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ABSTRACT

Context. The disk instability model (DIM) attributes the outbursts of dwarf novae to a thermal-viscous instability of their accretion
disk, an instability to which nova-like stars are not subject.

Aims. We aim to test the fundamental prediction of the DIM: the separation of cataclysmic variables (CVs) into nova-likes and dwarf
novae depending on orbital period and mass transfer rate from the companion.

Methods. We analyzed the light curves from a sample of ~130 CVs with a parallax distance in the Gaia DR2 catalog to derive their
average mass transfer rate. We validated the method for converting optical magnitude to mass accretion rate against theoretical light
curves of dwarf novae.

Results. Dwarf novae (resp. nova-likes) are consistently placed in the unstable (resp. stable) region of the orbital period — mass transfer
rate plane predicted by the DIM. None of the analyzed systems present a challenge to the model. These results are robust against the
possible sources of error and bias that we investigated. Light curves from Kepler or, in the future, the LSST or Plato surveys, could
alleviate a major source of uncertainty, that is, the irregular sampling rate of the light curves, assuming good constraints can be set on
the orbital parameters of the CVs that they happen to target.

Conclusions. The disk instability model remains the solid basis on which to construct an understanding of accretion processes in

CVs.

Key words. accretion, accretion disks — binaries: close — stars: dwarf novae — novae, cataclysmic variables

1. Introduction

Cataclysmic variables (CVs) are binary systems composed of a
white dwarf accreting from a low-mass stellar companion filling
its Roche lobe (Warner 1995). Cataclysmic variables come in a
bewildering variety of types and subtypes corresponding to their
variability properties and spectra. The overarching distinction is
between the dwarf novae, which show repeated outbursts with
an amplitude 22 optical magnitudes on timescales of weeks to
decades, and the nova-like systems, whose light curves remain
roughly steady on the same timescales.

The outbursts of dwarf novae have long been known to
originate in the accretion disk surrounding the white dwarf
(Smak 1971; Osaki 1974) due to a mechanism identified by
Meyer & Meyer-Hofmeister (1981). This instability occurs when
the temperature is low enough in the accretion disk that hydrogen
recombines. The steep dependence of the opacity with tempera-
ture in this regime triggers a thermal and a viscous instability that
leads the disk to cycle through two states. In the eruptive state,
the disk has a high temperature >10* K, hydrogen is highly ion-
ized, and the mass accretion rate M is higher than the mass trans-
fer rate M, from the companion star. In the quiescent state, the
disk has a temperature <3000 K, hydrogen is mostly neutral, and
M < M,. The disk instability model (DIM) aims at exploring the
consequences of this instability on disk accretion and explaining
the variety of observed light curves (Osaki 1996; Lasota 2001).

A fundamental test of the DIM is whether it repro-
duces the distinction between dwarf novae and nova-likes.

In nova-likes, the whole disk should be hot enough for hydrogen
to be highly ionized. This translates into a minimum mass accre-
tion rate above which a disk of given size is stable. The system is
a dwarf novae if this criterion is not met. Hence, the DIM can be
tested against observations by deriving the average mass accre-
tion rate and the size of the disk R, in dwarf novae and nova-
likes. Importantly, this instability criterion does not depend on
the details of how matter is transported in accretion disks, which
remains a highly debated issue.

Smak (1982) showed that this criterion roughly separates
nova-likes from dwarf novae in the (Roy, M) plane, using ap-
proximate magnitudes and distances for a dozen CVs. Since
then, only Schreiber & Lasota (2007) have updated this work,
for a sample of ten CVs. The importance of this test was revived
by Schreiber & Génsicke (2002), who pointed out that the HST
FGS parallax distance of SS Cyg, the archetypal dwarf nova, led
to a revised mass transfer rate that placed this outbursting sys-
tem in the stable region of the (Ryy, M) plane. This led to much
hand-wringing (Schreiber & Lasota 2007; Smak 2010) until a ra-
dio VLBI parallax distance (Miller-Jones et al. 2013), confirmed
with Gaia (Ramsay et al. 2017), firmly placed the system in the
unstable region (as anticipated by Lasota 2008).

Although there are dozens of CVs with relatively well-
known binary parameters, a thorough investigation of this test
has yet to be performed. Ramsay et al. (2017) proposed to test
the DIM by taking the absolute magnitude at a specific stage of
a dwarf nova outbursts (at the end of long outbursts or in stand-
stills) to compare the derived mass accretion rate to the critical
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rate for the system, under the assumption that both should be
nearly equal. Good agreement was found for the sample of a
dozen CVs with distances in the Gaia first data release. Its main
advantage is that the required optical magnitude is straightfor-
ward to extract from the light curves. However, a major draw-
back of this approach is that it relies on assumptions on how
matter is transported in the disk because one needs to predict
when the mass accretion rate happens to be equal to the critical
rate during the outburst cycle. Hence, it is a much less funda-
mental and robust test of the basic premises of the DIM.

