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ALGEBRAIC MODELS OF THE LINE IN THE REAL AFFINE PLANE

ADRIEN DUBOULOZ AND FRÉDÉRIC MANGOLTE

Abstract. We study smooth rational closed embeddings of the real affine line into the real affine
plane, that is algebraic rational maps from the real affine line to the real affine plane which induce
smooth closed embeddings of the real euclidean line into the real euclidean plane. We consider these
up to equivalence under the group of birational automorphisms of the real affine plane which are
diffeomorphisms of its real locus. We show that in contrat with the situation in the categories of
smooth manifolds with smooth maps and of real algebraic varieties with regular maps where there
is only one equivalence class up to isomorphism, there are plenty of non-equivalent smooth rational
closed embeddings up to such birational diffeomorphisms. Some of these are simply detected by
the non-negativity of the real Kodaira dimension of the complement of their images. But we also
introduce finer invariants derived from topological properties of suitable fake real planes associated
to certain classes of such embeddings.

Introduction

It is a standard consequence of the Jordan–Schoenflies Theorem that every two smooth closed
embeddings of R into R2 are ambient diffeotopic. Every algebraic closed embedding of the real affine
line A1

R into the real affine plane A2
R induces a smooth embedding of the real locus R of A1

R into the real
locus R2 of A2

R. Given two such algebraic embeddings f, g : A1
R ↪→ A2

R, the famous Abhyankar-Moh
Theorem [1], which is valid over any field of characteristic zero [23, § 5.4], asserts the existence of a
polynomial automorphism φ of A2

R such that f = φ ◦ g. This implies in particular that the smooth
closed embeddings of R into R2 induced by f and g are equivalent under composition by a polynomial
diffeomorphism of R2.

In this article, we consider a similar problem in a natural category intermediate between the real
algebraic and the smooth ones. Our main object of study consists of smooth embeddings of R into R2

induced by rational algebraic maps A1
R 99K A2

R defined on the real locus of A1
R and whose restrictions

to this locus induce smooth closed embeddings of R into R2. We call these maps rational smooth
embeddings, and the question is the classification of these embeddings up to birational diffeomorphisms
of A2

R, that is, diffeomorphisms of R2 which are induced by birational algebraic endomorphisms of A2
R

containing R2 in their domains of definition and admitting rational inverses of the same type.
A first natural working question in this context is to decide whether any rational smooth embedding

is equivalent up to birational diffeomorphism to the standard regular closed embedding of A1
R into A2

R
as a linear subspace. Since every rational smooth embedding f : A1

R 99K A2
R uniquely extends to a

morphism P1
R → P2

R birational onto its image, a rational smooth embedding which can be rectified to a
linear embedding by a birational diffeomorphism defines in particular a rational plane curve C that can
be mapped onto a line by a birational automorphism of P2

R. By classical results of Coolidge [6], Iitaka
[14] and Kumar-Murthy [17], complex curves with this property are characterized by the negativity of
the logarithmic Kodaira dimension of the complement of their proper transform in a minimal resolution
of their singularities. Building on these ideas and techniques, we show the existence of non-rectifiable
rational smooth embedding. In particular, we obtain the following result, see Theorem 21 for a stronger
statement:

Theorem. For every integer d ≥ 5 there exists a non-rectifiable rational smooth embedding of A1
R into

A2
R whose associated projective curve C ⊂ P2

R is a rational nodal curve of degree d.
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The existence of non-rectifiable rational smooth embeddings motivates the search for weaker proper-
ties which can be satisfied by rational smooth embeddings. To this end we observe that the Abhyankar-
Moh Theorem implies that the image of a regular closed embedding A1

R ↪→ A2
R is a real fiber of a

structure of trivial A1-bundle ρ : A2
R → A1

R on A2
R. In the complex case, this naturally leads to a

“generalized Abhyankar-Moh property” for closed embeddings of the affine line in affine surfaces S
equipped with A1-fibrations over A1

C, i.e. morphisms π : S → A1
C whose general fibers are affine lines,

which was studied for certain classes of surfaces in [11]: the question there is whether the image of
every regular closed embedding of A1

C in such a surface is an irreducible component of a fiber of an
A1-fibration. The natural counterpart in our real birational setting consists in shifting the focus to
the question whether the image of a rational smooth embedding is actually a fiber of an A1-fibration
π : S → A1

R on a suitable real affine surface S birationally diffeomorphic to A2
R, but possibly non

biregularly isomorphic to it. A rational smooth embedding with this property is said to be biddable.
Being a fiber of an A1-fibration on a surface birationally diffeomorphic to A2

R imposes strong restric-
tions on the scheme-theoretic image f∗(A1

R) of a rational smooth embedding f : A1
R 99K A2

R. We show
in particular (Proposition 19) that the real Kodaira dimension [4] κR(A2

R \ f∗(A1
R)) of the complement

of the image has to be negative, with the consequence for instance that none of the rational smooth
embedding mentioned in the theorem above is actually biddable. In contrast, a systematic study of
small degree embeddings (see in particular § 5.2) reveals the existence of non-rectifiable biddable ra-
tional smooth embeddings whose images are in a natural way smooth fibers of A1-fibrations on some
fake real planes, a class of real birational models of A2

R recently introduced and studied in the series of
papers [7, 8]. These are smooth real surfaces S non isomorphic to A2

R whose real loci are diffeomorphic
to R2 and whose complexifications have trivial reduced rational singular homology groups.

We therefore develop a collection of geometric techniques to tackle the classification of equivalence
classes of biddable rational smooth embeddings up to birational diffeomorphisms. As a result, we
obtain in particular the following synthetic criterion (see Theorem 25 and Corollary 27):

Theorem. For i = 1, 2, let fi : A1
R 99K A2

R, be a biddable rational smooth embedding and let αi :
A2

R 99K Si be a birational diffeomorphism onto an A1-fibered fake real plane πi : Si → A1
R such that

αi ◦ fi : A1
R 99K Si is a closed immersion as the support of a smooth fiber of πi.

Then f1 and f2 are not rectifiable. Furthermore, the following conditions are equivalent:
a) f1 : A1

R 99K A2
R and f2 : A1

R 99K A2
R are equivalent rational smooth embeddings

b) There exists a birational diffeomorphism β : S1 99K S2 and an automorphism γ of A1
R such

that γ ◦ π1 = π2 ◦ β.

As an application of this characterization, we derive in particular the existence of infinitely many
equivalence classes of biddable rational smooth embeddings (Corollary 28).

The scheme of the article is the following: section 1 contains preliminaries on real algebraic varieties
and a review of the structure of A1-fibered algebraic models of R2. In section 2, we introduce the
precise notions of rectifiable and biddable rational smooth embeddings of the line in the plane and
establish some basic properties. Section 3 is devoted to the construction of families of non-biddable
rational smooth embeddings. Then in section 4 we turn to the geometric study of equivalence classes
of biddable rational smooth embeddings, we establish in particular a criterion for rectifiability of such
embeddings. Finally, section 5 contains a complete classification of rational smooth embeddings whose
associated rational projective plane curves have degrees less than or equal to four.

We want to thank Ilia Itenberg for his help in the construction of the nodal curves being used in
Proposition 22.

1. Preliminaries

A real (resp. complex) algebraic variety is a geometrically integral scheme of finite type over the
corresponding base field. A morphism between such varieties is a morphism of schemes over the
corresponding base field. A complex algebraic variety X is said to be defined over R if there exists
a real algebraic variety X ′ and an isomorphism of complex algebraic varieties between X and the
complexification X ′C = X ′ ×R C of X ′.
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1.1. Euclidean topologies and birational diffeomorphisms. The sets X(R) and X(C) of real
and complex points of a real algebraic variety X are endowed in a natural way with the Euclidean
topology, locally induced by the usual Euclidean topologies on AnR ' R2n and AnC ' Cn respectively.
Every morphism f : X → Y of real algebraic varieties induces a continuous map f(R) : X(R)→ Y (R)
for the Euclidean topologies, which is an homeomorphism when f is an isomorphism. If X and Y
are smooth, then X(R) and Y (R) can be further equipped with natural structures of smooth C∞-
manifolds, and the continuous map f(R) induced by an isomorphism of real algebraic varieties is a
diffeomorphism for these structures. See [18, Sections 1.4 and 2.4] for details.

Definition 1. Let α : X 99K Y be a rational map between real algebraic varieties with non-empty
real loci X(R) and Y (R).

a) We say that α is R-regular if X(R) is contained in its domain of definition.
b) We say that α is R-biregular if it is birational and its inverse is also R-regular.

For simplicity, an R-biregular birational map between smooth real algebraic varieties with non-empty
real locus is called a birational diffeomorphism.

Note that when X and Y are smooth real varieties, a birational diffeomorphism between X and
Y does indeed restrict to a diffeomorphism between the real loci of X and Y equipped with their
respective structure of smooth manifolds.

