Yuxin Ge 
  
Frédéric Hélein 
  
A remark on compact H-surfaces into R 3

Introduction

Let Ω be a smooth and bounded domain in R 2 . We consider the following system

△u = u x ∧ u y , in Ω, (1.1) 
where u ∈ C 2 (Ω; R 3 ) and subscripts denote partial differentiation with respect to coordinates. This equation characterizes surfaces of constant mean curvature H = 1 2 in R 3 in conformal representation. More precisely, any non constant smooth map u which is a solution of (1.1) and of the conformality condition

ω := (|u x | 2 -|u y | 2 -2i u x , u y )dz ⊗ dz = 0, in Ω, (1.2) 
(here dz = dx + idy) parametrizes a branched immersed constant mean curvature surface in R 3 . For that reason (1.1) is called the H-system. The complex tensor ω which appears in (1.2) is called the Hopf differential (see [START_REF] Jost | Two-dimensional geometric variational problems[END_REF]). The first existence result for solutions to (1.1) and (1.2) was proved by H. Wente in [START_REF] Wente | An existence Theorem for surfaces of constant mean curvature[END_REF]. In [START_REF] Hélein | Applications harmoniques, lois de conservation et repère mobile[END_REF], the second author proposed a new variational approach for finding a solution to (1.1). For any pair of functions a, b ∈ H 1 (Ω), we denote by ϕ := ab the unique solution in H 1 (Ω) of the Dirichlet problem

-△ϕ = {a, b}, in Ω ϕ = 0, on ∂Ω, (1.3) 
where {a, b} = a x b ya y b x . By a result of Brezis and Coron [START_REF] Brezis | Multiple solutions of H-systemes and Rellich's conjecture[END_REF] based on an idea due to H. Wente [START_REF] Wente | An existence Theorem for surfaces of constant mean curvature[END_REF] [12], we know that ϕ is continuous on Ω and

ϕ L ∞ (Ω) + ∇ϕ L 2 (Ω) ≤ C 0 (Ω) ∇a L 2 (Ω) ∇b L 2 (Ω) . (1.4)
Thus the following energy functional makes sense

E(a, b, Ω) = ∇a 2 L 2 (Ω) + ∇b 2 L 2 (Ω) 2 ∇ϕ L 2 (Ω) , defined for a, b ∈ H 1 (Ω) \ {0}.
The Euler-Lagrange equation satisfied by the critical points of this functional was derived in [START_REF] Hélein | Applications harmoniques, lois de conservation et repère mobile[END_REF]. Through the substitution u := (λa, λb, λ 2 ϕ) for λ = -

∇a 2 2 + ∇b 2 2 2 ∇ϕ 2 2
, this equation coincides with (1.1). The boundary conditions are

ϕ = ∂a ∂n = ∂b ∂n = 0 on ∂Ω, (1.5) 
where n = (n 1 , n 2 ) is the normal vector on ∂Ω. Moreover, in [START_REF] Ge | Estimations of the best constant involving the L 2 norm in Wente's inequality and compact H-surfaces in Euclidean space[END_REF] the first author showed that the Hopf differential ω is holomorphic and satisfies the boundary condition Im(ων 2 ) = 0, where ν = n 1 + in 2 . This implies in particular that ω vanishes -i.e. (1.2) is true -if Ω is simply connected.