Indeed, an important difficulty in using the fundamental test
is that it requires extracting the average mass transfer rate from
CV optical light curves, which in many cases are unevenly,
inhomogeneously, and incompletely sampled. The situation is
somewhat easier for X-ray binaries, for which the DIM also ap-
plies because X-ray monitors provide continuous coverage and
X-rays provide a closer measure of the bolometric luminosity
in those systems than optical magnitudes do for CVs, which in
outburst emit primarily UV radiation. Coriat et al. (2012) were
able to derive average mass accretion rates for ~50 X-ray bina-
ries and showed that the DIM, modified to include X-ray irradi-
ation (van Paradijs 1996), separates consistently transients from
steady systems.

We carry out, for the first time on CVs, a similar analysis
to that performed on X-ray binaries by Coriat et al. (2012) to
test the fundamental prediction of the DIM: the separation of
CVs into stable and unstable systems is determined by the or-
bital period (a proxy for disk size) of the binary and mass trans-
fer rate from the companion. We use a subsample of the CV
light curves gathered by Otulakowska-Hypka et al. (2016). We
consider all types of dwarf nova outbursts, including so-called
super-outbursts that are not supposed to be described by the
standard version of the DIM (see, e.g., Lasota 2001, and ref-
erences therein), but which have the same instability criterion.
We first validate the conversion from optical magnitudes to ac-
cretion rates against model light curves (Sect. 2). The sample of
CVs and our approach to analyzing their light curves is described
in Sect. 3. Section 4 discusses the results and possible sources of
errors. We conclude on the validity of the DIM.

2. Model
2.1. Converting disk flux to magnitudes

The accretion disk in CVs is geometrically thin and radiatively
efficient. We model the disk emission as the sum of local black-
body spectra at the local effective temperature T, which is a
function of radius R and time. The flux is

. AR
COS l out
F,= - me B,27RdR, (D)
where
23 hy !
BV =5 -1 s 2
= oo (irs)-1| g

i the disk inclination, and d the distance to the binary. The black-
body approximation is good when compared to using stellar
spectra (Smak 1989). The DIM provides the evolution of Teg
as a function of radius and time. The disk emission is converted
to an optical flux in the Johnson V band, i.e.,

N
COS out
’ f wy(Teg)o T4 27RAR,

Fy=—-
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where wy(T) is defined as

1 ffVBvdV
oT* [ fydv
and fy is the filter response from Mann & von Braun (2015), as

implemented in the SVO Filter Profile Service'. The absolute
magnitude is then given by

2
F
MV=—2.5 log[(%pc) (Z_\\//) s

wy(T) = ; “

®

where Zy =3562.5Jy is the V band flux zero point in the Vega
system. Numerical integration of Eq. (3) for a given radial distri-
bution of T.g in the disk, using the bolometric correction Eq. (4),
gives the absolute magnitude My Eq. (5) of the disk. The same
procedure can be used for any filter in the database.

2.2. Disk parameters

The ratio of outer disk size to binary separation R,y /a de-
pends only on the mass ratio g. Using Paczyniski (1977) or
Lin & Papaloizou (1979) gives comparable results. The typical
disk size is between (2-7) x 10'9 cm for 80 mn < Poy, < 10 h. The
disk circularization radius in units of binary separation a, R../a,
also depends only on g.
The minimum inner disk radius is set to the white dwarf ra-

dius, parametrized as (Nauenberg 1972)

2/3 1/2

) ] cm. (6)

However, the magnetic field of the white dwarf can truncate the
inner disk before it reaches the white dwarf surface. Following
the standard approach (Frank et al. 2002), the truncation radius
is set by

4 1/7
P
magN(GMMz] >

1.44M®)2/3 ( M

_ 8
Rwp=7.8%10 |:( i —144M®

)

where u = BWDR%VD the magnetic moment of the white dwarf and

M;, the mass accretion rate at the inner radius. The truncation
radius is close to or at the white dwarf radius in outburst, when
M;, is high. It can be much larger than the white dwarf radius
in quiescence. Aside from changing the outburst properties, this
has two main consequences for the present work: first, a cold
stable disk can exist if the truncation radius is large and second,
the varying inner disk radius changes the relationship between
magnitude and mass transfer rate.

Limb darkening changes the inclination dependence com-
pared to the simple cosi dependence Eq.(1). We obtain
the inclination dependence by using the magnitude correc-
tion derived from more elaborate disk spectral models by
Paczynski & Schwarzenberg-Czerny (1980)

F( 3
) = (1 + 3 cos i) CcoS i],

where (F) = F(i = 0°)/2 is the flux averaged over all inclina-

= (®)
(F)
tions. This works well for i < 75°.

AM =-2.51og —2.51og

' The SVO Filter Profile Service. Rodrigo, C., Solano, E.,
Bayo, A. http://ivoa.net/documents/Notes/SVOFPS/index.
html and the Filter Profile Service Access Protocol. Rodrigo,
C., Solano, E. http://ivoa.net/documents/Notes/SVOFPSDAL/
index.html
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Fig. 1. Absolute magnitude in U, B, V, R, I bands (blue to red,
top panel) and mass accretion rate onto the white dwarf M(R;,) dur-
ing a dwarf nova outburst. The model parameters are M =0.6 M,
M;=10"gs™!, Ry ~2 x 10" cm, i=0°. The dashed line shows the
M(Ry,) reconstructed from the V magnitude light curve assuming M
does not depend on radius. The reconstructed mass transfer rate is
9x 10'5 gs7! after averaging over the outburst cycle.