1.2. Pairs, log-resolutions and SNC completions. A Simple Normal Crossing (SNC) divisor on
a smooth real or complex surface S is a curve B whose complexification BC has smooth irreducible
components and ordinary double points only as singularities. An SNC divisor B on a smooth complete
surface V is said to be SNC-minimal if there does not exist any projective strictly birational morphism
τ : V → V ′ onto a smooth complete surface defined over the same base field, with exceptional locus
contained in B and such that the image τ(B) of B is SNC.

A smooth SNC pair is a pair (V,B) consisting of a smooth projective surface V and an SNC divisor
B, both defined over the considered base field.

A smooth completion of a smooth algebraic surface S is a smooth SNC pair (V,B) together with an
isomorphism V \B ' S, all defined over the considered base field. Such completions always exist as a
consequence of classical completion and desingularization theorems [21, 24].

A log-resolution of a pair (V,D) consisting of a surface V and a reduced curve D on it is a projective
birational morphism τ : V ′ → V defined over the considered base field, such that V ′ is smooth and
the union of the reduced total transform τ−1(D) of D with the exceptional locus Ex(τ) of τ is an
SNC divisor B on V ′. A log-resolution which is minimal with respect to the ordering by birational
domination is called a minimal log-resolution of (V,D).

By a minimal log-resolution of a birational map between smooth complete surfaces, we mean a
minimal log-resolution of its graph.

1.3. A1-fibered algebraic models of R2. An algebraic model of R2 is a smooth geometrically in-
tegral real surface S with real locus S(R) diffeomorphic to R2 and whose complexification SC has the
rational homology type of a point, i.e. has trivial reduced homology groups H̃i(SC;Q) for every i ≥ 0.
All these surfaces are affine and rational (see e.g. [8, Proposition 2.2]), but it turns out that R2 admits
many such models non isomorphic to A2

R as real algebraic varieties. A partial classification up to
biregular isomorphism of these “exotic models”, called fake real planes, was established in [8] (see also
[7]) according to their Kodaira dimension. In the present article, exotic models S of negative Kodaira
dimension are of particular interest to us since they admit an A1-fibration π : S → A1

R defined over
R, that is, a surjective morphism whose generic fiber is isomorphic to the affine line over the function
field of A1

R. More precisely, we have the following characterization:

Theorem 2. ([8, Theorem 4.1]) A smooth geometrically integral surface S defined over R is an alge-
braic model of R2 of Kodaira dimension κ(S) = −∞ if and only if it admits an A1-fibration π : S → A1

R
defined over R whose only singular fibers, if any, are geometrically irreducible real fibers of odd multi-
plicity, isomorphic to A1

R when equipped with their reduced structures.

Remark 3. The multiplicities of the singular fibers of an A1-fibered algebraic model of R2 are intimately
related to the topology of its complexification (see e.g. [20, Theorem 4.3.1 p. 231]). Namely, letting
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m1F1, . . . ,mrFr be the singular fibers of π, where Fi ' A1
R and mi ≥ 2 for every i = 1, . . . , r, and F

be any fiber of π, we have

H1(SC,Z) =
⊕
Fi

Zmi and H1((S \ F )C,Z) = Z⊕
⊕
Fi 6=F

Zmi .

Given an A1-fibration π : S → A1
R on a smooth quasi-projective surface S, there exists a smooth

projective completion (V,B) of S on which π extends to a morphism π : V → P1
R with generic fiber

isomorphic to P1 over the function field of P1
R, called a P1-fibration. For A1-fibered algebraic models

of R2, we have the following more precise description, see [8, §4.1.1]:

Lemma 4. A smooth A1-fibered algebraic model π : S → A1
R of R2 admits a smooth projective com-

pletion (V,B) on which π extends to a P1-fibration π̃ : V → P1
R for which the divisor B is a tree of

rational curves that can be written in the form

B = F∞ ∪H ∪
⋃

p∈A1
R(R)

Gp

where:
a) F∞ ' P1

R is the fiber of π̃ over ∞ = P1
R \ A1

R,
b) H ' P1

R is a section of π̃,
c) Gp is either empty if π−1(p) is a smooth fiber of π or a proper SNC-minimal subtree of π̃−1(p)

containing an irreducible component intersecting H otherwise.
Furthermore, for every p such that Gp 6= ∅, the support of π̃−1(p) is a tree consisting of the union

of Gp with the support of the closure in V of π−1(p).

Only little is known so far towards the classification of the above A1-fibered algebraic models
π : S → A1

R of R2 up to birational diffeomorphism. At least, we have the following criterion:

Theorem 5. ([8, Theorem 4.9 and Corollary 4.10]) Let π : S → A1
R be an A1-fibered algebraic model

of R2. If all but at most one real fibers of π are reduced then S is birationally diffeomorphic to A2
R.

Example 6. Let m ≥ 3 be an odd integer and let Sm be the smooth surface in A3
R defined by the

equation u2z = vm − u. Since m is odd, the map R2 → Sm(R), (u, z) 7→ (u, m
√
u2z + u, z) is an

homeomorphism, and since Sm is smooth, it follows that Sm(R) is diffeomorphic to R2. On the other
hand, the projection π = pru : Sm → A1

R is an A1-fibration restricting to a trivial A1-bundle over
A1

R \ {0} and whose fiber π−1(0) ' Spec(R[v]/(vm)[z]) is isomorphic to A1
R, of multiplicity m. It is

then easy to check that Hi((Sm)C;Z) = 0 for every i ≥ 2, while H1((Sm)C;Z) ' Zm. Thus Sm is an
algebraic model of R2 non biregularly isomorphic to A2

R but which is birationally diffeomorphic to it
by the previous theorem.

2. Rational closed embeddings of lines

Given a rational map f : X 99K Y between real algebraic varieties, we denote by f∗(X) the scheme
theoretic image of the graph Γf ⊂ X × Y by the second projection.

Definition 7. Let X and Y be real algebraic varieties with non-empty real loci.
1) An R-regular rational map f : X 99K Y is called an R-regular closed embedding if f : X(R) →

Y (R) is a closed embedding of topological manifolds, whose image coincides with (f∗(X))(R).
2) Two R-regular closed embeddings f : X 99K Y and g : X 99K Y are called equivalent if there

exists R-biregular rational maps α : X 99K X and β : Y 99K Y such that β ◦ f = g ◦ α.

In the rest of the article, we focus on R-regular closed embeddings of the affine line A1
R = Spec(R[t])

into the affine plane Spec(R[x, y]).

Definition 8. For simplicity, an R-regular closed embedding of A1
R into a smooth real algebraic variety

is called a rational smooth embedding.

We begin with a series of examples illustrating this notion.
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2.1. First examples and non-examples.

Example 9. The rational map

f : A1
R 99K A2

R, t 7→ (t,
t3

t2 + 1
)

is a rational smooth embedding. Indeed, since f is the graph of a rational function A1
R 99K A1

R,
defined everywhere except at the complex point of A1

R with defining ideal (t2 + 1) ⊂ R[t], it is a locally
closed embedding in the neighborhood of every real point of A1

R. The scheme theoretic image f∗(A1
R)

of f is equal to the closed curve U =
{
x3 − (x2 + 1)y = 0

}
⊂ A2

R, and f induces an isomorphism
A1

R(R) ∼= R
∼=→ U(R) ∼= R.

The next two examples enlighten the role of the condition f (X(R)) = (f∗(X))(R) in the definition
of an R-regular closed embedding.

Example 10. The rational map

f : A1
R 99K A2

R, t 7→ (
1− t2

t2 + 1
,

2t

t2 + 1
)

is a locally closed embedding in the neighborhood of every real point of R but not a rational smooth
embedding. Indeed, its scheme theoretic image is the conic U =

{
x2 + y2 = 1

}
whose real locus is

isomorphic to the circle S1, so that the map A1
R(R) ∼= R → f∗(A1

R)(R) ∼= S1 induced by f is not an
isomorphism.

Example 11. The morphism f : A1
R = Spec(R[t]) → A2

R = Spec(R[x, y]), t 7→ t 7→ (t2, t(t2 + 1))

induced by the normalization map of the nodal cubic U ⊂ A2
R defined by the equation y2 = x (x+ 1)

2

is a locally closed immersion in a neighborhood of every real point of A1
R but not a rational smooth

embedding. Indeed, f(A1
R(R)) is a proper subset of f∗(A1

R)(R) = U (R) = f(A1
R(R)) ∪ (−1, 0).

2.2. Rational embeddings of lines and projective rational plane curves.

Notation 12. Unless otherwise stated, in the rest of the article, we identify A1
R with the open com-

plement in P1
R = Proj(R[u, v]) of the R-rational point {v = 0}, and A2

R with the open complement in
P2
R = Proj(R [X,Y, Z]) of the real line L∞ = {Z = 0} ' P1

R.