An important property of our problem is that the functional E and its critical points are preserved by conformal transformations of the domain Ω (see [START_REF] Hélein | Applications harmoniques, lois de conservation et repère mobile[END_REF]). So this variational problem depends only on the complex structure of Ω and hence it also makes sense to consider the problem on a Riemann surface. The boundary conditions (1.5) allow us to construct a solution of (1.1) from a compact oriented Riemannian surface into R 3 by gluing together two copies of Ω. More precisely, we construct N := Ω ∪ ∂Ω Ω, where Ω is a copy of Ω, provided with opposite orientation and define a C ∞ map ũ : N → R 3 by ũ = u on Ω and ũ = (λa, λb, -λ 2 ϕ) on Ω. This map is a solution of the H-system (1.1) and its Hopf differential is holomorphic. Were this differential to vanish, i.e. if ω = 0, then we would obtain a constant mean curvature branched immersion. Recall that Wente [START_REF] Wente | Counter-example to a conjecture of H. Hopf[END_REF] (see also [START_REF] Abresh | Constant mean curvature tori in term of elliptic functions[END_REF]) constructed an immersed constant mean curvature torus, which enjoys an invariance under an orthogonal symmetry with respect to a plane. Thus it has the form Ω ∪ ∂Ω Ω as above, where Ω is some annulus. This motivates the search for critical points of E. In [START_REF] Ge | Estimations of the best constant involving the L 2 norm in Wente's inequality and compact H-surfaces in Euclidean space[END_REF], an existence result was derived for a perforated domain, provided the holes are small enough (in the same spirit as in [START_REF] Coron | Topologie et cas limite des injections de Sobolev[END_REF]). Here we address the problem of a one-connected domain Ω, i.e. a domain of the form U \ V where U and V are smooth bounded simply connected open sets and V ⊂ U , without smallness assumption on the hole V . Because any such domain is conformally equivalent to a radially symmetric annulus [START_REF] Ahlfors | Complex analysis[END_REF] and thanks to the invariance of the variational problem under conformal transformations, we shall restrict ourself to annuli without loss of generality. Our method relies on a minimization procedure on a subset of H 1 × H 1 , which is equivariant with respect to some finite group.

Main Theorem. Consider the annulus Ω := {(x, y) ∈ R 2 , r 0 < r = x 2 + y 2 < 1} with 0 < r 0 < 1. Then, there exists a critical point (a, b) ∈ H 1 (Ω, R 2 )\{(0, 0)} of the energy functional E. Moreover (a, b) and ϕ := ab are smooth and satisfy the boundary conditions (1.5). Thus there exists a real number λ = 0 such that the map u := (λa, λb, λ 2 ϕ) is a solution of (1.1). Lastly the Hopf differential ω of u has the form ω = τ z 2 dz ⊗ dz for some real number τ .

Unfortunately we are not able to prove that the map u is conformal. We expect that it should be so for some values of r 0 . Indeed the parameter τ characterizing ω should vary with r 0 (since the set of holomorphic quadratic differentials is, roughly speaking, the dual space of Teichmüller space). But we are still far from understanding how τ could be related to r 0 .

The Euler-Lagrange Equation

First, we note that Ω is invariant under rotations. We define

F m = {Θ = (a, b) ∈ H 1 (Ω) × H 1 (Ω), Θ • A = A
• Θ} and we will prove existence of a minimum of E for m large enough, where A is the rotation of angle 2π m in R 2 .

Lemma 1 Assume that (a, b) ∈ F m . Then, the unique solution ϕ of (1.3) is invariant under A, that is, ϕ • A = ϕ.
Proof. Clearly, we have

dΘ = A -1 • (dΘ) • A • A.
Thus,

{a, b} = det(dΘ) = det(A -1 ) • [det(dΘ)] • A • det(A) = [det(dΘ)] • A = {a, b} • A, since det(A) = det(A -1 ) = 1.
On the other hand, the unique solution ϕ of (1.3) is also the unique minimum of the following energy functional E 1 :

E 1 (ψ) = 1 2 Ω |∇ψ| 2 - Ω {a, b}ψ, defined for all ψ ∈ H 1 0 (Ω).
Obviously,

E 1 (ϕ • A) = E 1 (ϕ)
. By the uniqueness of the minimizer, we deduce that

ϕ • A = ϕ.
In order to get the Euler-Lagrange equation of E, we first recall a technical lemma inspired by the work in [START_REF] Wente | An existence Theorem for surfaces of constant mean curvature[END_REF] and proved in the Appendix in [START_REF] Brezis | Multiple solutions of H-systemes and Rellich's conjecture[END_REF]. The following result shows that critical points of E on F m are also critical points of E on