2.3. Relationship of M—My, during a dwarf nova cycle

The goal is to reconstruct the mass transfer rate from the opti-
cal light curve. Assuming no mass is lost from the disk except
by accretion onto the white dwarf, then the mass transfer rate
is equal to the time average of the mass accretion rate M(R, )
through the disk. Ideally, we would use the bolometric luminos-
ity of the disk to reconstruct M,,. This is not feasible because of
lack of multiwavelength data covering UV (where most of the
accretion luminosity is emitted) and/or sufficient time coverage
of the outbursts. We must therefore rely on optical magnitudes
as a function of time, typically V (Fig. 1).

The radial distribution of T varies in a complex fashion
during the dwarf nova cycle as fronts propagate through the
disk (see, e.g., Hameury et al. 1998). Schematically, T changes
from a steady-state-like R=>/# profile in outburst to a nearly flat
profile in quiescence. The result is a hysteresis between the op-
tical magnitude and the mass accretion rate (Fig. 2). Ideally, we
would build a dwarf nova model for each system so that we can
precisely obtain the conversion factor from magnitude to M;,
(Fig. 2). We used a much simpler method, at the price of a mod-
est error in accuracy.

In the following, we assume that M does not depend on ra-
dius, i.e., that the evolution behaves as a succession of steady
states with M = M;,. This is not correct, as discussed above, but,
as we shall prove, the corresponding error is entirely acceptable
given the other uncertainties. For a stationary disk (Frank et al.
2002),

- O] (K]

Tt = 37 R R

R ®

such that the absolute magnitude depends only on mass accre-
tion rate M, white dwarf mass M, inner disk radius R;,, and
outer disk radius R,y. The integration to get My for given
(M, M, Rin, Row) is straightforward. We checked that our routine

1o

<
T T TN

<

(dM/dt), (g/5)

6 8 10 12 14
absolute V magnitude
Fig. 2. Relation between the absolute V magnitude and the inner mass
accretion rate M;, for the model shown in Fig. 1. The disk samples the
black curve clockwise during the outburst cycle. The dashed line shows
the relationship using the stationary disk approximation.

gives M—My relationships that are identical to those shown in
Paczynski & Schwarzenberg-Czerny (1980) and Smak (1989),
who used the same assumptions, and to the My values found by
Tylenda (1981), who used a more elaborate spectral model. The
relationship can be inverted to give M as a function of My although
the rightmost term in the expression of Teg (related to the no-
torque inner boundary condition) requires solving an equation by
iteration. The M inferred from the absolute V magnitude is shown
asdashedred lines in Figs. 1-2. As we verify below, averaging this
M over an outburst cycle gives a reconstructed mass transfer rate
that is close to the true input mass transfer rate M,.

2.4. Validation against model light curves

The error made in using the steady-state approach can be quanti-
fied with model disk light curves with parameters covering arange
of possible values for CVs. Optical light curves (U, B, V, R, I)
were obtained by following the evolution of the disk with the code
described in Hameury et al. (1998). Table A.1 lists the parameters
used for the models. The size of the disk is free to vary during the
outburst as the angular momentum from the disk is removed by
tidal forces from the companion. The inner disk radius is kept fixed
except in the last six models where it is left free to vary according
to magnetic truncation with g ~ 103 G cm?.

The input mass transfer rate M, was compared to the recon-
structed Mgy, from the various optical light curves, averaged
over an outburst cycle. The reconstruction used the average outer
disk radius, the exact value of the white dwarf mass, and set R;,
to the value given by Eq. (6) (even when the inner disk radius
varied due to magnetic truncation). Inclination effects were not
considered. The reconstructed rate nearly always underestimate
M., all the more so that the filter is redder, but not by much:
for example the average My /M, =0.85 +0.10 for the models in
Table A.1. This bias, due to the assumptions of the model, is neg-
ligible compared to the other sources of error, notably the incli-
nation (Sect. 4.4).

3. Optical light curves
3.1. Source list and system parameters

For the dwarf novae, we analyzed a subset of the light curves from
the dataset collected and presented in Otulakowska-Hypka et al.
(2016). We required a value for Py, a parallax distance d, and
at least a five-year timespan of observations to include it in the
analysis. The parallax m and its associated uncertainty were taken
from the Gaia Data Release 2 (Gaia Collaboration 2016, 2018;
Lindegren et al. 2018). The superb quality of the Gaia-based
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distances remove what was previously the major source of uncer-
tainty in deriving the mass transfer rate. Table A.2 lists the dwarf
novae systems and the parameters that we adopted. The same ap-
proach was followed for nova-likes (Table A.3), selecting systems
with a Gaia parallax and using light curves from the American As-
sociation of Variable Star Observers (AAVSO) database (Kafka
2017). AM Her systems (polars) were excluded as there is no disk
in those systems, where accretion is entirely controlled by the high
magnetic field of the white dwarf. The values for g = M| /M,, M|,
M,, i, and the extinction Ay have been mined from a variety of
sources (see the reference list below Table A.2). In some cases
these values may vary significantly for the same source; in many
others we did not find an estimated value in the literature and we
had to supplement those as described below. When several val-
ues were available, we generally kept the value from the latest
reference.

