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1 Introduction

Let Ω be a smooth and bounded domain in R
2. We consider the following system

△u = ux ∧ uy, in Ω, (1.1)

where u ∈ C2(Ω;R3) and subscripts denote partial differentiation with respect to coor-
dinates. This equation characterizes surfaces of constant mean curvature H = 1

2
in R

3

in conformal representation. More precisely, any non constant smooth map u which is a
solution of (1.1) and of the conformality condition

ω := (|ux|2 − |uy|2 − 2i〈ux, uy〉)dz ⊗ dz = 0, in Ω, (1.2)

(here dz = dx+ idy) parametrizes a branched immersed constant mean curvature surface
in R

3. For that reason (1.1) is called the H-system. The complex tensor ω which appears
in (1.2) is called the Hopf differential (see [8]). The first existence result for solutions to
(1.1) and (1.2) was proved by H. Wente in [11].

In [7], the second author proposed a new variational approach for finding a solution to

(1.1). For any pair of functions a, b ∈ H1(Ω), we denote by ϕ := ãb the unique solution in
H1(Ω) of the Dirichlet problem

{
−△ϕ = {a, b}, in Ω

ϕ = 0, on ∂Ω,
(1.3)

where {a, b} = axby − aybx. By a result of Brezis and Coron [3] based on an idea due to
H. Wente [11] [12], we know that ϕ is continuous on Ω̄ and

‖ϕ‖L∞(Ω) + ‖∇ϕ‖L2(Ω) ≤ C0(Ω)‖∇a‖L2(Ω)‖∇b‖L2(Ω). (1.4)

Thus the following energy functional makes sense

E(a, b,Ω) =
‖∇a‖2L2(Ω) + ‖∇b‖2L2(Ω)

2‖∇ϕ‖L2(Ω)

, defined for a, b ∈ H1(Ω) \ {0}.

The Euler-Lagrange equation satisfied by the critical points of this functional was derived

in [7]. Through the substitution u := (λa, λb, λ2ϕ) for λ = −
√

‖∇a‖2
2
+‖∇b‖2

2

2‖∇ϕ‖2
2

, this equation

coincides with (1.1). The boundary conditions are

ϕ =
∂a

∂n
=
∂b

∂n
= 0 on ∂Ω, (1.5)
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where n = (n1, n2) is the normal vector on ∂Ω. Moreover, in [6] the first author showed that
the Hopf differential ω is holomorphic and satisfies the boundary condition Im(ων2) = 0,
where ν = n1 + in2. This implies in particular that ω vanishes - i.e. (1.2) is true - if Ω is
simply connected.

An important property of our problem is that the functional E and its critical points
are preserved by conformal transformations of the domain Ω (see [7]). So this variational
problem depends only on the complex structure of Ω and hence it also makes sense to
consider the problem on a Riemann surface. The boundary conditions (1.5) allow us to
construct a solution of (1.1) from a compact oriented Riemannian surface into R3 by gluing
together two copies of Ω. More precisely, we construct N := Ω ∪∂Ω Ω̃, where Ω̃ is a copy
of Ω, provided with opposite orientation and define a C∞ map ũ : N → R

3 by ũ = u on Ω
and ũ = (λa, λb,−λ2ϕ) on Ω̃. This map is a solution of the H-system (1.1) and its Hopf
differential is holomorphic. Were this differential to vanish, i.e. if ω = 0, then we would
obtain a constant mean curvature branched immersion. Recall that Wente [13] (see also
[1]) constructed an immersed constant mean curvature torus, which enjoys an invariance
under an orthogonal symmetry with respect to a plane. Thus it has the form Ω ∪∂Ω Ω̃ as
above, where Ω is some annulus. This motivates the search for critical points of E. In
[6], an existence result was derived for a perforated domain, provided the holes are small
enough (in the same spirit as in [4]). Here we address the problem of a one-connected
domain Ω, i.e. a domain of the form U \ V̄ where U and V are smooth bounded simply
connected open sets and V̄ ⊂ U , without smallness assumption on the hole V . Because
any such domain is conformally equivalent to a radially symmetric annulus [2] and thanks
to the invariance of the variational problem under conformal transformations, we shall
restrict ourself to annuli without loss of generality. Our method relies on a minimization
procedure on a subset of H1 ×H1, which is equivariant with respect to some finite group.

Main Theorem. Consider the annulus Ω := {(x, y) ∈ R
2, r0 < r =

√
x2 + y2 < 1}

with 0 < r0 < 1. Then, there exists a critical point (a, b) ∈ H1(Ω,R2)\{(0, 0)} of the energy

functional E. Moreover (a, b) and ϕ := ãb are smooth and satisfy the boundary conditions
(1.5). Thus there exists a real number λ 6= 0 such that the map u := (λa, λb, λ2ϕ) is a
solution of (1.1). Lastly the Hopf differential ω of u has the form ω = τ

z2
dz ⊗ dz for some

real number τ .