Every rational smooth embedding f : A1
R 99K A2

R extends to a morphism f : P1
R → P2

R birational
onto its image C ⊂ P2

R, and such that f(A1
R (R)) = C(R) ∩ A2

R(R). Conversely, given a morphism
f : P1

R → P2
R birational onto its image C, the fiber product P1

R×P2
R
A2

R is a smooth affine rational curve
U ⊂ P1

R on which the second projection restricts to a proper morphism pr2 : U → A2
R. By definition,

the latter represents an R-regular map f : A1
R 99K A2

R provided that A1
R(R) ⊂ U(R), and we have the

following straightforward characterization:

Lemma 13. For a morphism f : P1
R → P2

R birational onto its image C, the following are equivalent:
a) pr2 : U = P1

R ×P2
R
A2

R → A2
R represents a rational smooth embedding f : A1

R 99K A2
R.

b) C is smooth at every real point of C ∩ A2
R and U(R) = A1

R(R).
c) C is smooth at every real point of C ∩ A2

R and f
−1

(C ∩ L∞) contains a unique real point.

Example 14. Let f : P1
R → P2

R, [u : v] 7→
[
uv2 : u3 : u2v + v3

]
be the morphism induced by the

normalization map of the irreducible cubic C ⊂ P2
R with equation Z2Y − X(X + Y )2 = 0. The

intersection of C with L∞ consists of two real points: p∞ = [0 : 1 : 0] and the unique singular
point ps = [1 : −1 : 0] of C, which is a real ordinary double point with non-real complex conjugate
tangents, in other words, f

−1
(ps) is a C-rational point of P1

R. With the notation above, we have
U ' Spec(R[t]t2+1) and pr2 : U → A2

R is the morphism defined by

t 7→ (
t

t2 + 1
,

t3

t2 + 1
)

Clearly U(R) = A1
R(R) and so pr2 : U → A2

R defines an R-regular map f : A1
R 99K A2

R. Since ps ∈
C ∩L∞, the affine part C ∩A2

R '
{
xy2 + 2x2y + x3 − y = 0

}
is a smooth curve, and so f : A1

R 99K A2
R

is a rational smooth embedding.
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2.3. Biddable and rectifiable lines.

Definition 15. A rational smooth embedding f : A1
R 99K A2

R is called:
a) rectifiable if it is equivalent to the linear closed embedding jlin : A1

R → A2
R, t 7→ (t, 0).

b) biddable if there exists a birational diffeomorphism α : A2
R 99K S onto an A1-fibered algebraic

model π : S → A1
R of R2 such that the composition α ◦ f : A1

R 99K S is an everywhere defined closed
embedding of A1

R as the support of a fiber of π.

Remark 16. A rectifiable rational smooth embedding is biddable since for any birational diffeomor-
phism α of A2

R realizing the equivalence with jlin, α ◦ f coincides with the closed immersion of A1
R as

the fiber of the trivial A1-bundle π = pr2 : A2
R → A1

R over 0 ∈ A1
R(R).

The following lemma is an immediate reformulation of Definition 15:

Lemma 17. For an a rational smooth embedding f : A1
R 99K A2

R with associated irreducible rational
curve C = f(P1

R) ⊂ P2
R, the following hold:

a) f is rectifiable if and only if there exists a birational endomorphism of P2
R that restricts to a

birational diffeomorphism P2
R \ L∞

∼
99K P2

R \ L∞ and maps C onto a line ` ' P1
R.

b) f is biddable if and only if there exists a smooth pair (V,B) with a P1-fibration π̃ : V → P1
R as

in Lemma 4 such that π = π̃|S : S = V \ B → A1
R is an A1-fibered model of R2, and a birational

map P2
R 99K V restricting to a birational diffeomorphism P2

R \L∞
∼
99K S that maps C to an irreducible

component of a fiber of π̃.

Example 18. Let f : A1
R 99K A2

R be the rational smooth embedding with associated curve C =
{Z2Y − X(X + Y )2 = 0} ⊂ P2

R constructed in Example 14. The birational endomorphism of P2
R

defined by

[X : Y : Z] 7→ [(X + Y )
(
(X + Y )2 + Z2

)
: Z2Y −X(X + Y )2 : Z

(
(X + Y )2 + Z2

)
]

maps L∞ onto itself and restricts to a birational diffeomorphism of P2 \ L∞. It contracts the union
{(X + Y )2 + Z2 = 0} of the two non-real complex conjugate tangents of C at its singular point
ps = [1 : −1 : 0] onto the point [0 : 1 : 0] ∈ L∞, and maps C onto the line ` = {Y = 0}. It follows
that f : A1

R 99K A2
R is rectifiable, a birational diffeomorphism α : A2

R 99K A2
R such that α ◦ f(t) = (t, 0)

being given for instance by

(x, y) 7→ (x+ y,−x+
x+ y

(x+ y)2 + 1
).

2.4. Real Kodaira dimension: a numerical obstruction to biddability.
Recall that an SNC divisor B on a real smooth projective surface V is said to have no imaginary loop
if for every two distinct irreducible components A and A′ of B defined over R and with infinite real
loci, the intersection A ∩A′ is either empty or consists of real points only.

Given a smooth quasi-projective real surface S and a smooth completion (V,B) of S such that B
has no imaginary loop, we denote by BR ⊂ B the union of all components of B which are defined
over R and have infinite real loci. The real Kodaira dimension κR(S) of S is then defined as the
Iitaka dimension [12] κ(V,KV + BR) of the pair (V,BR), where KV is a canonical divisor on V . It is
established in [4] that the so-defined element κR(S) ∈ {−∞, 0, 1, 2} is independent on the choice of
a smooth completion (V,B) as above, and is actually an invariant of the isomorphism class of S up
to birational diffeomorphisms. By construction κR(S) is smaller than or equal to the usual Kodaira
dimension κ(S) = κ(V,KV +B), with equality in the case where B = BR.

The following proposition then provides a simple numerical necessary condition for biddability of a
rational smooth embedding f : A1

R 99K A2
R:

Proposition 19. Let f : A1
R 99K A2

R be a rational smooth embedding and let C be the image of the
corresponding morphism f : P1

R → P2
R. If f is biddable then κR(P2 \ (C ∪ L∞)) = −∞.

Proof. If f is biddable then by definition there exists a birational diffeomorphism α : A2
R 99K S

to a smooth A1-fibered model π : S → A1
R of R2 such that α ◦ f : A1

R → S is an everywhere
defined closed embedding as the support of a fiber of π, say π−1(p)red for some point p ∈ A1

R(R). So
κR(P2

R \ (C ∪L∞)) = κR(A2
R \C) = κR(S \ π−1(p)) by invariance of the real Kodaira dimension under
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birational diffeomorphism. Furthermore, since π restricts to an A1-fibration on S \ π−1(p), we have
κR(A2

R \ C) = κR(S \ π−1(p)) ≤ κ(S \ π−1(p)) = −∞. �

Question 20. Is every rational smooth embedding f : A1
R 99K A2

R whose associated projective curve C
satisfies κR(P2

R \ (C ∪ L∞)) = −∞ biddable ?

3. Families of non-biddable affine lines

In this section, we exhibit examples of non-biddable, hence in particular non-rectifiable, rational
smooth embeddings f : A1

R 99K A2
R whose associated projective curves have any degree larger than or

equal to 5.

Theorem 21. For every integer d ≥ 5 there exists a non-biddable rational smooth embedding f :
A1

R 99K A2
R whose associated projective curve Cd ⊂ P2

R is a rational nodal curve of degree d.

The proof given below proceeds in two steps. We first construct in Proposition 22 real rational
curves Cd ⊂ P2

R having only ordinary nodes as singularities for which the inclusion Cd ∩ A2
R ↪→ A2

R
defines a rational smooth embedding f : A1

R 99K A2
R. We then show by direct computation in Lemma

23 that the real Kodaira dimension κR(P2 \ (Cd ∪ L∞)) (see § 2.4) is nonnegative, which implies by
virtue of Proposition 19 that f : A1

R 99K A2
R is not biddable.

Proposition 22. For any integer d ≥ 1 there exists a singular real rational curve Cd ⊂ P2
R of degree

d with only ordinary nodes as singularities with the following properties:
1) If d ≡ 1 or 2 modulo 4, Sing(Cd) consists of pairs of non-real complex conjugate ordinary nodes.

Furthermore, the intersection of Cd with L∞ contains a unique real point and is transversal at every
other point.

2) If d ≡ 0 or 3 modulo 4, Sing(Cd) consists of pairs of non-real complex conjugate ordinary nodes
and a unique real node ps with non-real complex conjugate tangents. Furthermore, the intersection of
Cd with L∞ contains ps and a unique other real point, and is transversal at every other point.