The italics in Tables A.2—A.3 distinguish the values that we
assumed, or derived from other parameters, from those that
we took from the literature. If only M; or M, were available
we used the mass ratio g to deduce the other. When neither were
available, we estimated M, from the evolutionary sequence with
Po of Knigge etal. (2011), taking an estimated relative error
AM, /M, =0.2 and deducing M; from g. When ¢ was unavail-
able, we adopted M| =0.75 M, for consistency with Knigge et al.
(2011). The error on M and M, was propagated from the error on
g wherever necessary. We only selected systems with i < 80° as the
magnitude correction is incorrect for edge-on systems. When we
could not find an estimated value for i, we took i =56.7° +20°:
this value of i corresponding to zero magnitude correction. We
took Ai = +£10° when no error was available on the system incli-
nation i. The median extinction Ay at the location and parallax
distance of each object was obtained from the 3D map of Galac-
tic reddening by Green et al. (2018). A rough error was estimated
by taking the maximum difference between the median Ay and
the 16% or 84% percentile (i.e., the 1o interval). We used val-
ues from the other references listed below Table A.2 for the few
binaries whose location is not covered by this map. We did not
find values for ST Cha and AT Ara. We took the Ay along the line
of sight from Schlafly & Finkbeiner (2011). When no error was
available we took AAy =0.1. We note that the 3D reddening map
of Green et al. (2018) gives a range Ay =0.010 (16% percentile)
to 0.063 (84% percentile) in the direction and at the distance of
SS Cyg, which is consistent with the Ay =0.062 = 0.016 specif-
ically derived for this important source by Ritchey et al. (2013).
We used the 3D map median value Ay =0.017.

3.2. Light curve analysis

Ideally, light curves should be regularly sampled on suborbital
timescales and cover several outburst cycles for the dwarf novae.
However, most light curves are irregularly sampled with, for ex-
ample, the frequency of observations increasing during outbursts
or during dedicated campaigns. Light curves may also feature or-
bital modulations or eclipses. The data must be homogenized in
time to derive the time-averaged optical magnitude of the binary.
To do this, we averaged the data over a one-day sliding window, in-
crementing by one hour between each bin. This smoothes over or-
bital modulations without affecting the rise times and decay times
to outburst. To avoid large gaps with missing data, we manually
selected the portion of the light curve that we deemed long enough
to average over multiple outburst cycles while remaining densely
sampled. The start and stop days we chose are listed in Table A.2.

We define the filling fraction f of the resulting light curve as
the fraction of its bins that contain a measurement. For the dwarf
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novae, we assumed the missing measurements corresponded to
zero flux. We verified that assuming that the flux is equal to an
observationally defined nonzero quiescent value makes no differ-
ence to our results. However, we may be missing outbursts, which
would have a larger impact on the estimated mass accretion rate.
With this in mind, we separated our dataset between light curves
that have f > 0.5, minimising the impact of missing data, and light
curves with f <0.5, where the uneven sampling causes a larger
uncertainty. We discuss the bias this introduces below (Sect. 4.4).

For the nova-likes for which the source variability is more
limited, we assumed that the missing measurements were at the
average flux seen at other times. Hence, the filling fraction f
carries much less weight for these systems. Otherwise, we fol-
lowed the same analysis as dwarf novae. The time interval over
which we analyze the light curves are indicated in Table A.3: for
VY Scl systems we took the flux during steady maxima of the
light curve. Table A.3 also lists the mean V magnitude of the se-
lected portion of the light curve in order to ease comparison with
values in the literature for those steady systems.

The magnitudes were then corrected for extinction, distance,
and disk inclination (taken to be in the binary plane). We did
not correct for contributions to the V-band flux from the bright
spot, companion star, and white dwarf, as we discuss below
(Sect. 4.4). The absolute magnitudes were converted to mass ac-
cretion rates, following the procedure described in Sect.?2, and
time averaged to obtain the mass transfer rate.

We calculated the statistical error on the mass transfer rate
through Monte Carlo sampling of the errors on the mass of the
binary components, inclination, parallax and Ay. The parallax
and extinction probability distributions are taken to be Gaussians
whereas the mass distributions and cos i are sampled uniformly.
Our statistical error estimate is the smallest 68% confidence in-
terval from the distribution of Monte Carlo sampled mass trans-
fer rates, which is close to a lognormal.