Unfortunately we are not able to prove that the map u is conformal. We expect that
it should be so for some values of r0. Indeed the parameter τ characterizing ω should
vary with r0 (since the set of holomorphic quadratic differentials is, roughly speaking, the
dual space of Teichmüller space). But we are still far from understanding how τ could be
related to r0.

2 The Euler-Lagrange Equation

First, we note that Ω is invariant under rotations. We define Fm = {Θ = (a, b) ∈
H1(Ω) × H1(Ω), Θ ◦ A = A ◦ Θ} and we will prove existence of a minimum of E
for m large enough, where A is the rotation of angle 2π

m
in R

2.
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Lemma 1 Assume that (a, b) ∈ Fm. Then, the unique solution ϕ of (1.3) is invariant
under A, that is,

ϕ ◦ A = ϕ.

Proof. Clearly, we have
dΘ = A−1 · (dΘ) ◦ A · A.

Thus,

{a, b} = det(dΘ) = det(A−1) · [det(dΘ)] ◦ A · det(A) = [det(dΘ)] ◦ A = {a, b} ◦ A,

since det(A) = det(A−1) = 1. On the other hand, the unique solution ϕ of (1.3) is also
the unique minimum of the following energy functional E1:

E1(ψ) =
1

2

∫

Ω

|∇ψ|2 −
∫

Ω

{a, b}ψ, defined for all ψ ∈ H1
0 (Ω).

Obviously, E1(ϕ ◦ A) = E1(ϕ). By the uniqueness of the minimizer, we deduce that

ϕ ◦ A = ϕ.

In order to get the Euler-Lagrange equation of E, we first recall a technical lemma
inspired by the work in [11] and proved in the Appendix in [3].

Lemma 2 If ϕ ∈ H1(Ω) ∩ L∞(Ω), a ∈ H1(Ω) ∩ L∞(Ω), b ∈ H1(Ω) and ϕa = 0 on ∂Ω,
then we have ∫

Ω

ϕ{a, b} =

∫

Ω

a{b, ϕ}.

The following result shows that critical points of E on Fm are also critical points of E
on H1 ×H1.

Lemma 3 Assume that H = (a, b) ∈ Fm is a minimizer of E on Fm. Then
1) there exists λ ∈ R

∗ such that Ψ = (a1, b1, ϕ1) = (λa, λb, λ2ϕ) satisfies equation (1.1).
2) Ψ verifies the boundary conditions (1.5).

3)

∫

Ω

∇a · ∇b = 0.

4) ‖∇a‖L2 = ‖∇b‖L2.
5) there exists c ∈ R such that

〈∂zΨ, ∂zΨ〉 = c

z2
,

where ∂z =
1

2
(∂x − i∂y).

6) Ψ is regular on Ω̄.
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Proof. The proof is very similar to the proof of Theorem 3.2 in [6]. We just need to adapt
it to our equivariant setting.
Let Λ = (α, β) ∈ Fm. Denote by ψ the unique solution of the following equation

{
−△ψ = {α, b}+ {a, β}, in Ω

ψ = 0, on ∂Ω.
(2.6)

We claim that ψ ◦ A = ψ. Indeed, note that,

{α, b}+ {a, β} = det(dH + dΛ)− det(dH)− det(dΛ)

and thus as in Lemma 1, we deduce that

({α, b}+ {a, β}) ◦ A = {α, b}+ {a, β}. (2.7)

Hence, by the same argument as before, we establish the claim. Now set Θt = Θ + tΛ.
Clearly, Θt ∈ Fm. A direct calculation leads to

E(at, bt,Ω) =
‖∇a‖22 + ‖∇b‖22 + 2t

∫

Ω

(∇a · ∇α +∇b · ∇β) +O(t2)

2

√
‖∇ϕ‖22 + 2t

∫

Ω

∇ϕ · ∇ψ +O(t2)

=
‖∇a‖22 + ‖∇b‖22 + 2t

∫

Ω

(∇a · ∇α +∇b · ∇β) +O(t2)

2

(
‖∇ϕ‖2 +

t

‖∇ϕ‖2

∫

Ω

ϕ({α, b}+ {a, β}) +O(t2)

)

= E(a, b,Ω)

(
1− t

‖∇ϕ‖22

∫

Ω

ϕ({α, b}+ {a, β})

+
2t

‖∇a‖22 + ‖∇b‖22

∫

Ω

(∇a · ∇α +∇b · ∇β) +O(t2)

)
.

