A remark on compact H-surfaces into \mathbb{R}^{3}

Yuxin Ge and Frédéric Hélein

1 Introduction

Let Ω be a smooth and bounded domain in \mathbb{R}^{2}. We consider the following system

$$
\begin{equation*}
\triangle u=u_{x} \wedge u_{y}, \quad \text { in } \Omega \tag{1.1}
\end{equation*}
$$

where $u \in C^{2}\left(\Omega ; \mathbb{R}^{3}\right)$ and subscripts denote partial differentiation with respect to coordinates. This equation characterizes surfaces of constant mean curvature $H=\frac{1}{2}$ in \mathbb{R}^{3} in conformal representation. More precisely, any non constant smooth map u which is a solution of (1.1) and of the conformality condition

$$
\begin{equation*}
\omega:=\left(\left|u_{x}\right|^{2}-\left|u_{y}\right|^{2}-2 i\left\langle u_{x}, u_{y}\right\rangle\right) d z \otimes d z=0, \quad \text { in } \Omega, \tag{1.2}
\end{equation*}
$$

(here $d z=d x+i d y$) parametrizes a branched immersed constant mean curvature surface in \mathbb{R}^{3}. For that reason (1.1) is called the H-system. The complex tensor ω which appears in (1.2) is called the Hopf differential (see [8]). The first existence result for solutions to (1.1) and (1.2) was proved by H. Wente in [11].

In [7], the second author proposed a new variational approach for finding a solution to (1.1). For any pair of functions $a, b \in H^{1}(\Omega)$, we denote by $\varphi:=\widetilde{a b}$ the unique solution in $H^{1}(\Omega)$ of the Dirichlet problem

$$
\left\{\begin{align*}
-\Delta \varphi & =\{a, b\}, & & \text { in } \Omega \tag{1.3}\\
\varphi & =0, & & \text { on } \partial \Omega,
\end{align*}\right.
$$

where $\{a, b\}=a_{x} b_{y}-a_{y} b_{x}$. By a result of Brezis and Coron [3] based on an idea due to H. Wente [11] [12], we know that φ is continuous on $\bar{\Omega}$ and

$$
\begin{equation*}
\|\varphi\|_{L^{\infty}(\Omega)}+\|\nabla \varphi\|_{L^{2}(\Omega)} \leq C_{0}(\Omega)\|\nabla a\|_{L^{2}(\Omega)}\|\nabla b\|_{L^{2}(\Omega)} . \tag{1.4}
\end{equation*}
$$

Thus the following energy functional makes sense

$$
E(a, b, \Omega)=\frac{\|\nabla a\|_{L^{2}(\Omega)}^{2}+\|\nabla b\|_{L^{2}(\Omega)}^{2}}{2\|\nabla \varphi\|_{L^{2}(\Omega)}}, \text { defined for } a, b \in H^{1}(\Omega) \backslash\{0\}
$$

The Euler-Lagrange equation satisfied by the critical points of this functional was derived in [7]. Through the substitution $u:=\left(\lambda a, \lambda b, \lambda^{2} \varphi\right)$ for $\lambda=-\sqrt{\frac{\|\nabla a\|_{2}^{2}+\|\nabla b\|_{2}^{2}}{2\|\nabla \varphi\|_{2}^{2}}}$, this equation coincides with (1.1). The boundary conditions are

$$
\begin{equation*}
\varphi=\frac{\partial a}{\partial n}=\frac{\partial b}{\partial n}=0 \quad \text { on } \partial \Omega, \tag{1.5}
\end{equation*}
$$

where $n=\left(n_{1}, n_{2}\right)$ is the normal vector on $\partial \Omega$. Moreover, in [6] the first author showed that the Hopf differential ω is holomorphic and satisfies the boundary condition $\operatorname{Im}\left(\omega \nu^{2}\right)=0$, where $\nu=n_{1}+i n_{2}$. This implies in particular that ω vanishes - i.e. (1.2) is true - if Ω is simply connected.