Proof. The assertion is clear for d = 1, 2. We assume from now on that d ≥ 3.
1) If d ≡ 1, 2 mod 4, let k = 1

2 (d − 1) if d is odd or k = 1
2 (d − 2) if d is even. Observe that in

any case, k 6= 0 is even. Let Dk ⊂ P2
C be a general nodal rational curve with no real points (k even)

given by a homogeneous complex polynomial f of degree k. A well-chosen projection Dk to P2
C of the

rational normal curve of degree k in PkC should suit. In particular, Dk has 1
2 (k − 1)(k − 2) non-real

nodal points. The conjugated curve Dk of Dk defined by the vanishing of the polynomial f intersects
transversally Dk in k2 points. The union C̃d = Dk ∪Dk ∪E, where E is a general real line if d is odd
or a general real conic with no real points if d is even, is a reducible curve of degree d defined over
R with 1

2 (k2 + (k − 1)(k − 2)) + k pairs of non-real complex conjugate ordinary nodes if d is odd and
1
2 (k2 + (k − 1)(k − 2)) + 2k pairs of non-real complex conjugate ordinary nodes if d is even. Given
any pair of conjugate nodes of (Dk ∩ E) ∪ (Dk ∩ E), it follows from Brusotti Theorem [3, §5.5] that
there exists a small perturbation of C̃d which realizes a local smoothing of the later pair of nodes but
preserves all the others. The resulting real curve Cd is irreducible of degree d with 1

4 (d−1)(d−2) pairs
of non-real conjugate nodes. The genus formula then implies that Cd is rational. We now observe that
the real locus of Cd is a simple closed curve in the real projective plane which is one-sided if and only
if d is odd. If d is odd (resp. d is even) we deduce that there exists a real projective line L∞ meeting
transversally Cd(R) in one point p and transversally at every other point (resp. meeting tangentially
Cd(R) in one point p and transversally at every other point).

2) If d ≡ 0, 3 mod 4, let k = 1
2 (d− 1) if d is odd or k = 1

2 (d− 2) if d is even. Observe that in any
case, k is odd. As in the preceding case, let Dk be a nodal rational curve with a smooth real point ps
(k odd), which is its unique real point, given by a homogeneous polynomial f of degree k. The same
construction of a perturbation Cd of (Dk ∪Dk ∪E) as in the preceding case works except that the line
L∞ at the end of the construction is taken in the set of real lines passing through ps. �

The following lemma completes the proof of Theorem 21:

Lemma 23. For a real nodal rational curve Cd ⊂ P2
R of degree d ≥ 5 as in Proposition 22, we have

κR(P2
R \ (Cd ∪ L∞)) ≥ 0.
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Proof. It is well-known that if d ≥ 6, the complexification of C = Cd cannot be mapped to a line by
a birational automorphism of P2

C. Indeed, since the proper transform of CC in any resolution of its
singularities σ : X → P2

C has self-intersection lower than or equal to −2, CC cannot be contracted to
a point by a birational automorphism of P2

C.
It then follows from a characterization attributed to Coolidge [6] (see also [17]) that the Kodaira

dimension κ(X,KX + C̃C) is non-negative. Let τ : V → P2
R be a log resolution of the pair (P2

R, C ∪L∞)
defined over R restricting to an isomorphism over P2

R \ (C ∪ L∞) and such that B = τ−1(C ∪ L∞)red
has no imaginary loop. Since C̃C is an irreducible component of (BR)C, we have

κR(P2
R \ (C ∪ L∞)) = κ(VC,KVC + (BR)C) ≥ κ(VC,KVC + C̃C) ≥ 0.

In the remaining case d = 5, the above argument does not longer work since every rational nodal
quintic can be mapped to a line by a birational diffeomorphism of P2

R (see Remark 24 below). Never-
theless, a proof can be derived essentially along the same lines as above from Iitaka’s results [14, 15]
on equivalence classes of pairs of complex irreducible plane curves up to birational automorphisms
of P2

C. But we find more enlightening to provide a direct and self-contained argument. So here the
curve C = C5 is a rational nodal quintic defined over R with only pairs of non-real complex conjugate
ordinary nodes {qi, qi}i=1,2,3 as singularities, which intersects L∞ transversally in a real point p and
two pairs {pj , pj}j=1,2 of non-real complex conjugate points. Let σ1 : F1 → P2

R be the blow-up of p
with exceptional divisor C0. Denote by `i and `i the proper transforms of the lines [p, qi] and [p, qi]

in P2
R and let f =

∑3
i=1 `i + `i. Let σ2 : V → F1 be the blow-up of the pairs of points {qi, qi} with

exceptional divisors Ei and Ei and of the pairs {pj , pj} with exceptional divisors Fj and F j . We let
E =

∑3
i=1Ei + Ei, F =

∑2
j=1 Fj + F j , and we let f ′ and L′ be the proper transform of f and L

respectively. The composition τ = σ1 ◦σ2 : V → P2
R is a log-resolution of the pair (P2

R, C ∪L∞) defined
over R, restricting to an isomorphism over P2

R \ (C ∪ L∞) and such that

B = τ−1(C ∪ L∞)red = C ′ + C ′0 + L′ + E + F = BR + E + F

is an SNC divisor without imaginary loop.
Set α = 1

3 , λ = 2
3 , β = µ = 1 so that 6α+ β = 3 and 6λ+µ = 5. Letting ` be the proper transform

on F1 of a general real line through p and L be the proper transform of L, we have

KF1
∼ −2C0 − 3` ∼Q −2C0 − αf − βL

C ∼ 4C0 + 5` ∼Q 4C0 + λf + µL

where we identified C with its proper transform on F1. Then on V , we obtain

KV ∼ σ∗2(KF1) + E + F ∼Q −2C ′0 − αf ′ − βL′ + (1− α)E + (1− β)F

C ′ ∼ σ∗2(C)− 2E− F ∼Q 4C ′0 + λf ′ + µL′ + (λ− 2)E + (µ− 1)F

where C ′0 and C ′ denote the proper transforms of C0 and C respectively. We thus obtain

2KV +BR ∼Q C
′
0 + (λ− 2α)f ′ + (µ− 2β + 1)L′ + (λ− 2α)E + (µ− 2β + 1)F

∼ C ′0

which implies that κR(P2
R \ (C ∪ L∞)) ≥ 0 as desired. �

Remark 24. As explained in the proof above, for every d ≥ 6, the rational curve Cd constructed in
Proposition 22 cannot be transformed into a line by a birational automorphism of P2

R. This directly
implies the weaker fact that the corresponding rational smooth embedding A1

R 99K A2
R is not rectifiable.

In contrast, there exists a birational diffeomorphism of P2
R that maps the nodal rational quintic C5

to a line: it consists of the blow-up σ : V → P2
R of the three pairs {qi, qi}i=1,2,3 of non-real complex

conjugate nodes of C5, followed by the contraction τ : V → P2
R of the proper transforms of the three

pairs of non-real complex conjugate nonsingular conics passing through five of the six points blown-up.
The proper transform of C5 and L∞ by τ ◦ σ−1 are respectively a line and a quintic with three pairs
of non-real complex conjugate nodes.
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4. Obstructions to rectifiability of biddable lines

Recall that a rectifiable rational smooth embedding f : A1
R 99K A2

R is in particular biddable. In this
section, we establish a criterion from which we derive the existence of a host of non-rectifiable biddable
rational smooth embeddings.

Let f : A1
R 99K A2

R be a biddable rational smooth embedding with associated projective curve
C = f(P1

R) ⊂ P2
R. By Definition 15, there exists a birational diffeomorphism α : A2

R 99K S onto
an A1-fibered algebraic model π : S → A1

R of R2 such that the composition α ◦ f : A1
R 99K S is

an everywhere defined closed embedding of A1
R as the support of a fiber of π. Letting (V,B) be a

smooth P1-fibered completion of π : S → A1
R as in Lemma 4, the composition π̃ ◦ α : P2

R 99K P1
R

is a pencil of rational curves defined by a one-dimensional linear system without fixed component
M = (π̃ ◦ α)−1∗ |OP1

R
(1)| ⊂ |OP2

R
(d)| for some d ≥ 1, that has C as an irreducible component of one of

its members. Note that C is a reduced member of the member ofM which contains it if and only if
α(C) is a reduced component of a real fiber π̃−1(p) of π̃, hence coincides with a smooth fiber of it by
Lemma 4.

Theorem 25. For i = 1, 2, let fi : A1
R 99K A2

R, i = 1, 2 be a biddable rational smooth embedding with
associated projective curve Ci ⊂ P2

R. For i = 1, 2, let αi : A2
R 99K Si be a birational diffeomorphism onto

a real A1-fibered algebraic model πi : Si → A1
R of R2 such that αi ◦ fi : A1

R 99K Si is a closed immersion
as the support of a fiber of πi and letMi ⊂ |OP2

R
(di)| be the associated linear system. Suppose that for

i = 1, 2, Ci is an irreducible and reduced member ofMi. Then the following conditions are equivalent:
a) f1 : A1

R 99K A2
R and f2 : A1

R 99K A2
R are equivalent rational smooth embeddings

b) There exists a birational diffeomorphism β : S1 99K S2 and an automorphism γ of A1
R such that

γ ◦ π1 = π2 ◦ β.