4. Results
4.1. The critical mass transfer rate

Figure 3 compares the calculated mass transfer rates against the
critical mass transfer rate (Fig. A.l includes the system names
to help localize them in the diagram). The critical mass transfer
rate above which a cataclysmic variable with a disk size R is hot
and stable is

M}, =8.07x 10" RIS M;*¥ gs7! (10)
using the fit for a disk with solar composition given in
Lasota et al. (2008), where Rjo=R/10'cm and M, the white
dwarf mass in solar masses. Similarly, the critical mass transfer
rate below which a CV with an inner disk radius R is cold and
stable is

M

crit

=2.64x 10" RI® M "% gs7". (11)
This is usually too low to be of consequence if the disk extends to
the white dwarf surface (low R). However, if the inner disk radius
is truncated by the white dwarf magnetic field then, combining
with Eq. (7)

M

i =8.78x 10" 98 MO0 o571, (12)
where 130 =p/10 Gcm?® the magnetic moment of the white
dwarf. A reasonably strong magnetic field can thus truncate the

disk and keep it cold and stable if the mass transfer rate is low.
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Fig. 3. Mass transfer rates of CVs compared to the stability criterion. Systems above the (red) upper solid line are hot and stable. Systems below
the lower (blue) line indicate cold, stable disks if the white dwarf magnetic field B > 10° G. The dashed line represents the expected secular mass
transfer rate (Knigge et al. 2011). Square symbols indicate Z Cam type dwarf novae; (red) stars indicate nova-likes. Dwarf novae with f > 0.5 are
shown in black and those with f < 0.5 are in gray. Figure A.1 includes system names.

This can be used to place an upper limit on the magnetic field of
the white dwarf in a dwarf nova.

Figure 3 shows linear fits to the values of M}, and M_, ob-
tained for each object and the width of the line covers the range
of individual values. The plotted MC‘rit corresponds to a white
dwarf magnetic field B=10° G or u~3x 10*? G cm?, which is
the typical magnetic field above which CVs are identified as in-
termediate polars (DQ Her type). For M*. , we have

crit’
M, ~35%x 10" PLOos7!) (13)
where P, is defined in hours. This is roughly recovered by not-

ing that Ryy oca o Pifs M :/ 3 up to some slowly varying function

of g. This also shows that the dependence of M:m on M; ba-
sically cancels out when R,y is replaced by Py in Eq. (10).
Except for Py, which is usually precisely known, the errors in

system parameters have very little influence on M:m.

4.2. Dwarf novae

All the dwarf novae are well within or consistent with the un-
stable region delimited by M:m, clearly confirming a key pre-
diction of the DIM. There are eight systems for which the
estimated M, is above the stability limit. However, for seven
of these systems, the estimated M; is still compatible with the
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unstable region within the statistical uncertainty (AT Ara, EM
Cyg, ER UMa, SY Snc, V1159 Ori, FO Per, V516 Cyg, and
V1316 Cyg). CN Ori is the only system for which the estimated
error bar is inconsistent with the critical transfer rate: this sys-
tem has an estimated M, = (5.4-14.8) x 10'7 gs~! to compare to
M:m =2.7x10'7 gs~!. A likely reason for this discrepancy is the
median Ay =0.48 provided by the 3D reddening map, which is
flagged as unreliable for such a nearby source. The extinction
could be much lower: indeed the best-fit value from the model of
Green et al. (2018) is Ay =0.083 and Urban & Sion (2006) list
Ay = 0. The estimated M; becomes compatible with M:m if there
is negligible extinction. The error on the inclination, i = 67° + 3°,
may also be underestimated. Given this and the level of the sys-
tematic uncertainty on our measurements (see Sect. 4.4), we con-
clude that none of the systems are incompatible with the stability
limit.

SU UMa stars, dwarf novae with superoutbursts, are concen-
trated below the period gap, as usual, except for VW Vul and ES
Dra, which are also classified as Z Cam types in Simonsen et al.
(2014). Their classification as SU UMa types in Downes et al.
(2001) is likely to be incorrect.

Z Cam types tend to have mass transfer rates that are higher
than other dwarf novae. Their light curves have standstills that
have long been argued to be due to fluctuations of the mass
transfer rate bringing it above the stability limit. One would
thus expect Z Cam systems to be close to the stability limit
(Meyer & Meyer-Hofmeister 1983; Buat-Ménard et al. 2001). In-
deed, fluctuations by a factor 3 would push many of the Z Cam sys-
tems very close to or above the stability limit. The lack of Z Cam
types below the period gap, even though some systems are very
close to the stability limit, suggests that such fluctuations do not
occur in these systems, most likely for reasons related to the type
of companion star. Above the period gap, some Z Cam systems are
somewhat further away than a factor 3 from the stability limit (PY
Per, V426 Oph, and WW Cet). The classification of WW Cet as
a Z Cam stars is uncertain in Downes et al. (2001) but considered
certain in Simonsen et al. (2014). The filling fraction of the PY
Per light curve, f ~0.34, may lead us to underestimate M, if the
flux always remains at a high level. For instance, assuming that the
missing flux values are at the average of the measured values in-
creases M, by afactor ~2 (Sect. 4.4). Its disk inclination is also cur-
rently unknown and may be high. V426 Oph is listed as a Z Cam,
but also as a DQ Her type in Downes et al. (2001) and as a nova-
like system in the General Catalog of Variable Stars (GCVS). Disk
truncation by the white dwarf field may lead us to underestimate
the true M, (see Sect. 4.3 below). The nova-like classification is
more puzzling, although downward fluctuations of the mass trans-
fer rate in V426 Oph might push the system into the cold stable
regime with a white dwarf magnetic field B~ 10° G. Inversely,
not all of the systems that are very close to the stability limit in
Fig. 3 are classified as Z Cam types (e.g., FO Per, CY Lyr, and
CN Ori), but many U Gem stars could be “unrecognized Z Cam
stars” (Warner 1995).