An important property of our problem is that the functional E and its critical points are preserved by conformal transformations of the domain Ω (see [7]). So this variational problem depends only on the complex structure of Ω and hence it also makes sense to consider the problem on a Riemann surface. The boundary conditions (1.5) allow us to construct a solution of (1.1) from a compact oriented Riemannian surface into \mathbb{R}^{3} by gluing together two copies of Ω. More precisely, we construct $N:=\Omega \cup_{\partial \Omega} \tilde{\Omega}$, where $\tilde{\Omega}$ is a copy of Ω, provided with opposite orientation and define a $C^{\infty} \operatorname{map} \tilde{u}: N \rightarrow \mathbb{R}^{3}$ by $\tilde{u}=u$ on Ω and $\tilde{u}=\left(\lambda a, \lambda b,-\lambda^{2} \varphi\right)$ on $\tilde{\Omega}$. This map is a solution of the H-system (1.1) and its Hopf differential is holomorphic. Were this differential to vanish, i.e. if $\omega=0$, then we would obtain a constant mean curvature branched immersion. Recall that Wente [13] (see also [1]) constructed an immersed constant mean curvature torus, which enjoys an invariance under an orthogonal symmetry with respect to a plane. Thus it has the form $\Omega \cup_{\partial \Omega} \tilde{\Omega}$ as above, where Ω is some annulus. This motivates the search for critical points of E. In [6], an existence result was derived for a perforated domain, provided the holes are small enough (in the same spirit as in [4]). Here we address the problem of a one-connected domain Ω, i.e. a domain of the form $U \backslash \bar{V}$ where U and V are smooth bounded simply connected open sets and $\bar{V} \subset U$, without smallness assumption on the hole V. Because any such domain is conformally equivalent to a radially symmetric annulus [2] and thanks to the invariance of the variational problem under conformal transformations, we shall restrict ourself to annuli without loss of generality. Our method relies on a minimization procedure on a subset of $H^{1} \times H^{1}$, which is equivariant with respect to some finite group.

Main Theorem. Consider the annulus $\Omega:=\left\{(x, y) \in \mathbb{R}^{2}, \quad r_{0}<r=\sqrt{x^{2}+y^{2}}<1\right\}$ with $0<r_{0}<1$. Then, there exists a critical point $(a, b) \in H^{1}\left(\Omega, \mathbb{R}^{2}\right) \backslash\{(0,0)\}$ of the energy functional E. Moreover (a, b) and $\varphi:=\widetilde{a b}$ are smooth and satisfy the boundary conditions (1.5). Thus there exists a real number $\lambda \neq 0$ such that the map $u:=\left(\lambda a, \lambda b, \lambda^{2} \varphi\right)$ is a solution of (1.1). Lastly the Hopf differential ω of u has the form $\omega=\frac{\tau}{z^{2}} d z \otimes d z$ for some real number τ.

Unfortunately we are not able to prove that the map u is conformal. We expect that it should be so for some values of r_{0}. Indeed the parameter τ characterizing ω should vary with r_{0} (since the set of holomorphic quadratic differentials is, roughly speaking, the dual space of Teichmüller space). But we are still far from understanding how τ could be related to r_{0}.

2 The Euler-Lagrange Equation

First, we note that Ω is invariant under rotations. We define $F_{m}=\{\Theta=(a, b) \in$ $\left.H^{1}(\Omega) \times H^{1}(\Omega), \quad \Theta \circ A=A \circ \Theta\right\}$ and we will prove existence of a minimum of E for m large enough, where A is the rotation of angle $\frac{2 \pi}{m}$ in \mathbb{R}^{2}.