Proof. Given a birational diffeomorphism β : S1 99K S2 as in b), we can assume up to changing the
A1-fibration π1 by γ ◦π1 without changing S1 that γ = id so that α2 ◦f2 = β ◦α1 ◦f1. The composition
δ = α−12 ◦β◦α1 is then a birational diffeomorphism of A2

R such that f2 = δ◦f1. Conversely, if f2 = δ◦f1
for some birational diffeomorphism δ of A2

R, then replacing α2 by α2 ◦ δ we can assume that f1 = f2.
Let (Vi, Bi) be smooth completions of Si, i = 1, 2, on which πi extends to a P1-fibration π̃i : Vi → P1

R
as in Lemma 4. Let τi : Wi → P2

R be the minimal resolution of the indeterminacy of π̃i ◦αi : P2
R 99K P1

R,
so that ρ̃i = π̃i ◦ αi ◦ τi : Wi → P1

R is a well-defined P1-fibration, containing the proper transform C ′i
of C as an irreducible component of one of its fibers, say C ′i ⊂ ρ̃

−1
i (0)red up to a coordinate change on

P1
R.

W1

τ1

""

ρ̃1

��

W2

τ2

||

ρ̃2

��

P2
R

α1

||

α2

""
V1

π̃1||

α2◦α−1
1 // V2

π̃2 ""
P1
R

γ // P1
R

We claim that C ′i is a smooth fiber of ρ̃i. Indeed, since C is an irreducible member ofMi, ρ̃−1i (0)red\
C ′i is either empty or consists of exceptional divisors of τi only. Furthermore, since C is a reduced
member of Mi, if

(
ρ̃−1i (0)red \ C ′i

)
C is not empty then by [20, Lemma 1.4.1 p. 195] it must contain

a (−1)-curve Ei intersecting at most two other irreducible components of
(
ρ̃−1i (0)red ∪Hi

)
C, where

Hi ⊂ Bi denote the section of ρ̃i. The conjugate Ei of Ei is equal to Ei if Ei is real. Otherwise,
it is a second (−1)-curve contained in

(
ρ̃−1i (0)red \ C ′i

)
C, intersecting at most two other irreducible

components of
(
ρ̃−1i (0)red ∪H

)
C. Furthermore, since in this case ρ̃−1i (0)red contains at least three

irreducible components, it cannot contain two (−1)-curves which intersect each others. So Ei is
disjoint from Ei. In both cases, by contracting Ei ∪ Ei, we would reach a new smooth projective
surface defined over R on which ρ̃i descends to a P1-fibration. But since Ei ∪ Ei ⊂ Exc(τi,C), this
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contradicts the minimality of τi over R. So ρ̃−1i (0) = C ′i scheme theoretically. This implies in turn
that ρ̃i : Wi → P1

R coincides with the morphism induced by the complete linear system |C ′i| on Wi.
Now consider the composition

θ2 = π̃2 ◦ α2 ◦ τ1 = ρ̃2 ◦ τ−12 ◦ τ1 : W1 99K P1
R.

If θ2 is not a morphism, then let τ : W → W1 be a minimal resolution of its indeterminacy, so that
η2 = θ2 ◦ τ2 : W → P1

R is a well-defined P1-fibration on W lifting ρ̃2 : W2 → P1
R. Since C ′2 = ρ̃−12 (0),

the fiber η−1(0)red contains the proper transform C ′′ of C ′1, which is equal to the proper transform of
C ′2, and the same argument as above shows that η−1(0) = C ′′ scheme-theoretically. So η2 : W → P1

R
coincides with the morphism induced by the complete linear system |C ′′| on W , which implies that
there exists γ̃ ∈ Aut(P1

R) such that γ̃ ◦ ρ̃1 = ρ̃2 ◦ τ−12 ◦ τ1. Since by construction ρ̃i = π̃i ◦ αi ◦ τi, we
get that γ̃ ◦ π̃1 = π̃2 ◦ (α2 ◦ α−11 ), hence, restricting and co-restricting to S1 and S2 respectively that
γ ◦ π1 = π2 ◦ (α2 ◦ α−11 ) for some automorphism γ of A1

R. �

Corollary 26. Let f : A1
R 99K A2

R be a biddable rational smooth embedding and let α : A2
R 99K S

be a birational diffeomorphismon to an A1-fibered algebraic model π : S → A1
R of R2 such that the

composition α ◦ f : A1
R 99K S is an everywhere defined closed embedding of A1

R as the support of a fiber
F of π. If F is a smooth fiber of π then the multiplicities of the scheme theoretic singular fibers of π
are an invariant of the equivalence class of f : A1

R 99K A2
R.

Proof. Suppose that f is equivalent to a second biddable rational smooth embedding f ′ : A1
R 99K A2

R
and let α′ : A2

R 99K S
′ be a corresponding birational diffeomorphismon to an A1-fibered algebraic

model π′ : S′ → A1
R of R2 such that the composition α′ ◦ f ′ : A1

R 99K S
′ is an everywhere defined

closed embedding of A1
R as the support of a smooth fiber F ′ of π′. Then by Theorem 25 there exists

an automorphism γ ∈ Aut(A1
R) such that π′ ◦ α′ ◦ α−1 = γ ◦ π. Since α′ ◦ α−1 : S → S′ is a birational

diffeomorphism, it follows that the scheme theoretic real fibers of π : S → A1
R and π′ : S → A1

R have
the same multiplicities. �

Given a biddable rational smooth embedding f : A1
R 99K A2

R, the collection of multiplicities of the
degenerate fibers of an A1-fibered algebraic model π : S → A1

R of R2 that witnesses the biddability of
f is in general not a complete invariant of the equivalence class of f , even in the case where π has a
unique multiple fiber (see Remark 36 below). Nevertheless, the non existence of multiple fibers is a
sufficient condition for the rectifiabilty of a biddable rational smooth embedding, namely:

Corollary 27. Let f : A1
R 99K A2

R be a biddable rational smooth embedding with associated projective
curve C = f(P1

R) ⊂ P2
R and letM⊂ |OP2

R
(d)| be the linear system associated to a birational diffeomor-

phism α : A2
R 99K S onto an A1-fibered algebraic model π : S → A1

R of R2 such that α ◦ f : A1
R → S

is a closed immersion as the support of a fiber F of π. Suppose that C is an irreducible and reduced
member ofM. Then the following conditions are equivalent:

a) f : A1
R 99K A2

R is rectifiable,
b) M contains a unique real member whose real locus is fully contained in L∞ and every other

real member ofM contains precisely one geometrically irreducible component intersecting A2
R, and this

component is geometrically reduced,
c) The scheme theoretic fibers of π : S → A1

R are all isomorphic A1 over the corresponding residue
fields,

c’) π : S → A1
R is isomorphic to the trivial A1-bundle pr2 : A1

R × A1
R → A1

R.

Proof. Let (V,B) be a smooth completion of S on which π extends to a P1-fibration π̃ : V → P1
R as

in Lemma 4. Since π̃ restricts to an A1-fibration π : S → A1
R, the real locus of the real member ofM

corresponding to π̃−1(P1
R\A1

R) is fully contained in L∞. By Theorem 2, the only possibly singular fibers
of π are real, isomorphic to A1

R when equipped with their reduced structure. Since every geometrically
irreducible component of a real member of M intersecting A2

R becomes a geometrically irreducible
component of a real fiber of π, the second part of the hypothesis in b) is then equivalent to the fact
that all scheme theoretic fibers of π : S → A1

R are isomorphic to A1 over the corresponding residue
fields. So b) is equivalent to c). The equivalence between c) and c’) follows from [16].

Finally, if f is rectifiable then by Remark 16, there exists a birational diffeomorphism α′ : A2
R 99K

S′ = A2
R that maps C ∩A2

R onto a fiber of the second projection π′ = pr2 : S′ = A2
R → A1

R. We deduce
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in turn from Theorem 25 that there exists an automorphism γ ∈ Aut(A1
R) such that π′◦α′◦α−1 = γ◦π.

Since α′ ◦ α−1 : S → S′ is a birational diffeomorphism, it follows that all scheme theoretic fibers of
π : S → A1

R are isomorphic to A1 over the corresponding residue fields. So a) implies c), which
completes the proof. �

Let Sm be a smooth affine surface with an A1-fibration πm : Sm → A1
R defined over R and admitting

a unique degenerate real fiber, isomorphic to A1
R, of odd multiplicity m ≥ 3 (for instance, take S as

in Example 6). By Theorem 5, Sm is an algebraic model of R2 birationally diffeomorphic to A2
R but

non-biregularly isomorphic to it. Let α−1 : Sm
∼
99K A2

R be such a birational diffeomorphism and let
i : A1

R ↪→ Sm be the inclusion of a smooth real fiber of π. By Corollary 27, fm = α−1 ◦ i : A1
R 99K A2

R
is a non-rectifiable biddable rational smooth embedding. Furthermore, since for two different m and
m′ the fibers π−1m (0) and π−1m′ (0) have different multiplicities, it follows from Corollary 26 that the
corresponding rational smooth embeddings fm : A1

R 99K A2
R and fm′ : A1

R 99K A2
R are not equivalent

under birational diffeomorphisms of A2
R. Summing up, we obtain:

Corollary 28. There exists infinitely many equivalence classes of non-rectifiable biddable rational
smooth embeddings of A1

R into A2
R.