We also find there is considerable variation of M, at given
Pon. Some of it is undoubtedly due to inaccurate values of the
parameters adopted for some of the systems or biases in the light
curve analysis (see Sect.4.4). Although there is a general trend
for higher values of M; with increasing Py, the values differ
significantly from the theoretical secular mass transfer rate de-
rived by Knigge et al. (2011), especially above the period gap.
Some of these variations may be due to the mechanism for angu-
lar momentum losses from the system, which drives the secular
mass overflow rate from the Roche lobe and is much less certain
above the gap than below, where it is mainly due to gravitational
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radiation. In fact, in Fig. 3 the evolutionary tracks correspond to
a version of the angular-momentum-loss mechanisms rescaled
to correspond to observations, which leads nevertheless to “two
glaring inconsistencies” (Knigge et al. 2011) with the observed
distribution of dwarf novae and nova-likes. Some of these in-
consistencies may be due to variations in the mass transfer rate
on timescales longer than the outburst cycle but smaller than the
secular timescale, such as cycles in the stellar activity.

Finally, we also find that some binaries are well below MC‘rit
(e.g., EI Psc and EZ Lyn), indicating that the white dwarf mag-
netic field is constrained by the DIM to B < 10° G in those sys-
tems or else they would be cold and stable.

4.3. Nova-likes

The nova-likes are clearly at higher mass transfer rates than
dwarf novae and are consistently above the DIM stability limit
defined by the red line in Fig. 3. Closer inspection reveals six
systems in our nova list (Table A.3) with an estimated M, < M},
(BK Lyn, BG CMi, V603 Aql, IX Vel, UX UMa, and AE
Aqr). BK Lyn is probably misclassified. It is the only nova-
like below the period gap in Downes et al. (2001) but its recent
light curve shows variability typical of a ER UMa dwarf nova
(Patterson et al. 2013). We tagged it as a dwarf nova in Fig. 3.
The others are statistically consistent with being in the stable re-
gion of the diagram, except for AE Aqr.

AE Aqr is a DQ Her type system well known for propelling
material outside the system owing to the very fast rotation of
the white dwarf (Wynn et al. 1997). In this case, we may be
severely underestimating the actual mass transfer rate from the
secondary because of non-negligible mass loss. There are other
systems classified as DQ Her systems (intermediate polars, e.g.,
BG CMi). The inner disk is truncated by the white dwarf mag-
netic field even if it does not rotate fast enough to propel ma-
terial out of the system as in AE Aqr. We do not take into
account this truncation and this affects our estimated M for this
type of system. For illustration, consider a steady accretion disk
around a 1 Mg white dwarf with M =10'7 gs~! and an outer
radius Rg =4 x 10'° cm. The absolute magnitude of the disk is
My ~ 6.7 if the inner disk is truncated at ~ 6 x 10° cm by a mag-
netic field B~ 10°G Eq. (7). The estimated M, is only 20% lower
than the actual value, which is well within our systematic errors,
if the disk is assumed to be truncated at ~ 10° cm, corresponding
to B~ 10° G instead of the true value B=10°G. However, the
estimated mass transfer rate is ~ 2 x 10'% gs~! if this magnitude
is translated to M assuming the inner disk extends to the white
dwarf surface at ~5 x 10 cm. We thus caution that the presence
of a magnetic field B2 10° G may lead us to underestimate the
true mass transfer rate in DQ Her systems, and in particular in
BG CMi, where B~4 to 10x 10°G (Chanmugam et al. 1990).
Finally, we note that TV Col, another DQ Her system, shows in-
frequent and short outbursts but according to Hameury & Lasota
(2017) these cannot be attributed to the thermal-viscous instabil-
ity of the disk.

4.4. Sources of error and bias

The error bars in Fig. 3 take into account statistical errors in the
system parameters: My, M, i, r, Ay. The uncertainty on the dis-
tance and disk inclination dominate the statistical error. How-
ever, there are other sources of systematic errors and biases.
First, some of these errors and biases result from our the-
oretical assumptions. The stationary disk assumption in our
model biases M, by ~15% to lower values (Sect.2.4). We also
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underestimate the true mass transfer rate if the inner disk is trun-
cated by the magnetic field of the white dwarf, as discussed
above. We may also underestimate M, if a significant percentage
of the mass in the disk is lost to a wind, although estimates of this
fraction indicate that the typical wind loss rate represents S10%
of the mass accretion rate in the hot state (e.g., Noebauer et al.
2010). Inversely, the mass transfer rate may be enhanced dur-
ing the outburst (Hameury et al. 2000; Smak 2008) as a conse-
quence, for example of the irradiation of the donor star, but this is
debated (e.g., Viallet & Hameury 2008). We did not compensate
for any of these effects.