Lemma 1 Assume that $(a, b) \in F_{m}$. Then, the unique solution φ of (1.3) is invariant under A, that is,

$$
\varphi \circ A=\varphi .
$$

Proof. Clearly, we have

$$
d \Theta=A^{-1} \cdot(d \Theta) \circ A \cdot A
$$

Thus,

$$
\{a, b\}=\operatorname{det}(d \Theta)=\operatorname{det}\left(A^{-1}\right) \cdot[\operatorname{det}(d \Theta)] \circ A \cdot \operatorname{det}(A)=[\operatorname{det}(d \Theta)] \circ A=\{a, b\} \circ A,
$$

since $\operatorname{det}(A)=\operatorname{det}\left(A^{-1}\right)=1$. On the other hand, the unique solution φ of (1.3) is also the unique minimum of the following energy functional E_{1} :

$$
E_{1}(\psi)=\frac{1}{2} \int_{\Omega}|\nabla \psi|^{2}-\int_{\Omega}\{a, b\} \psi, \quad \text { defined for all } \psi \in H_{0}^{1}(\Omega)
$$

Obviously, $E_{1}(\varphi \circ A)=E_{1}(\varphi)$. By the uniqueness of the minimizer, we deduce that

$$
\varphi \circ A=\varphi .
$$

In order to get the Euler-Lagrange equation of E, we first recall a technical lemma inspired by the work in [11] and proved in the Appendix in [3].

Lemma 2 If $\varphi \in H^{1}(\Omega) \cap L^{\infty}(\Omega), a \in H^{1}(\Omega) \cap L^{\infty}(\Omega), b \in H^{1}(\Omega)$ and $\varphi a=0$ on $\partial \Omega$, then we have

$$
\int_{\Omega} \varphi\{a, b\}=\int_{\Omega} a\{b, \varphi\} .
$$

The following result shows that critical points of E on F_{m} are also critical points of E on $H^{1} \times H^{1}$.

Lemma 3 Assume that $H=(a, b) \in F_{m}$ is a minimizer of E on F_{m}. Then

1) there exists $\lambda \in \mathbb{R}^{*}$ such that $\Psi=\left(a_{1}, b_{1}, \varphi_{1}\right)=\left(\lambda a, \lambda b, \lambda^{2} \varphi\right)$ satisfies equation (1.1).
2) Ψ verifies the boundary conditions (1.5).
3) $\int_{\Omega} \nabla a \cdot \nabla b=0$.
4) $\|\nabla a\|_{L^{2}}=\|\nabla b\|_{L^{2}}$.
5) there exists $c \in \mathbb{R}$ such that

$$
\left\langle\partial_{z} \Psi, \partial_{z} \Psi\right\rangle=\frac{c}{z^{2}},
$$

where $\partial_{z}=\frac{1}{2}\left(\partial_{x}-i \partial_{y}\right)$.
6) Ψ is regular on $\bar{\Omega}$.

Proof. The proof is very similar to the proof of Theorem 3.2 in [6]. We just need to adapt it to our equivariant setting.
Let $\Lambda=(\alpha, \beta) \in F_{m}$. Denote by ψ the unique solution of the following equation

$$
\left\{\begin{align*}
-\Delta \psi & =\{\alpha, b\}+\{a, \beta\}, & & \text { in } \Omega \tag{2.6}\\
\psi & =0, & & \text { on } \partial \Omega .
\end{align*}\right.
$$

We claim that $\psi \circ A=\psi$. Indeed, note that,

$$
\{\alpha, b\}+\{a, \beta\}=\operatorname{det}(d H+d \Lambda)-\operatorname{det}(d H)-\operatorname{det}(d \Lambda)
$$

and thus as in Lemma 1, we deduce that

$$
\begin{equation*}
(\{\alpha, b\}+\{a, \beta\}) \circ A=\{\alpha, b\}+\{a, \beta\} . \tag{2.7}
\end{equation*}
$$