Remark 29. Let again π : Sm → A1
R be an algebraic model of R2 equipped with an A1-fibration

having a unique degenerate real fiber, say π−1(0), isomorphic to A1
R, of odd multiplicity m ≥ 3. In

contrast with the inclusion i : A1
R ↪→ Sm of a smooth real fiber which induces a non-rectifiable rational

smooth embedding of A1
R into A2

R, a careful tracing of the construction of a birational diffeomorphism
α−1 : Sm 99K A2

R described in [8, Section 4.2] reveals that the composition of the inclusion i0 : A1
R ↪→ Sm

of π−1(0)red with α−1 is a linear regular closed embedding of A1
R into A2

R.

5. Classification up to degree four

In this section, we classify all rational smooth embeddings f : A1
R 99K A2

R whose associated projective
curves C ⊂ P2

R have degrees less than or equal to four.

5.1. Degree lower than or equal to 3.

Proposition 30. Every rational smooth embedding f : A1
R 99K A2

R whose associated curve C ⊂ P2
R has

degree ≤ 3 is rectifiable.

Proof. If degC = 1 then C is a real line in P2
R and so f is rectifiable. If degC = 2, then C is a smooth

conic, whose intersection with L∞ must consists of a unique real point p∞ by Lemma 13. It follows
that f : A1

R 99K A2
R is actually defined at every point of A1

R, hence is a closed immersion of R-schemes.
So f : A1

R ↪→ A2
R is rectifiable by an R-automorphism of A2

R by virtue of the Abhyankar-Moh Theorem
over R.

We now assume that C is a rational cubic in P2
R. So it has either an ordinary double point or a

cusp of multiplicity two, which, by Lemma 13 again is necessarily a real point ps of C ∩ L∞. The
intersection multiplicity of C and L∞ at ps is thus at least 2, and since C · L∞ = 3, it follows that
C ∩L∞ contains at most another point distinct from ps, which is thus necessarily a smooth real point
of C. We have the following alternative for C ∩ L∞:

a) C ∩ L∞ = {ps}. Then ps is an ordinary cusp with tangent L∞ and then f : A1
R 99K A2

R is an
everywhere defined closed embedding which is rectifiable by the Abhyankar-Moh Theorem over R.

b) C ∩ L∞ consists of ps and a second real point p0 of C. By Lemma 13, ps must be an ordinary
double point with non-real complex conjugate tangents T and T while p0 is a smooth point of C
at which C and L∞ intersect transversally. Example 14 provides an illustration of this situation in
which the rational smooth embedding under consideration is rectifiable. Let us show that this holds
in general. Let τ1 : F1 → P2

R be the blow up of ps with exceptional divisor E and let ρ1 : F1 → P1
R

be the P1-bundle structure on F1 induced by the projection P2
R 99K P1

R from the point ps. The proper
transform of L∞ is a real fiber of ρ1 while T and T are a pair of non-real complex conjugate fibers.
The proper transform of C is a smooth rational curve which is a section of ρ1 intersecting E in the
pair of non-real complex conjugate points {q, q} = (T ∪ T ) ∩ E. Let τ2 : F1 99K F3 be the elementary
transformation defined over R obtained by blowing-up q and q and contracting the proper transforms
of T and T . The proper transform of C is then a section of ρ3 : F3 → P1

R which does not intersect
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the proper transform of E. The composition τ2 ◦ τ−11 : P2
R 99K F3 induces a birational diffeomorphism

α : A2
R = P2

R \ L∞ 99K F3 \ (E ∪ L∞) ' A2
R with the property that α ◦ f : A1

R 99K A2
R is an everywhere

defined closed embedding which is thus rectifiable by the Abhyankar-Moh Theorem over R. This
implies in turn that f is rectifiable. �

5.2. The quartic case. Now we consider the case where the projective curve C associated to f :
A1

R 99K A2
R is a quartic. The types and configurations of singularities that can appear on, or infinitely

near to, an irreducible rational complex plane quartic CC are completely determined by the two classical
formulas

g =
(d− 1)(d− 2)

2
−
∑
p

1

2
mp(mp − 1) and

∑
q 7→p

mq ≤ mp.

In the first one, p varies over all singularities of CC including infinitely near ones and mp denotes the
multiplicity at p. In the second one q varies in the first infinitely near neighborhood of p. The above
formulas permit nine possible types of singularities in the complex case. Some additional sub-types
arise in the real case according to the type of branches of C at a given singular point, see [19, 9, 22],
these are summarized in Figure 5.1.

Classical Name Modern Name Multiplicity sequence
Ordinary Node A1, A∗1 [2]
Ordinary Cusp A2 [2]

Tacnode A3,A∗3 [2, 2]
Double Cusp A4 [2, 2]
Oscnode A5, A∗5 [2, 2, 2]

Ramphoid Cusp A6 [2, 2, 2]
Ordinary triple point D4,D∗4 [3]

Tacnode Cusp D5 [3]
Multiplicity 3 Cusp E6 [3]

Pair of imaginary ordinary nodes 2Ai1 [2] and [2]
Pair of imaginary ordinary cusps 2Ai2 [2] and [2]

Figure 5.1. Possible singularity types of a real rational quartic.

The modern notation in the table refers to Arnold’s one [2], with the following additional convention
introduced by Gudkov [10]:

- If there is no asterisk in the notation of a point then the point is real and all the branches centered
in it are real.

- If there is one asterisk in the notation of a point then it is real and precisely two branches centered
in this point are non-real complex conjugate.

- The upper index refers to a pair of non-real conjugate points of the given type.

The property for a real rational quartic C to be the associated projective curve of a rational smooth
embedding f : A1

R 99K A2
R imposes additional restrictions on its configuration of singular points:

Lemma 31. The possible configurations of singularities of a real plane quartic C associated with a
rational smooth embedding f : A1

R 99K A2
R are the following:

1) Three singular points: A2 + 2Ai1 or A2 + 2Ai2. In each case the singular point of type A2 belongs
to C ∩ L∞, and the tangent line to C at this point is different from L∞.

2) Two singular points: A2 + A∗3 or A4 + A∗1. In each case, both singular points are real points of
C ∩ L∞, and the tangent line to C at each of them is different from L∞.

3) A unique singular point: A∗5, A6, D∗4 or E6. In each case, the unique singular point is a real
point of C ∩ L∞. In the cases D∗4 and E6, L∞ is a tangent line to C at the singular point whereas in
the case A∗5, the tangent line to C at the singular point is different from L∞.

Proof. If C has three singular points then the genus formula implies they all have multiplicity sequence
equal to [2]. Furthermore, exactly one of these is a real point p∞ of C contained in C ∩L∞ and whose
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inverse image in the normalization of C consists of a unique real point. So p∞ is an ordinary real
cusp A2. Furthermore, the tangent line to C at p∞ is distinct from L∞. Indeed, otherwise we would
have (L∞ · C)p∞ = 3 and then L∞ ∩ C would consists of p∞ and another smooth real point of C at
which C and L∞ intersects transversally in contradiction with Lemma 13. So (L∞ · C)p∞ = 2 and
the remaining possibilities for L∞ ∩ C are that (C ∩ L∞) \ {p∞} consists of a pair {q, q} of non-real
complex conjugate smooth points q and q of C or that it consists of a unique real ordinary double
point with non-real complex conjugate tangents. The second possibility is excluded since otherwise
the remaining singular point would have to be a real ordinary double point of C not supported on
L∞ in contradiction with Lemma 13. The remaining two singular points of C are then a pair {p, p} of
non-real complex conjugate points which are either ordinary cusps or ordinary double points of C \L∞.
This yields types A2 + 2Ai2 and A2 + 2Ai1 respectively.

If C has two singular points p0 and p1 then the genus formula implies that these points have
respective multiplicity sequences [2] and [2, 2]. Since these are different, it follows that p0 and p1 are
real points of C, which are therefore supported on L∞. Furthermore, since C · L∞ = 4, we have
C ∩L∞ = {p0, p1}. The asserted two possible types then follow immediately from the hypothesis that
f : A1 99K A2

R is a rational smooth embedding. Furthermore, since C ·L∞ = (C ·L∞)p0 +(C ·L∞)p1 = 4
we conclude that the tangent to C at p0 and p1 is different from L∞.

Finally, if C has a unique singular point, then it is a real point p∞ ∈ C∩L∞. By the genus formula,
the possible multiplicity sequences for p∞ are [3] or [2, 2, 2]. If p∞ is a triple point, then it follows
from Lemma 13 that p∞ is either a cusp of multiplicity three E6 or an ordinary triple point of type
D∗4 . Since (C · L∞)p∞ ≥ 3, we conclude that L∞ is a tangent line to C at p∞ for otherwise C would
intersect L∞ transversally in another smooth real point which is excluded by Lemma 13.