Second, the light curve analysis also systematically underes-
timates M,. To calculate the average mass transfer rate < M >,
we assume that M = 0 when there are no measurements and mit-
igate this source of error by taking light curves with high filling
fractions f, i.e., so that outbursts are not missed. Were we instead
to assume that M = < M > when measurements are missing, the
mass transfer rate would be increased to (2 — f) < M >. This as-
sumption is clearly very unlikely looking at the light curves, but
taken at face value the mass transfer rates would be underes-
timated by 50% with f=0.5. A more pernicious error is that
caused by high flux outliers in a poorly sampled portion of the
light curve. A few odd points can thus induce an overestimate
of the mass transfer rate. We have minimized this by manually
inspecting the light curves to remove glaring outliers (a dozen
points altogether). We also investigated the influence of our bin-
size (from 0.25 to 12 h) and averaging window size (from 0.25 to
2 days). We find differences $50% in M, with no obvious trend
as to over- or underestimating M.

Third, the extinction may be much more uncertain that we
assumed, notably for nearby binaries for which the reddening
measurements of Green et al. (2018) are less reliable for lack of
stars or for which we used the total extinction along the line of
sight. In general, we found good agreement between the values
we obtained from the 3D map and those we could collect in the
CV literature (e.g., Ak et al. 2007). Yet, very different values of
Ay are sometimes found for the same binary. For instance, RW
Tri has Ay 0.3 in Table A.3 and in Benedict et al. (2017) but
is listed with Ay ~ 0.8 in Ak et al. (2007) and with Ay =0.3-0.7
in Schreiber & Lasota (2007). This uncertainty can affect M, for
some systems but, in our experience, has no impact on the con-
clusions.

Finally, we may have overestimated the mass transfer rate by
spuriously including contributions from the white dwarf, bright
spot, and companion. A heuristic approach to removing these is
to subtract some suitably defined minimal flux from the light
curve. The assumption is that this minimal flux is dominated
by the constant contributions from the stars and bright spot. We
chose this flux as the threshold above which 85% of the mea-
surements are contained in the cumulative flux distribution. This
choice gave a good estimate of the average quiescent flux. We
found that this leads to a decrease of the estimated M, of at
most 50%, where most systems are barely affected. As a cross-
check, we estimated the contribution from the bright spot and
the stars theoretically (Fig.4). The absolute V magnitude of the
companion and of the accretion-heated white dwarf are taken
from Knigge et al. (2011). For the bright spot, we assumed ac-
cretion at the critical rate and computed the absolute V magni-
tude assuming a temperature of 15000 K and a luminosity
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In nearly all cases the theoretical contribution was fainter than
the minimum flux set from the observations. The exceptions are
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Fig. 4. Absolute V magnitude of the companion star (full line) and of
the accretion-heated white dwarf (dashed line) as a function of orbital
period (Knigge et al. 2011). The dotted line indicates the absolute mag-
nitude of the bright spot, calculated for M =M_; and a white dwarf
mass M =0.75 M.

FO Aq]l, IP Peg, SS Aur, and U Gem, for which the theoretical
contribution was ~2 mag brighter (first two systems) or ~1 mag
brighter (latter two), most likely because we assume M, =M},
when calculating the contribution from the bright spot, whereas
M, < M ; but it is not clear why other systems do not show the
same trend.

We conclude that the underestimation of M, due to the model
assumption and the incomplete light curve are roughly compen-
sated by the overestimation of M; due to contributions from the
white dwarf, companion star, and bright spot. Hence, we de-
cided not to include any systematic correction to the estimates
presented in this work. The statistical error bars also provide a
reasonable estimate of the systematic error on M,. In all cases,
none of the modifications to our analysis that we explored led
to results challenging the DIM. The dwarf novae were always
consistently placed within the instability region of the parameter

space.

5. Conclusions

We have estimated the mass transfer rate M, in ~130CVs and
found that their separation into stable (nova-likes) and unstable
(dwarf novae) systems in the (Pow, M,) plane is fully consistent
with the DIM (Fig. 3). Although it was clear that nova-likes were
going to have higher average accretion rates than dwarf novae,
by virtue of their higher steady optical fluxes, it was not clear
that the predicted instability line from the DIM would neatly sep-
arate the two subpopulations. We thus confirm a key prediction
of the DIM that had not been systematically explored yet. We
also confirm that irradiation heating of the disk plays a negligible
role in the stability of CVs, unlike X-ray binaries where strong
X-ray irradiation modifies the limit between stable and unsta-
ble systems (Coriat et al. 2012). One of our motivations was to
find systems that would challenge the DIM, much like SS Cyg
has in the past before the question of its distance was settled
(Sect. 1). We have not uncovered such systems. The only system
that clearly does not fit the DIM is AE Aqr, which is well known
for its fast-spinning white dwarf propelling matter out of the
system.