Hence, by the same argument as before, we establish the claim. Now set $\Theta_{t}=\Theta+t \Lambda$. Clearly, $\Theta_{t} \in F_{m}$. A direct calculation leads to

$$
\begin{align*}
E\left(a_{t}, b_{t}, \Omega\right)= & \frac{\|\nabla a\|_{2}^{2}+\|\nabla b\|_{2}^{2}+2 t \int_{\Omega}(\nabla a \cdot \nabla \alpha+\nabla b \cdot \nabla \beta)+O\left(t^{2}\right)}{2 \sqrt{\|\nabla \varphi\|_{2}^{2}+2 t \int_{\Omega} \nabla \varphi \cdot \nabla \psi+O\left(t^{2}\right)}} \\
= & \frac{\|\nabla a\|_{2}^{2}+\|\nabla b\|_{2}^{2}+2 t \int_{\Omega}(\nabla a \cdot \nabla \alpha+\nabla b \cdot \nabla \beta)+O\left(t^{2}\right)}{2\left(\|\nabla \varphi\|_{2}+\frac{t}{\|\nabla \varphi\|_{2}} \int_{\Omega} \varphi(\{\alpha, b\}+\{a, \beta\})+O\left(t^{2}\right)\right)} \tag{2.8}\\
= & E(a, b, \Omega)\left(1-\frac{t}{\|\nabla \varphi\|_{2}^{2}} \int_{\Omega} \varphi(\{\alpha, b\}+\{a, \beta\})\right. \\
& \left.+\frac{2 t}{\|\nabla a\|_{2}^{2}+\|\nabla b\|_{2}^{2}} \int_{\Omega}(\nabla a \cdot \nabla \alpha+\nabla b \cdot \nabla \beta)+O\left(t^{2}\right)\right) .
\end{align*}
$$

For fixed $\theta_{0} \in[0,2 \pi]$, we consider the domain $\Omega_{\theta_{0}}=\left\{(x, y), \quad r_{0}<r<1\right.$ and $\theta_{0}<\theta<$ $\left.\theta_{0}+\frac{2 \pi}{m}\right\}$. It follows from (2.7) and Lemma 1 that

$$
[\varphi(\{\alpha, b\}+\{a, \beta\})] \circ A=\varphi(\{\alpha, b\}+\{a, \beta\}),
$$

which implies

$$
\begin{equation*}
\int_{\Omega} \varphi(\{\alpha, b\}+\{a, \beta\})=m \int_{\Omega_{\theta_{0}}} \varphi(\{\alpha, b\}+\{a, \beta\}) \tag{2.9}
\end{equation*}
$$

On the other hand, we have

$$
\begin{align*}
(\nabla a \cdot \nabla \alpha+\nabla b \cdot \nabla \beta) \circ A & =\operatorname{tr}\left([d \Theta] \circ A \cdot[d \Lambda]^{t} \circ A\right) \\
& =\operatorname{tr}\left(A \cdot d \Theta \cdot A^{t} \cdot A \cdot d \Lambda^{t} \cdot A^{t}\right) \\
& =\operatorname{tr}\left(A \cdot d \Theta \cdot d \Lambda^{t} \cdot A^{t}\right) \tag{2.10}\\
& =\operatorname{tr}\left(d \Theta \cdot d \Lambda^{t} \cdot A^{t} \cdot A\right) \\
& =\nabla a \cdot \nabla \alpha+\nabla b \cdot \nabla \beta,
\end{align*}
$$

that is,

$$
\begin{equation*}
\int_{\Omega}(\nabla a \cdot \nabla \alpha+\nabla b \cdot \nabla \beta)=m \int_{\Omega_{\theta_{0}}}(\nabla a \cdot \nabla \alpha+\nabla b \cdot \nabla \beta) . \tag{2.11}
\end{equation*}
$$

Combining (2.8) to (2.11), we obtain

$$
\int_{\Omega_{\theta_{0}}}(\nabla a \cdot \nabla \alpha+\nabla b \cdot \nabla \beta)=\frac{\|\nabla a\|_{2}^{2}+\|\nabla b\|_{2}^{2}}{2\|\nabla \varphi\|_{2}^{2}} \int_{\Omega_{\theta_{0}}} \varphi(\{\alpha, b\}+\{a, \beta\}) .
$$