Lemma 2 If ϕ ∈ H 1 (Ω) ∩ L ∞ (Ω), a ∈ H 1 (Ω) ∩ L ∞ (Ω), b ∈ H 1 (Ω)
H 1 × H 1 . Lemma 3 Assume that H = (a, b) ∈ F m is a minimizer of E on F m . Then 1) there exists λ ∈ R * such that Ψ = (a 1 , b 1 , ϕ 1 ) = (λa, λb, λ 2 ϕ) satisfies equation (1.1).
2) Ψ verifies the boundary conditions (1.5).

3)

Ω ∇a • ∇b = 0. 4) ∇a L 2 = ∇b L 2 . 5) there exists c ∈ R such that ∂ z Ψ, ∂ z Ψ = c z 2 ,
where

∂ z = 1 2 (∂ x -i∂ y ).
6) Ψ is regular on Ω.

Proof. The proof is very similar to the proof of Theorem 3.2 in [START_REF] Ge | Estimations of the best constant involving the L 2 norm in Wente's inequality and compact H-surfaces in Euclidean space[END_REF]. We just need to adapt it to our equivariant setting. Let Λ = (α, β) ∈ F m . Denote by ψ the unique solution of the following equation

-△ψ = {α, b} + {a, β}, in Ω ψ = 0, on ∂Ω. (2.6)
We claim that ψ • A = ψ. Indeed, note that, {α, b} + {a, β} = det(dH + dΛ)det(dH)det(dΛ)

and thus as in Lemma 1, we deduce that

({α, b} + {a, β}) • A = {α, b} + {a, β}. (2.7) 
Hence, by the same argument as before, we establish the claim. Now set Θ t = Θ + tΛ.

Clearly, Θ t ∈ F m . A direct calculation leads to

E(a t , b t , Ω) = ∇a 2 2 + ∇b 2 2 + 2t Ω (∇a • ∇α + ∇b • ∇β) + O(t 2 ) 2 ∇ϕ 2 2 + 2t Ω ∇ϕ • ∇ψ + O(t 2 ) = ∇a 2 2 + ∇b 2 2 + 2t Ω (∇a • ∇α + ∇b • ∇β) + O(t 2 ) 2 ∇ϕ 2 + t ∇ϕ 2 Ω ϕ({α, b} + {a, β}) + O(t 2 ) = E(a, b, Ω) 1 - t ∇ϕ 2 2 Ω
ϕ({α, b} + {a, β})

+ 2t ∇a 2 2 + ∇b 2 2 Ω (∇a • ∇α + ∇b • ∇β) + O(t 2 ) . (2.8) 
For fixed θ 0 ∈ [0, 2π], we consider the domain Ω θ 0 = {(x, y), r 0 < r < 1 and θ 0 < θ < θ 0 + 2π m }. It follows from (2.7) and Lemma 1 that

[ϕ({α, b} + {a, β})] • A = ϕ({α, b} + {a, β}), which implies Ω ϕ({α, b} + {a, β}) = m Ω θ 0 ϕ({α, b} + {a, β}).
(2.9)

On the other hand, we have

(∇a • ∇α + ∇b • ∇β) • A = tr([dΘ] • A • [dΛ] t • A) = tr(A • dΘ • A t • A • dΛ t • A t ) = tr(A • dΘ • dΛ t • A t ) = tr(dΘ • dΛ t • A t • A) = ∇a • ∇α + ∇b • ∇β, (2.10) 
that is,

Ω (∇a • ∇α + ∇b • ∇β) = m Ω θ 0 (∇a • ∇α + ∇b • ∇β). (2.11)
Combining (2.8) to (2.11), we obtain

