen & Hao Min. 2005. A novel
synchronization scheme in HDTV system with adaptive detection and low
implementation complexity. [EEE International Conference on ASIC, ASICON,
1: 270-273.

Kim, N. & Yoon H. 2005. Handoff procedure for seamless service in IP and OFDM
based 4G mobile systems. /EICE Transactions Electron. E88:C(12).

Kuo, S. M. & Woon-SengGan. 2005. Digital Signal Processors, Architecture,
Implementations and Applications. Pearson Education International: prentice
Hall. ISBN: 0131277669.

Le Flock, B., Alard, M. & Berrou, C.1995. Coded orthogonal frequency division
multiplex. Proc. IEEE. 83(6): 982-996.

Lefevre, M. & Okrah, P. 2001. Fundamental changes required in modulation and signal
processing for 4G. Communications Systems Design Magazine.

Li, W & Wanhammar, L. 1999. A pipeline FFT processor. /EEE Conference on Signal
Processing Systems, pp. 654-662. DOI: 10.1109/SIPS.1999.822372.

Lihong Jia, Yong Hong Gao, Jouni Isoaho & Hannu Tenhunen. 1998. A new VLSI-
oriented FFT algorithm and Implementation. /EEE Conference on ASIC, Pp-
337-341. DOI: 10.1109/ASIC.1998.723029.

200

Lo Sing Cheng, Miri, A. & Tet Hinb Yeap. 2005. Efficient FPGA implementation of
FFT based multipliers. /[EEE Conference Electrical and Computer Engineering,
pp. 1300-1303.

Long Chen, Ziang Hu, Jumin Lin, Gao G. R. 2007. Optimizing the fast Fourier
transform on a multi-core architecture. [EEE International Parallel and
Distributed Processing Symposium, pp. 1-8.

Mathwork. 2010. Sim Power System, Simulating Variable Speed Motor Control. The
Math works, accelerating the pace of engineering and science: Mathwork Inc.

Mazlaini, Y. 2006. Practical packet detection and symbol timing synchronization
scheme for packet OFDM system. /EEE Conference on RF and Microwave. pp.
421-425. DOI:10.1109/RFM.2006.331118.

Melander, J., Widhe, T. & Wanhammar, L. 1996. Design of an 128-Point FFT processor
for OFDM applications. /[EEE Conference on Electronics, Circuits and Systems,
ICECS96. 2: 828-831. DOIL: 10.1109/ICECS.1996.584499.

Miyamoto, N., Karnan, L., Kazuyuki Maruo, Koji Kotani & Tadahiro Ohmi. 2004. A
small area high performance 512-point 2-dimensional FFT single-chip
processor. [EEE Conference on solid-state circuits conference, pp. 603-606.
DOI: 10.1109/ESSCIRC.2003.1257207

Morton, S. V., Appleton, S.S. & Liebelt, M. J. 1994. An event controlled reconfigurable
multi-chip FFT. IEEE Conference on Advanced research in Asynchronous
Circuits and Systems. pp. 144-153. DOI: 10.1109/ASYNC. 1994.656304.

Narasimhan, D., Fernandes, D., Raj, V. K., Dorenbosch, J., Bowden, M., & Kapoor., V.
S. 1993. A 100 MHz FPGA based floating point adder. /EEE custom integrated
circuits conference, pp. 3.1.1-3.1.4. DOIL: 10.1109/CICC.1993.590348.

Nee, R. V. & Prasad, R. 2000. OFDM for Wireless Multimedia Communications. First
Edition. Boston: MA Artech House. ISBN:0890065306.

Ochi, H. 2008. RTL design of parallel FFT with block floating point arithmetic. /[EEE
Conference on soft computing in industrial applications. Japan, pp. 273- 276.

Ojanpera, T., & Prasad. 1998. Wideband CDMA for Third Generation Mobile
Communications. Norwood, MA: Artech House.

Oppenheim, A. & Schafer R. 1989. Discreet-Time Signal Processing. Englewood
Cliffs, NJ: Prentice Hall.

Paiement, R. V. 1994. Evaluation of single carrier and multicarrier modulation
techniques for digital ATV terrestrial broadcasting. CRC Report No. CRC-RP-
004.Canada.

Rabenstein, R. & Zayati, A. 1999. A direct method to computational acoustics. /EEE

International Conference on Acoustics, Speech and Signal Processing, 1:69-72.
DOLI: 10.1109/ICASSP.1996.540292.

201

Rainbolt, B. J. & Miller, S. L. 1998. The necessity for and use of CDMA transmitter
filtering in overlay systems. [EEE Journal on Selected areas in
Communications, pp: 1756-1764. DOI: 10.1109/49.737644.

Schafer, R.W. & Rabiner, L.R. 1973. A digital signal processing approach to
interpolation. /EEE Journal 61(6):692-702.

Schimmel, S. M., Muller, M. F. & Dillier, N. 2009. A fast and accurate “shoebox” room
acoustics simulator. [EEE Conference on Acoustics, Speech and Signal
Processing, pp. 241-244. DOI: 10.1109/ICASSP.2009.4959565.

Sen M. Kuo & Woon-Seng Gan. 2005. Digital Signal Processors, Architecture,
Implementations, and applications. International Edition, New York: Pearson
prentice Hall. ISBN 0-13-127766-9.