In particular, if we set $\alpha, \beta \in C_{0}^{\infty}\left(\Omega_{\theta_{0}}\right)$, we deduce from Lemma 2 that

$$
\begin{cases}-\triangle a=\frac{\|\nabla a\|_{2}^{2}+\|\nabla b\|_{2}^{2}}{2\|\nabla \varphi\|_{2}^{2}}\{b, \varphi\}, & \text { in } \Omega_{\theta_{0}} \tag{2.12}\\ -\triangle b=\frac{\|\nabla a\|_{2}^{2}+\|\nabla b\|_{2}^{2}}{2\|\nabla \varphi\|_{2}^{2}}\{\varphi, a\} & \text { in } \Omega_{\theta_{0}}\end{cases}
$$

Setting $\lambda=-\sqrt{\frac{\|\nabla a\|_{2}^{2}+\|\nabla b\|_{2}^{2}}{2\|\nabla \varphi\|_{2}^{2}}}$ and by arbitrariness of θ_{0}, property 1$)$ is demonstrated. Now, choosing $\alpha, \beta \in C^{\infty}\left(\Omega_{\theta_{0}}\right)$ with $\alpha=\beta=0$ on $\Gamma_{1}=\left\{(r, \theta), \theta=\theta_{0}\right.$ or $\left.\theta=\theta_{0}+\frac{2 \pi}{m}\right\}$, it follows from Lemma 2

$$
\int_{\partial \Omega_{\theta_{0}}} \frac{\partial a}{\partial n} \cdot \alpha+\frac{\partial b}{\partial n} \cdot \beta=0
$$

that is, $\frac{\partial a}{\partial n}=\frac{\partial b}{\partial n}=0$ on $\partial \Omega_{\theta_{0}} \backslash \Gamma_{1}$. By arbitrariness of θ_{0}, we establish the property 2).
The properties 3) and 4) are just results of 1), 2) and Lemma 2.
Now, we choose any vector field $X \in C^{\infty}\left(\Omega, \mathbb{R}^{2}\right)$ such that $X \circ A=A \circ X$ and $X \cdot n=0$ on $\partial \Omega$. Let σ_{t} be the flow associated to X. Clearly,

$$
\sigma_{t} \circ A=A \circ \sigma_{t}
$$

Therefore, $\Theta \circ \sigma_{t} \in F_{m}$. The proofs of 5) and 6) are the same as the proofs of Theorem 3.2 (vii) and (iv) in [6], respectively.

3 Study of a minimizing sequence

Through this section we analyze the behaviour of a minimizing sequence in the spirit of the theory developed in [6] (see also [5], [9] or [10]). First, we prove a useful fact.

Lemma 4 Assume that $\Theta=(a, b) \in F_{m}$. Then we have

$$
\int_{\Omega} a=\int_{\Omega} b=0 .
$$

Proof. By definition of F_{m}, we have

$$
\int_{\Omega} \Theta=\int_{\Omega} A^{-1} \circ \Theta \circ A=A^{-1} \int_{\Omega} \Theta \circ A=A^{-1} \int_{\Omega} \Theta
$$

We note that A^{-1} is a rotation. This implies

$$
\int_{\Omega} \Theta=(0,0) .
$$

Now we consider the minimum of energy functional E. Set $G(\Omega)=\inf _{a, b \in H^{1} \times H^{1}} E(a, b, \Omega)$ and $G_{m}(\Omega)=\inf _{a, b \in F_{m}} E(a, b, \Omega)$. Let $\left(a_{n}, b_{n}, \varphi_{n}\right)$ be a minimizing sequence of E on F_{m}, that is, $\left(a_{n}, b_{n}\right) \in F_{m},\left(a_{n}, b_{n}, \varphi_{n}\right)$ satisfying equation (1.3) and

$$
\begin{equation*}
E\left(a_{n}, b_{n}, \Omega\right)=G_{m}(\Omega)+o(1) \tag{3.13}
\end{equation*}
$$