(2.8)

For fixed θ0 ∈ [0, 2π], we consider the domain Ωθ0 = {(x, y), r0 < r < 1 and θ0 < θ <

θ0 +
2π
m
}. It follows from (2.7) and Lemma 1 that

[ϕ({α, b}+ {a, β})] ◦ A = ϕ({α, b}+ {a, β}),

which implies
∫

Ω

ϕ({α, b}+ {a, β}) = m

∫

Ωθ0

ϕ({α, b}+ {a, β}). (2.9)

On the other hand, we have

(∇a · ∇α +∇b · ∇β) ◦ A = tr([dΘ] ◦ A · [dΛ]t ◦ A)
= tr(A · dΘ · At · A · dΛt · At)
= tr(A · dΘ · dΛt · At)
= tr(dΘ · dΛt · At · A)
= ∇a · ∇α +∇b · ∇β,

(2.10)
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that is,

∫

Ω

(∇a · ∇α +∇b · ∇β) = m

∫

Ωθ0

(∇a · ∇α +∇b · ∇β). (2.11)

Combining (2.8) to (2.11), we obtain

∫

Ωθ0

(∇a · ∇α +∇b · ∇β) = ‖∇a‖22 + ‖∇b‖22
2‖∇ϕ‖22

∫

Ωθ0

ϕ({α, b}+ {a, β}).

In particular, if we set α, β ∈ C∞
0 (Ωθ0), we deduce from Lemma 2 that





−△a =
‖∇a‖22 + ‖∇b‖22

2‖∇ϕ‖22
{b, ϕ}, in Ωθ0

−△b = ‖∇a‖22 + ‖∇b‖22
2‖∇ϕ‖22

{ϕ, a} in Ωθ0 .

(2.12)

Setting λ = −
√

‖∇a‖2
2
+‖∇b‖2

2

2‖∇ϕ‖2
2

and by arbitrariness of θ0, property 1) is demonstrated. Now,

choosing α, β ∈ C∞(Ωθ0) with α = β = 0 on Γ1 = {(r, θ), θ = θ0 or θ = θ0+
2π
m
}, it follows

from Lemma 2 ∫

∂Ωθ0

∂a

∂n
· α +

∂b

∂n
· β = 0,

that is, ∂a
∂n

= ∂b
∂n

= 0 on ∂Ωθ0 \ Γ1. By arbitrariness of θ0, we establish the property 2).
The properties 3) and 4) are just results of 1) , 2) and Lemma 2.
Now, we choose any vector field X ∈ C∞(Ω,R2) such that X ◦ A = A ◦X and X · n = 0
on ∂Ω. Let σt be the flow associated to X. Clearly,

σt ◦ A = A ◦ σt.

Therefore, Θ ◦ σt ∈ Fm. The proofs of 5) and 6) are the same as the proofs of Theorem
3.2 (vii) and (iv) in [6], respectively.

3 Study of a minimizing sequence

Through this section we analyze the behaviour of a minimizing sequence in the spirit of
the theory developed in [6] (see also [5], [9] or [10]). First, we prove a useful fact.

Lemma 4 Assume that Θ = (a, b) ∈ Fm. Then we have

∫

Ω

a =

∫

Ω

b = 0.
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Proof. By definition of Fm, we have

∫

Ω

Θ =

∫

Ω

A−1 ◦Θ ◦ A = A−1

∫

Ω

Θ ◦ A = A−1

∫

Ω

Θ.

We note that A−1 is a rotation. This implies

∫

Ω

Θ = (0, 0).

Now we consider the minimum of energy functional E. Set G(Ω) = inf
a,b∈H1×H1

E(a, b,Ω)

and Gm(Ω) = inf
a,b∈Fm

E(a, b,Ω). Let (an, bn, ϕn) be a minimizing sequence of E on Fm, that

is, (an, bn) ∈ Fm, (an, bn, ϕn) satisfying equation (1.3) and

E(an, bn,Ω) = Gm(Ω) + o(1). (3.13)

Without loss of generality, we can assume that ‖∇ϕn‖2 = 1. After extracting a subse-
quence, we may assume that

an −→ α weakly in H1 and strongly in L2,

bn −→ β weakly in H1 and strongly in L2,

ϕn −→ ψ weakly in H1 and strongly in L2.

Obviously, (α, β) ∈ Fm. First, we recall a technical lemma.

Lemma 5 (see [11], [6] and also [3]) We assume that ϕn is a bounded sequence in H1
0∩L∞.

Let an −→ 0 weakly in H1 and strongly in L2. Then for every b ∈ H1, we have

lim
n→∞

∫
ϕn{an, b} = 0. (3.14)

We state the following result, analogous to Theorem 7.1 in [6].