Otherwise, if p∞ has multiplicity sequence [2, 2, 2] then p∞ is either a ramphoid cusp A6 or an
oscnode, which is then necessarily of type A∗5 by Lemma 13 again. In the second case, the tangent line
to C at p∞ intersects C with multiplicity four at p∞, so it cannot be equal to L∞. Indeed, otherwise
we would have C ∩ L∞ = {p∞} and the then the inverse image of C ∩ L∞ in the normalization of C
would not contain any real point, in contradiction to Lemma 13. �

Proposition 32. Every rational smooth embedding f : A1
R 99K A2

R whose associated projective curve C
is a quartic is biddable. Furthermore, it is rectifiable except in the cases where C has either a singular
point of type A∗5 or a singular point of type A6 whose tangent is different from L∞.

To prove Proposition 32, we consider below the different possible cases for C separately, according
to the number of its singular points.

5.2.1. Three singular points.

Lemma 33. A rational smooth embedding f : A1
R 99K A2

R whose associated curve C ⊂ P2
R is a quartic

with singularities A2 + 2Ai1 or A2 + 2Ai2 is rectifiable.

Proof. In both cases, C has a unique real ordinary cusp p∞ ∈ C ∩ L∞ whose tangent line is different
from L∞. So (C · L∞)p∞ = 2 and then, by Lemma 13, (C ∩ L∞) \ {p∞} consists of a pair {q, q} of
non-real complex conjugate smooth points q and q of C. We denote by {p, p} the pair of non-real
complex conjugate singular points of C. To show that f : A1

R 99K A2
R is rectifiable, we proceed as

follows.
Step 1) (See Figure 5.2) Let τ1 : F1 → P2

R be the blow-up the point p∞ with exceptional divisor
E∞, and let ρ1 : V1 = F1 → P1 be the induced P1-bundle structure with exceptional section E∞.
The proper transforms of the non-real conjugate lines L = [p∞, p] and L = [p∞, p] are fibers of ρ1
which intersect the proper transform of C in the double points p and p respectively. On the other
hand C intersects the proper transform of L∞ transversally in the two conjugate points q and q, and
it intersects E∞ with multiplicity 2 at a smooth real point p∞,1 supported on E∞ \

{
L∞, L, L

}
. Let

τ2 : V1 99K V2 = F1 be the birational map defined over R consisting of the blow-up of the pair of points
p and p followed by the contraction of the proper transforms of L and L. The proper transform of E∞
is a section of the P1-bundle structure ρ′1 : F1 → P1 with self-intersection 1 while the proper transform
of C is a smooth 2-section of ρ′1 with self-intersection 4, still intersecting E∞ with multiplicity 2 in
p∞,1.
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Figure 5.2. Three singular points, step 1: case A2 + 2Ai1 on the left and A2 + 2Ai2
on the right.

Step 2) The proper transforms Q and Q in V2 of the pair of non-real complex conjugate conics in
P2
R passing through p∞, p∞,1, q, p, p and p∞, p∞,1, q, p, p respectively are sections of ρ′1 passing through
q and p∞,1 and q and p∞,1 respectively. Let τ3 : V2 99K V3 be the birational map defined over R
consisting of the blow-up of q and q, the blow-up of the R-rational point p∞,1 with exceptional divisor
E∞,1, followed by the contraction of the proper transforms of Q and Q. The proper transforms in
V3 of L∞, E∞, E∞,1 have self-intersections −2, 0 and 1 respectively, the proper transform of C has
self-intersection 1, it intersects E∞ transversally at the real point p∞,2 = E∞ ∩ E∞,1 and it does no
longer intersect L∞.

Step 3) (See Figure 5.3) Finally, let τ4 : V3 99K V4 be the birational map defined over R obtained by
blowing up p∞,2 with exceptional divisor E∞,2 and then contracting successively the proper transforms
of E∞ and L∞. The proper transforms of E∞,1 and C have self-intersection 0 while the proper trans-
form of E∞,2 has self-intersection 1. Counting the number of points blown-up and curves contracted,
we see that Pic(V4) ' Z2. It follows that V4 ' F1 on which C and E∞,1 and E∞,2 are respectively
fibers and a section of the P1-bundle structure ρ1 : F1 → P1

R. By construction, the composition
τ4 ◦ τ3 ◦ τ2 ◦ τ−11 : P2

R 99K F1 restricts to a birational diffeomorphism

α : A2
R = P2

R \ L∞ 99K F1 \ (E∞,1 ∪ E∞,2) ' A2
R

such that α ◦ f : A1
R 99K A2

R coincides with the closed immersion of A1
R as a real fiber of the projection

pr2 = ρ1|A2
R

: A2
R → A1

R. This shows that f is rectifiable. �

5.2.2. Two singular points.

Lemma 34. A rational smooth embedding f : A1
R 99K A2

R whose associated curve C ⊂ P2
R is a quartic

with singularities A2 +A∗3 or A4 +A∗1 is rectifiable.

Proof. We deal with each case separately (see Figure 5.4).
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Figure 5.3. Three singular points, step 3: case A2 + 2Ai1 or A2 + 2Ai2.

1) C has a real ordinary cusp p0 and a real tacnode p1 with real tangent, whose inverse image in
the normalization of C consists of a pair (q, q) of non-real complex conjugate points. Furthermore the
tangent to C at p0 and p1 is different from L∞. By Lemma 13, we have C ∩L∞ = {p0, p1}. A minimal
log-resolution τ : (V,B)→ (P2

R, C ∪L∞) of the pair (P2
R, C ∪L∞) for which B has no imaginary loop is

obtained by blowing-up on the one hand the real point p0 with exceptional divisor E0,1, then the real
intersection point p0,1 6= L∞ ∩ E0,1 of the proper transform of C with E0,1, with exceptional divisor
E0,2 and then the real intersection point p0,2 of the proper transform of C with E0,2, with exceptional
divisor E0,3, and on the other hand the real point p1 with exceptional divisor E1,1, the real intersection
point p1,1 6= L∞ ∩E1,1 of the proper transform of C with E1,1, with exceptional divisor E1,2 and then
the pair of non-real complex conjugate intersection points (q, q) of the proper transform of C with E1,2,
with respective exceptional divisors F and F . The proper transform of C in V is a smooth rational
curve with self-intersection 0, which intersects E0,3, F and F transversally. The proper transforms in
V of the non-real complex conjugate smooth conics Q and Q passing through p0, p0,1, p1, p1,1, q and
p0, p0,1, p1, p1,1, q respectively are disjoint (−1)-curves which do not intersect the proper transform of
C. The contraction τ1 : V → V1 of Q∪Q∪L∞∪E1,1∪E0,1∪E1,2 is a birational morphism defined over
R. The images in V1 of C and E0,2 have self-intersection 0 while the image of E0,3 has self-intersection
1. We conclude in the same way as in the proof of Lemma 33 that V1 ' F1 on which C, E0,2 and E0,3

are respectively fibers and a section of ρ1 : F1 → P1
R, that τ1 ◦ τ−1 : P2

R 99K F1 restricts to a birational
diffeomorphism

α : A2
R = P2

R \ L∞ 99K F1 \ (E0,3 ∪ E0,2) ' A2
R

for which α ◦ f : A1
R 99K A2

R coincides with the closed immersion of A1
R as a real fiber of the projection

pr2 : A2
R → A1

R.
2) C has real double cusp p0 and a real ordinary double point p1 with non-real complex conjugate

tangents. Furthermore, the tangent line to C at each of them is different from L∞. As in the previous
case, we have C ∩ L∞ = {p0, p1}. A minimal log-resolution τ : (V,B) → (P2

R, C ∪ L∞) of the pair
(P2

R, C ∪ L∞) for which B has no imaginary loop is obtained by blowing-up on the one hand the real
point p0 with exceptional divisor E0,1, then the real intersection point p0,1 6= E0,1 ∩ L∞ of the proper
transform of C with E0,1, with exceptional divisor E0,2, then the real intersection point p0,2 of the
proper transform of C with E0,2 with exceptional divisor E0,3 and then the real intersection point p0,3
of the proper transform of C with E0,3 with exceptional divisor E0,4, and on the other the real point p1
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Figure 5.4. Two singular points: case A2 +A∗3 on the left and A4 +A∗1 on the right.

with exceptional divisor E1,1 and then the pair of non-real complex conjugate intersection points (q, q)

of the proper transform of C with E1,1, with respective exceptional divisors F and F . The proper
transform of C in V is a smooth rational curve with self-intersection 0, which intersects E0,4, F and F
transversally. The proper transforms in V of the non-real complex conjugate smooth conics Q and Q
passing through p0, p0,1, p0,2, p1, q and p0, p0,1, p0,2, p1, q respectively are disjoint (−1)-curves which do
not intersect the proper transform of C. The contraction τ1 : V → V1 of Q∪Q∪L∞∪E0,1∪E1,1∪E0,2 is
a birational morphism defined over R. The images in V1 of C, E0,3 and E0,4 all have self-intersection 0.
Counting the number of points blown-up and curves contracted, we conclude that V1 ' F0 = P1

R × P1
R

in which the images of C, E0,3 and E0,4 are respectively fibers and a section of pr2 : F0 → P1
R, and

that
α = τ1 ◦ τ−1|P2

R\L∞ : A2
R = P2

R \ L∞ 99K F0 \ (E0,4 ∪ E0,3) ' A2
R

is a birational diffeomorphism for which α ◦ f : A1
R 99K A2

R coincides with the closed immersion of A1
R

as a real fiber of the projection pr2 : A2
R → A1

R. �

5.2.3. A unique singular point.

Lemma 35. Let f : A1
R 99K A2

R be a rational smooth embedding whose associated curve C ⊂ P2
R is a

quartic with a unique singular point p∞. Then the following holds:
a) If p∞ is either triple point D∗4 or E6 or a ramphoid cusp A6 such that Tp∞C = L∞ then f is

rectifiable.
b) Otherwise if p∞ is an oscnode A∗5 or a ramphoid cusp A6 such that Tp∞C 6= L∞ then f is

biddable but not rectifiable.