Without loss of generality, we can assume that $\left\|\nabla \varphi_{n}\right\|_{2}=1$. After extracting a subsequence, we may assume that

$$
\begin{aligned}
& a_{n} \longrightarrow \alpha \text { weakly in } H^{1} \text { and strongly in } L^{2}, \\
& b_{n} \longrightarrow \beta \text { weakly in } H^{1} \text { and strongly in } L^{2}, \\
& \varphi_{n} \longrightarrow \psi \text { weakly in } H^{1} \text { and strongly in } L^{2} .
\end{aligned}
$$

Obviously, $(\alpha, \beta) \in F_{m}$. First, we recall a technical lemma.

Lemma 5 (see [11], [6] and also [3]) We assume that φ_{n} is a bounded sequence in $H_{0}^{1} \cap L^{\infty}$. Let $a_{n} \longrightarrow 0$ weakly in H^{1} and strongly in L^{2}. Then for every $b \in H^{1}$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int \varphi_{n}\left\{a_{n}, b\right\}=0 \tag{3.14}
\end{equation*}
$$

We state the following result, analogous to Theorem 7.1 in [6].

Lemma 6 Under the above assumptions, we have that:
(1) if $\psi=0$, then $\alpha=\beta=0$;
or
(2) if $\psi \neq 0$, then (α, β, ψ) is a minimum of the energy E on F_{m}. Moreover, the following holds:

$$
\begin{aligned}
& a_{n} \longrightarrow \alpha \text { strongly in } H^{1} \\
& b_{n} \longrightarrow \beta \text { strongly in } H^{1}, \\
& \varphi_{n} \longrightarrow \psi \text { strongly in } H^{1} .
\end{aligned}
$$

Proof. The proof is the same as the proof of Theorem 7.1 in [6], but here we work with equivariant maps.

In the following, we will suppose that $\psi=\alpha=\beta=0$. Denote by $M\left(\mathbb{R}^{2}\right)$ the space of non-negative measures on \mathbb{R}^{2} with finite mass. Set $\mu_{n}=\frac{1}{2}\left(\left|\nabla a_{n}\right|^{2}+\left|\nabla b_{n}\right|^{2}\right) d x$ and $\nu_{n}=\left|\nabla \varphi_{n}\right|^{2} d x$. We consider the extensions of μ_{n} and ν_{n} to all of \mathbb{R}^{2} by valuing 0 in $\mathbb{R}^{2} \backslash \Omega$. Then $\left\{\mu_{n}\right\}$ and $\left\{\nu_{n}\right\}$ are bounded in $M\left(\mathbb{R}^{2}\right)$. Modulo a subsequence, we may assume that $\mu_{n} \longrightarrow \mu, \nu_{n} \longrightarrow \nu$ weakly in the sense of measures where μ and ν are bounded non-negative measure on \mathbb{R}^{2}.

Lemma 7 Under assumptions of Lemma 6, if $\psi=\alpha=\beta=0$, then we have

$$
G_{m}(\Omega) \geq \sqrt{m} G(\Omega)
$$

Proof. Clearly, $\mu\left(\mathbb{R}^{2} \backslash \bar{\Omega}\right)=\nu\left(\mathbb{R}^{2} \backslash \bar{\Omega}\right)=0$. Choose $\xi \in C^{\infty}\left(\mathbb{R}^{2}\right)$. Denote by ψ_{n} the unique solution of equation (1.3) for $a=\xi a_{n}$ and $b=\xi b_{n}$, that is

$$
\left\{\begin{aligned}
-\triangle \psi_{n} & =\left\{\xi a_{n}, \xi b_{n}\right\}, & & \text { in } \Omega \\
\psi & =0, & & \text { on } \partial \Omega .
\end{aligned}\right.
$$