Shi Chen, Venkatatesan R. & Gillard, P. 2008. Implementation of vector floating-point
processing unit on FPGAs for high performance computing. /EEE Conferrence
on Electrical and Computer Engineering. CCECE 2008, pp. 881-886. Canada.
DOI: 10.1109/CCECE.2008.4564662.

Shiqun Zheng & Dunshan Yu. 2004. Design and implementation of a parallel real-time
FFT processor. 7" IEEE conference on Solid-State and Integrated Circuits
Technology, 3:65-168.

Shyue-Kung Lu, Jen-Sheng Shih & Shih-Chang Hhuang. 2005. Design-for-testability
and fault-tolerant techniques for FFT processors. /EEE Transactions on Very
Large Scale Integration (VLSI) Systems 13(6):732-741.

Smith, J.O. 2007. Mathematices of the Discrete Fourier Transform (DFT) with Audio
Applications. Second Edition: W3K Publishing. ISBN 978-0-9745607-4-8.

Smith, T., Smith, M.R. Nichols, S.T. 1990. Efficient sinc function interpolation
techniques for center padded data. [EEE Trans. ASSP 38:1512-1517.

Soliman, S. & Wheatley, C. 1995.Frequency coordination between CDMA and non-
CDMA systems. [EEE Conference on Technologies for wireless Applications
Digest, pp.79-87. DOL: 10.1109/MTTTWA.1995.512331.

Son, B. S., Jo, B. G., Sunwoo, M. H. & Yong Serk Kim. 2002. A high speed FFT
processor for OFDM systems. [EEE International Conference on Circuits and
System, 3:281-284. DOI: 10.1109/ISCAS.2002.1010215.

Stearn, S.D. & David, R.A. 1988. Signal Processing Algorithms. Decimation and
Interpolation Routines. Convolution and correlation using FFT. FFT convolution
and correlation. Englewood Cliffs, NJ: Prentice-Hall.

Teymourzadeh, R, BurhanuddinYeop Majlis, Jimmy Mok vee Hong, Masuri Bin
Othman. 2009. VLSI implementation of high resolution high speed low latency
pipeline floating point adder/subtractor for FFT application. Nano Technology
Conference Energy Health & Environment, pp. 327-331.

Thompson, J., Nandini Karra & Schulte, M. J. 2004. A 64-bit Decimal floating-point
adder. /[EEE Computer Society Annual on VLSI Systes Design. DOL: 0-7695-
2097-9/04. 2004.

202

Thulasiram R. K. & Thulasiraman P. 2003. Performance evaluation of a multithreaded
fast Fourier transform algorithm for derivative pricing. The Journal of
Supercomputing 26(1):43-58.

Thong, T. & Liu, B. 1977.Accumulation of round off errors in floating point FFT. /EEE
Journal on Circuits and Systems 24(3):132-143.

Tseng, B. D., Jullien G. A. & Miller W. C. 1979. Implementation of FFT structures
using residue number system. /EEE Journal on Computers C-28(11):831-845.

Wiegandt, D. A. & Nassar, C. R. 2002. High-throughput, high-performance OFDM via
pseudo-orthogonal carrier interferometer type 2. IEEE International Symposium
on Wireless Personal Multimedia Communications, 2:729-733. DOI:
10.1109/TCOMM.2003.814196.

Wu Y. & Zou, Y. W. 1995. Orthogonal frequency division multiplexing: a multicarrier
modulation scheme. /IEEE Transaction on Consumer Electronics 41(3):392-399.

Xenoulis, G., Psarakis, M., Gizopoulos D. & Paschalis, A. 2005. Test generation
methodology for high-speed floating point adders. [EEE International
Conference on On-line testing symposium, IOLTS2005, pp. 227-232. DOL:
10.1109/I0LTS.2005.67.

Xilinx Logic core, 2009. Fast Fourier transform. Versian 7.0.DS260 product
specification. pp. 1-64.

Xin Xiao, Oruklu, E. & Saniie, J. 2009.Fast memory addressing scheme for Radix-4
FFT implementation. /EEE International Conference on Electro/Information
Technolog, pp. 437-440. DOI: 10.1109/EIT.2009.5189656.

Yeo, D. Zhongjun Wang, Bin Zhao & Yajuan He. 2002. Low Power Implementation of
FFT/IFFT processor for IEEE 802.11a Wireless LAN Transceiver. [EEE
Conference on Communication System . [CCS2002, 1:250-254.

Yong Jun Peng. 2003. A parallel architecture for VLSI implementation of FFT
processor. [EEE Conference on ASIC Proceedings, 2:748-751.

Yu-Wei Lin, & Chen-Yi Lee. 2007. Design of an FFT/IFFT processor for MIMO
OFDM systems. [EEE Transaction on Circuit and Systems 54(4):807-815. DOI:
10.1109/TCS1.2006.888664.

Zainal, M. S., Yoshizawa, S. & Miyanaga, Y. 2008. Low power FFT design for wireless
communication systems. /EEE Conference on Intelligent Signal Processing and
Communications Systems, pp. 1-4. DOI: 10.1109/ISPACS.2009.4806724.

Zhang, Q. & Meng, N. 2009. A Low area pipelined FFT processor for OFDM-Based
systems. [EEE Conference on Wireless Communications, Networking and
Mobile Computing, WiCom, pp. 1-4. DOI: 10.1109/WICOM.2009.5303332.

Zhiqiang Wu & Nassar C. R. 2005. Narrowband interface rejection in OFDM via carrier

interferometry spreading codes. /[EEE Transaction on wireless communications
4(4):1491-1505.

203