Lemma 6 Under the above assumptions, we have that:
(1) if ψ = 0, then α = β = 0;
or
(2) if ψ 6= 0, then (α, β, ψ) is a minimum of the energy E on Fm. Moreover, the following
holds:

an −→ α strongly in H1,

bn −→ β strongly in H1,

ϕn −→ ψ strongly in H1.
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Proof. The proof is the same as the proof of Theorem 7.1 in [6], but here we work with
equivariant maps.

In the following, we will suppose that ψ = α = β = 0. Denote by M(R2) the space
of non-negative measures on R

2 with finite mass. Set µn = 1
2
(|∇an|2 + |∇bn|2)dx and

νn = |∇ϕn|2dx. We consider the extensions of µn and νn to all of R2 by valuing 0 in
R

2 \ Ω. Then {µn} and {νn} are bounded in M(R2). Modulo a subsequence, we may as-
sume that µn −→ µ, νn −→ ν weakly in the sense of measures where µ and ν are bounded
non-negative measure on R

2.

Lemma 7 Under assumptions of Lemma 6, if ψ = α = β = 0, then we have

Gm(Ω) ≥
√
mG(Ω).

Proof. Clearly, µ(R2 \ Ω̄) = ν(R2 \ Ω̄) = 0. Choose ξ ∈ C∞(R2). Denote by ψn the
unique solution of equation (1.3) for a = ξan and b = ξbn, that is

{
−△ψn = {ξan, ξbn}, in Ω

ψ = 0, on ∂Ω.

A computation using the same arguments as in the proof of Lemma 7.5 in [6] gives

lim
n→∞

‖∇(ψn − ξ2ϕn)‖2 = 0.

Hence, we obtain

G(Ω)‖∇(ξ2ϕn)‖2 + o(1) = G(Ω)‖∇ψn‖2 ≤
1

2
(‖∇(ξan)‖22 + ‖∇(ξbn)‖22).

Passing to the limit as n −→ ∞, there holds

G(Ω)

√∫
ξ4dν ≤

∫
ξ2dµ, ∀ξ ∈ C∞

0 (R2). (3.15)

By approximation, therefore,

G(Ω)
√
ν(E) ≤ µ(E) (E ⊂ R

2, E Borel). (3.16)

Now since µ is a finite measure, the set

D ≡ {x ∈ Ω̄, µ({x}) > 0}

is at most countable. We can therefore write D = {xj}j∈J , µxj
= µ({xj})(j ∈ J) so that

µ ≥
∑

j∈J

µxj
δxj
.
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Since (3.16) implies ν is absolutely continuous relative to µ, we can write

ν(E) =

∫

E

hdµ (E Borel), (3.17)

where

h(x) ≡ lim
r→0

ν(B(x, r))

µ(B(x, r))
, (3.18)

this limit existing for µ-a.e. x ∈ R
2. On the other hand, from (3.16), we have

(G(Ω))2
ν(B(x, r))

µ(B(x, r))
≤ µ(B(x, r)),

provided µ(B(x, r)) 6= 0. Thus we infer

h = 0 µ-a.e. x ∈ R
2 \D. (3.19)

Finally, define νxj
≡ h(xj)µxj

. Then we get

ν =
∑

j∈J

νxj
δxj
,

and
G(Ω)

√
νxj

≤ µxj
.

However, by symmetry of functions in Fm, we have A
ixj ∈ D for i = 1, 2, ...,m−1 provided

xj ∈ D. Consequently, by suitably relabelling the xj, we may assume that xj ∈ Ωθ0 ( where
Ωθ0 is defined as in the proof of Lemma 3) for j ∈ {1, ..., k} = J ′ and k = card(J)m−1 and

ν =
m−1∑

i=0

∑

j∈J ′

νxj
δAixj

and µ ≥
m−1∑

i=0

∑

j∈J ′

µxj
δAixj

.

On the other hand, we have ν(Ω̄) = 1 and µ(Ω̄) = Gm(Ω). This implies

Gm(Ω) = µ(Ω̄) ≥ m
∑

j∈J ′

µxj
≥ m

∑

j∈J ′

G(Ω)
√
νxj

≥ mG(Ω)

√∑

j∈J ′

νxj
=

√
mG(Ω).

4 Proof of the main Theorem

In view of Lemma 6, the result follows if there is no concentration (i.e. case (1) in Lemma
6 for minimizing sequences does not occur). By Lemma 7, a sufficient condition for that
is to assume Gm(Ω) <

√
mG(Ω). For this purpose, we set a(x, y) = x and b(x, y) = y. It
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is obvious to see that (a, b) ∈ Fm and E(a, b,Ω) > 0. For any fixed r0 > 0, we can choose
some m ∈ N such that √

mG(Ω) > E(a, b,Ω) ≥ Gm(Ω).

Thus, the main Theorem is proved.
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