A computation using the same arguments as in the proof of Lemma 7.5 in [6] gives

$$
\lim _{n \rightarrow \infty}\left\|\nabla\left(\psi_{n}-\xi^{2} \varphi_{n}\right)\right\|_{2}=0
$$

Hence, we obtain

$$
G(\Omega)\left\|\nabla\left(\xi^{2} \varphi_{n}\right)\right\|_{2}+o(1)=G(\Omega)\left\|\nabla \psi_{n}\right\|_{2} \leq \frac{1}{2}\left(\left\|\nabla\left(\xi a_{n}\right)\right\|_{2}^{2}+\left\|\nabla\left(\xi b_{n}\right)\right\|_{2}^{2}\right)
$$

Passing to the limit as $n \longrightarrow \infty$, there holds

$$
\begin{equation*}
G(\Omega) \sqrt{\int \xi^{4} d \nu} \leq \int \xi^{2} d \mu, \quad \forall \xi \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right) \tag{3.15}
\end{equation*}
$$

By approximation, therefore,

$$
\begin{equation*}
G(\Omega) \sqrt{\nu(E)} \leq \mu(E) \quad\left(E \subset \mathbb{R}^{2}, E \text { Borel }\right) \tag{3.16}
\end{equation*}
$$

Now since μ is a finite measure, the set

$$
D \equiv\{x \in \bar{\Omega}, \mu(\{x\})>0\}
$$

is at most countable. We can therefore write $D=\left\{x_{j}\right\}_{j \in J}, \mu_{x_{j}}=\mu\left(\left\{x_{j}\right\}\right)(j \in J)$ so that

$$
\mu \geq \sum_{j \in J} \mu_{x_{j}} \delta_{x_{j}} .
$$

Since (3.16) implies ν is absolutely continuous relative to μ, we can write

$$
\begin{equation*}
\nu(E)=\int_{E} h d \mu \quad(E \text { Borel }), \tag{3.17}
\end{equation*}
$$

where

$$
\begin{equation*}
h(x) \equiv \lim _{r \rightarrow 0} \frac{\nu(B(x, r))}{\mu(B(x, r))}, \tag{3.18}
\end{equation*}
$$

this limit existing for μ-a.e. $x \in \mathbb{R}^{2}$. On the other hand, from (3.16), we have

$$
(G(\Omega))^{2} \frac{\nu(B(x, r))}{\mu(B(x, r))} \leq \mu(B(x, r))
$$

provided $\mu(B(x, r)) \neq 0$. Thus we infer

$$
\begin{equation*}
h=0 \quad \mu \text {-a.e. } x \in \mathbb{R}^{2} \backslash D . \tag{3.19}
\end{equation*}
$$

Finally, define $\nu_{x_{j}} \equiv h\left(x_{j}\right) \mu_{x_{j}}$. Then we get

$$
\nu=\sum_{j \in J} \nu_{x_{j}} \delta_{x_{j}},
$$

and

$$
G(\Omega) \sqrt{\nu_{x_{j}}} \leq \mu_{x_{j}}
$$

However, by symmetry of functions in F_{m}, we have $A^{i} x_{j} \in D$ for $i=1,2, \ldots, m-1$ provided $x_{j} \in D$. Consequently, by suitably relabelling the x_{j}, we may assume that $x_{j} \in \Omega_{\theta_{0}}$ (where $\Omega_{\theta_{0}}$ is defined as in the proof of Lemma 3) for $j \in\{1, \ldots, k\}=J^{\prime}$ and $k=\operatorname{card}(J) m^{-1}$ and

$$
\nu=\sum_{i=0}^{m-1} \sum_{j \in J^{\prime}} \nu_{x_{j}} \delta_{A^{i} x_{j}} \text { and } \mu \geq \sum_{i=0}^{m-1} \sum_{j \in J^{\prime}} \mu_{x_{j}} \delta_{A^{i} x_{j}} .
$$