We focused on analyzing a large sample of sources and very
likely traded this with some accuracy in M, especially for the
binaries whose light curve contains many gaps. A more careful
selection and analysis of the individual light curves, corrected
for the various contributions to the optical flux and sources of
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extrinsic variability such as eclipses?, together with a critical
appraisal of the system parameters would undoubtedly improve
the accuracy of some of the individual M, that we derived in
Tables A.2—A.3. These (time-consuming) refinements would al-
low us to quantitatively investigate if or how the location of the
binary in the (Py,, M;) plane reflects its variability pattern (sub-
class type) and the deviations from the expected secular mass
transfer rate. They would also allow an additional test of the
DIM, albeit dependent on outburst physics, which is that systems
closer to the critical mass transfer rate spend longer in outburst
than unstable systems (the transientness diagram of Coriat et al.
2012). At this stage, the uncertainties on system parameters and
light curves make it difficult to robustly identify classes of vari-
ability with locations in the instability diagram.

The lack of knowledge on system parameters and the biases
introduced by the irregular sampling of most of the light curves
limit our ability to achieve this goal. The Kepler light curves of
the dozen or so CVs that have been observed constitute the ideal
dataset. We have not used them for lack of information regarding
their system parameters. With those in hand, they would provide
a subsample of unprecedented quality. In the future, similar reg-
ularly sampled light curves may be expected as a by-product of
searches for planetary transits, such as ESA’s Plato and synop-
tic surveys. For instance, the LSST will provide a huge sam-
ple of CV light curves, although the baseline cadence (1 visit
every three nights) is not ideal. Even if the Gaia catalog pro-
vides distances to these CVs, obtaining orbital periods and con-
straints on the system parameters from follow-up spectroscopy
for this avalanche of data represents a daunting challenge for
professional and amateur astronomers.
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Appendix A: Additional tables and figure
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Fig. A.1. Same as Fig. 3 except the name of the system is indicated to the right of the estimated M,.
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Table A.1. Reconstructed mass transfer rate over one outburst cycle for various models.

A&A 617, A26 (2018)

M an ac Rcirc Rin Roul Mt MU MB MV MR MI M
Mg 10°cm  108cm  10"%cm 10 gs™! in units of M, 10*° G cm?
0.6 02 0.04 1.00 8.67 1.90 10.0 092 0.89 087 0.86 0.86 0
0.6 02 0.04 1.00 8.67 1.97 1.00 1.03 097 091 0.87 0.84 0
06 02 0.04 1.00 8.67 2.00 0.10 1.23 1.13 1.02 094 0.85 0
0.6 02 0.04 1.00 8.67 1.95 0.025 096 0.88 0.80 0.74 0.70 0
0.6 02 0.04 2.00 8.67 3.92 10.0 096 092 087 0.85 0.83 0
0.6 02 0.04 2.00 8.67 3.98 1.00 096 0.89 081 0.74 0.67 0
0.6 02 0.04 2.00 8.67 3.98 0.10 098 0.89 0.78 0.68 0.59 0
0.6 02 0.04 2.00 8.67 3.97 0.025 096 0.88 0.79 0.73 0.67 0
1.2 02 0.04 2.00 3.85 6.03 10.0 1.23 1.17 1.10 1.06 1.04 0
1.2 02 0.04 2.00 3.85 6.05 1.00 1.06 1.00 091 0.82 0.71 0
1.2 02 0.04 2.00 3.85 5.98 0.10 .11 1.03 090 0.77 0.63 0
1.2 02 0.04 1.50 3.85 2.09 1.00 1.01 095 0.88 0.83 0.77 0
1.2 02 0.04 1.50 3.85 2.12 0.025 1.16 1.06 093 0.81 0.68 0
09 0.1 0.04 1.50 6.23 3.82 0.40 1.01 096 0.88 0.82 0.77 0
0.9 0.16 0.04 1.50 6.23 3.84 0.40 1.03 096 0.86 0.77 0.68 0
0.9 0.10 0.03 1.50 6.23 3.86 1.00 1.07 1.01 092 0.85 0.78 0
0.9 0.10 0.03 1.50 6.23 3.83 0.05 1.04 095 0.84 0.74 0.65 0
09 0.12 0.03 1.00 6.23 1.98 0.10 1.12 1.04 093 0.85 0.77 0
0.6 0.23 0.03 1.00 8.67 1.99 1.00 094 0.88 0.83 0.81 0.79 0
0.6 0.23 0.03 1.00 8.67 1.94 0.10 096 0.88 0.81 0.75 0.69 0
0.6 020 0.04 1.00 14.33 1.89 10.00 091 0.88 0.86 0.85 0.86 1
0.6 020 0.04 1.00 13.37 1.97 1.00 095 090 0.84 0.81 0.78 1
0.6 020 0.04 1.00 15.90 1.93 0.10 0.70 0.66 0.62 0.60 0.59 1
0.9 0.10 0.03 1.50 10.85 3.84 1.00 099 093 085 0.78 0.72 1
0.9 0.10 0.03 1.50 7.07 3.83 0.05 099 091 080 0.71 0.63 0.1
1.2 020 0.04 2.00 14.34 5.96 0.10 0.68 0.64 057 051 045 1
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