Proof. We consider each of the possible singularities E6, D∗4 , A6 and A∗5 listed in Lemma 31 separately.
1) If p∞ is a multiplicity 3 cusp E6 with tangent L∞ then f : A1

R 99K A2
R is actually an everywhere

defined closed embedding, which is thus rectifiable by the Abhyankar-Moh Theorem over R.
2) If p∞ is a real triple point of type D∗4 then the tangent cone to C at p∞ is the union of L∞

and a pair L and L of non-real complex conjugate tangents to C. Since every line in P2
R passing

through p∞ intersects C \ {p∞} transversally in at most one real point, the proper transform of C
in the blow-up τ1 : F1 → P2

R of p∞ with exceptional divisor E ' P1
R is a section of the P1-bundle

structure ρ1 : F1 → P1
R. It intersects E transversally at the pair of non-real complex conjugate
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intersection points q and q of the proper transforms of L and L with E respectively and at the real
intersection point of the proper transform of L∞ with E. Let τ2 : F1 99K F3 be the birational map
defined over R consisting of the blow-up of q and q followed by the contraction of the proper transform
of L and L. The proper transforms of L∞ and E are respectively a fiber and the negative section
of the P1-bundle structure ρ3 : F3 → P1

R while the proper transform of C in F3 is a section of ρ3
intersecting E transversally at the real point E ∩ L∞. The birational map τ2 ◦ τ−11 restricts to a
birational diffeomorphism α : A2

R = P2
R \ L∞

∼
99K F3 \ (E ∪ L∞) ' A2

R for which the composition
α ◦ f : A1

R 99K A2
R is an everywhere defined closed embedding. By the Abhyankar-Moh Theorem over

R, α ◦ f is rectifiable, and so f is rectifiable.
3) If p∞ is a ramphoid cusp A6 with tangent Tp∞C = L∞ then (C ·L∞)p∞ = 4 and then f : A1

R 99K
A2

R is an everywhere defined closed embedding, which is thus straigthenable by the Abhyankar-Moh
Theorem over R.

4) If p∞ is a ramphoid cusp A6 such that Tp∞C 6= L∞ then C∩ (L∞ \{p∞}) consists of a pair {q, q}
of non-real complex conjugate points while the tangent T to C at p∞ intersects C with multiplicity
4 at p∞. Let ρ : P2

R 99K P1
R be the rational map defined by the pencil M ⊂ |OP2

R
(4)| generated

by C and 3T + L∞. A minimal resolution τ : V1 → P2
R of the indeterminacy of ρ is obtained by

blowing-up q and q with respective non-real complex conjugate exceptional divisor F and F , the point
p∞ with exceptional divisor E1 ' P1

R and four times successively the intersection point p∞,i of the
proper transform of C and Ei, with exceptional divisor Ei+1 ' P1

R. The reduced total transform B1

of L∞ is a tree of smooth geometrically rational curves. The proper transform of C in V is a smooth
rational curve with self-intersection 0, and so π1 = ρ ◦ τ : V1 → P1

R is a P1-fibration, having the proper
transform of C as a smooth real fiber, and the exceptional divisors F , F and E5 as sections (See left
hand side of Figure 5.5).

The fiber of π1 over the real point π1(E4) consists of the union of E4 and the proper transforms of the
non-real complex conjugate smooth conics Q and Q passing respectively through p∞, p∞,1, p∞,2, p∞,3, q
and p∞, p∞,1, p∞,2, p∞,3, q. These are disjoint (−1)-curves in V1,C which can thus be contracted by a
birational morphism σ : V1 → V defined over R. We let B = L∞∪E1∪· · ·∪E5 be the proper transform
ofB1,R. The proper transform of E4 is then a full fiber of the induced P1-fibration π = π1◦σ−1 : V → P1

R
and the latter restricts on S = V \B to an A1-fibration π : S → A1

R with a unique singular fiber equal to
Tp∞ ∩ S ' A1

R with multiplicity 3. By Theorem 2, S is an algebraic model of R2 and by construction,
α = σ ◦ τ−1 : P2

R 99K V induces a birational diffeomorphism P2
R \ L∞ 99K S that maps C to an

irreducible fiber of π. This shows that f : A1
R 99K A2

R is biddable. But since π has T ∩ S ' A1
R as a

non-reduced fiber, it follows from Corollary 27 that f is not rectifiable.
5) If p∞ is an oscnode whose inverse image in the normalization of C consists of a pair {q, q} of

non-real complex conjugate points and whose tangent is different from L∞. It follows from Lemma 13
that C ∩ (L∞ \ {p∞}) consists of a unique other smooth real point p0 at which C and L∞ intersect
with multiplicity 2. As in the previous case, the tangent T to C at p∞ intersects C with multiplicity 4
at p∞, and we consider the rational map ρ : P2

R 99K P1
R defined by the pencilM⊂ |OP2

R
(4)| generated

by C and 3T + L∞. A minimal resolution τ : V1 → P2
R of the indeterminacy of ρ for which B has

no imaginary loop is obtained by blowing-up on the one hand p0 with exceptional divisors E0,1 and
then the intersection point p0,1 of the proper transform of C and E0,1 with exceptional divisor E0,2,
and on the other hand blowing-up p∞ with exceptional divisor E∞,1, then two times successively the
intersection point p∞,i of the proper transform of C and E∞,i with exceptional divisor E∞,i+1 and
finally blowing-up the pair {q, q} of non-real complex conjugate points of intersection of E∞,3 with the
proper transform of C, with respective exceptional divisors F and F (See right hand side of Figure 5.5).
The reduced total transform B1 of L∞ is a tree of smooth geometrically rational curves. The proper
transform of C in V is a smooth rational curve with self-intersection 0. So π1 = ρ ◦ τ1 : V1 → P1

R
is a P1-fibration having the proper transform of C as a smooth real fiber and the curves E0,2, F
and F as disjoint sections. The fiber of π1 over the real point π1(E0,1) consists of the union of
E0,1 and the proper transforms of the non-real complex conjugate smooth conics Q and Q passing
respectively through p0, p∞, p∞,1, p∞,2, q and p0, p∞, p∞,1, p∞,2, q. These are disjoint (−1)-curves in
V1,C which can thus be contracted by a birational morphism σ : V1 → V defined over R. We let
B = L∞ ∪ E∞,1 ∪ E∞,2 ∪ E∞,3 ∪ E0,1 ∪ E0,2 be the proper transform of B1,R. The proper transform
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Figure 5.5. One singular point: case A6 on the left and A∗5 on the right.

of E0,1 is then a full fiber of the induced P1-fibration π = π1 ◦ σ−1 : V → P1
R, and the latter restricts

on S = V \ B to an A1-fibration π : S → A1
R with a unique singular fiber equal to T ∩ S ' A1

R
with multiplicity 3. We conclude as in the previous case that f : A1

R 99K A2
R is biddable but not

rectifiable. �

Remark 36. Let fi : A1
R 99K A2

R, i = 1, 2, be rational smooth embeddings whose associated curve
C ⊂ P2

R is a quartic whose unique singular point p∞ is an oscnode A∗5 or a ramphoid cusp A6 such
that Tp∞C 6= L∞ respectively. In each case, the A1-fibered model πi : Si → A1

R of R2 for which
αi ◦ fi : A1

R → Si is a closed embedding as a smooth fiber of πi constructed in the proof of Lemma 35
has a unique multiple fiber, of multiplicity 3, say π−1i (0). On the other hand, one sees on Figure 5.5
that the P1-fibrations π̃i : Vi → P1

R extending πi have non-isomorphic real fibers π̃−11 (0) and π̃−12 (0):
in the A∗5 case, the irreducible component of π̃−11 (0) intersecting the section of π̃1 contained in B1 has
self-intersection −3, while the ireducible component of π̃−12 (0) intersecting the section of π̃2 contained
in B2 has self-intersection −2 in the A6 case. This implies that there cannot exist any birational
map β : V1 99K V2 which restricts to a birational diffeomorphism between S1 and S2 and such that
π̃2 ◦ β = π̃1. It follows in turn from Theorem 27 that f1 and f2 are inequivalent rational smooth
embeddings of A1

R in A2
R.
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