On the other hand, we have $\nu(\bar{\Omega})=1$ and $\mu(\bar{\Omega})=G_{m}(\Omega)$. This implies

$$
\begin{aligned}
G_{m}(\Omega) & =\mu(\bar{\Omega}) \geq m \sum_{j \in J^{\prime}} \mu_{x_{j}} \geq m \sum_{j \in J^{\prime}} G(\Omega) \sqrt{\nu_{x_{j}}} \\
& \geq m G(\Omega) \sqrt{\sum_{j \in J^{\prime}} \nu_{x_{j}}}=\sqrt{m} G(\Omega) .
\end{aligned}
$$

4 Proof of the main Theorem

In view of Lemma 6, the result follows if there is no concentration (i.e. case (1) in Lemma 6 for minimizing sequences does not occur). By Lemma 7, a sufficient condition for that is to assume $G_{m}(\Omega)<\sqrt{m} G(\Omega)$. For this purpose, we set $a(x, y)=x$ and $b(x, y)=y$. It
is obvious to see that $(a, b) \in F_{m}$ and $E(a, b, \Omega)>0$. For any fixed $r_{0}>0$, we can choose some $m \in \mathbb{N}$ such that

$$
\sqrt{m} G(\Omega)>E(a, b, \Omega) \geq G_{m}(\Omega)
$$

Thus, the main Theorem is proved.
Acknowlegements. The authors thank the referee for his valuable remarks on a first version of this paper.

References

[1] U. Abresh, Constant mean curvature tori in term of elliptic functions, J. Reine Angew. Math. 374, 169-192 (1987).
[2] L. V. Ahlfors, Complex analysis, Mcgraw-Hill, New York (1966).
[3] H. Brezis and J. M. Coron, Multiple solutions of H-systemes and Rellich's conjecture, Comm. Pure. Appl. Math, 37 (1984) 149-187.
[4] J. M. Coron, Topologie et cas limite des injections de Sobolev, C. R. Acad. Sc. Paris, 299, Ser. I (1984) 209-212.
[5] L. C. Evans, Weak convergence methods for nonlinear partial differential equations, Regional conference series in mathematics, 74 (1990).
[6] Y. Ge, Estimations of the best constant involving the L^{2} norm in Wente's inequality and compact H-surfaces in Euclidean space, Control, Optimisation and Calculus of Variations, Vol. 3, (1998) 263-300.
[7] F. Hélein, Applications harmoniques, lois de conservation et repère mobile, Diderot éditeur, Paris-New York, 1996 (see Chapter III).
[8] J. Jost, Two-dimensional geometric variational problems, Wiley (1991).
[9] P. L. Lions, The concentration-compactness principle in the calculus of variations: The limit case. Part I and Part II, Rev. Mat. Ibero. 1(1) (1985) 145-201 and 1(2) (1985) 45-121.
[10] M. Struwe, Variational Methods, Springer, Berlin-Heidelberg-New York-Tokyo (1990).
[11] H. Wente, An existence Theorem for surfaces of constant mean curvature, J. Math. Anal. Appl, 26 (1969) 318-344.
[12] H. Wente, Large solutions to the volume constrained Plateau problem, Arch. rat. Mech. Anal. 75, 59-77 (1980).
[13] H. Wente, Counter-example to a conjecture of H. Hopf, Pacific J. Math. 121, 193-243 (1986).
Y. Ge (ge@cmla.ens-cachan.fr)
C.M.L.A., E.N.S de Cachan

61, avenue du Président Wilson
94235 Cachan Cedex, France
and
Département de Mathématiques
Faculté de Sciences et Technologie
Université Paris XII-Val de Marne
61, avenue du Général de Gaulle
94010 Créteil Cedex, France
F. Hélein (helein@cmla.ens-cachan.fr)
C.M.L.A., E.N.S de Cachan

61, avenue du Président Wilson
94235 Cachan Cedex, France