Ω θ 0 (∇a • ∇α + ∇b • ∇β) = ∇a 2 2 + ∇b 2 2 2 ∇ϕ 2 2 Ω θ 0 ϕ({α, b} + {a, β}).
In particular, if we set α, β ∈ C ∞ 0 (Ω θ 0 ), we deduce from Lemma 2 that

           -△a = ∇a 2 2 + ∇b 2 2 2 ∇ϕ 2 2 {b, ϕ}, in Ω θ 0 -△b = ∇a 2 2 + ∇b 2 2 2 ∇ϕ 2 2 {ϕ, a} in Ω θ 0 .
(2.12)

Setting λ = - ∇a 2 2 + ∇b 2 2 2 ∇ϕ 2 2
and by arbitrariness of θ 0 , property 1) is demonstrated. Now,

choosing α, β ∈ C ∞ (Ω θ 0 ) with α = β = 0 on Γ 1 = {(r, θ), θ = θ 0 or θ = θ 0 + 2π m }, it follows from Lemma 2 ∂Ω θ 0 ∂a ∂n • α + ∂b ∂n • β = 0,
that is, ∂a ∂n = ∂b ∂n = 0 on ∂Ω θ 0 \ Γ 1 . By arbitrariness of θ 0 , we establish the property 2). The properties 3) and 4) are just results of 1) , 2) and Lemma 2. Now, we choose any vector field X ∈ C ∞ (Ω, R 2 ) such that X • A = A • X and X • n = 0 on ∂Ω. Let σ t be the flow associated to X. Clearly,

σ t • A = A • σ t .
Therefore, Θ • σ t ∈ F m . The proofs of 5) and 6) are the same as the proofs of Theorem 3.2 (vii) and (iv) in [START_REF] Ge | Estimations of the best constant involving the L 2 norm in Wente's inequality and compact H-surfaces in Euclidean space[END_REF], respectively.

Study of a minimizing sequence

Through this section we analyze the behaviour of a minimizing sequence in the spirit of the theory developed in [START_REF] Ge | Estimations of the best constant involving the L 2 norm in Wente's inequality and compact H-surfaces in Euclidean space[END_REF] (see also [START_REF] Evans | Weak convergence methods for nonlinear partial differential equations[END_REF], [START_REF] Lions | The concentration-compactness principle in the calculus of variations: The limit case. Part I and Part II[END_REF] or [START_REF] Struwe | Variational Methods[END_REF]). First, we prove a useful fact. Proof. By definition of F m , we have

Ω Θ = Ω A -1 • Θ • A = A -1 Ω Θ • A = A -1 Ω Θ.
We note that A -1 is a rotation. This implies Ω Θ = (0, 0).

Now we consider the minimum of energy functional

E. Set G(Ω) = inf a,b∈H 1 ×H 1 E(a, b, Ω) and G m (Ω) = inf a,b∈Fm E(a, b, Ω). Let (a n , b n , ϕ n ) be a minimizing sequence of E on F m , that is, (a n , b n ) ∈ F m , (a n , b n , ϕ n ) satisfying equation (1.3) and E(a n , b n , Ω) = G m (Ω) + o(1). (3.13) 
Without loss of generality, we can assume that ∇ϕ n 2 = 1. After extracting a subsequence, we may assume that a n -→ α weakly in H 1 and strongly in L 2 , b n -→ β weakly in H 1 and strongly in L 2 , ϕ n -→ ψ weakly in H 1 and strongly in L 2 .

Obviously, (α, β) ∈ F m . First, we recall a technical lemma.

Lemma 5 (see [START_REF] Wente | An existence Theorem for surfaces of constant mean curvature[END_REF], [START_REF] Ge | Estimations of the best constant involving the L 2 norm in Wente's inequality and compact H-surfaces in Euclidean space[END_REF] and also [START_REF] Brezis | Multiple solutions of H-systemes and Rellich's conjecture[END_REF]) We assume that ϕ n is a bounded sequence in H 1 0 ∩L ∞ . Let a n -→ 0 weakly in H 1 and strongly in L 2 . Then for every b ∈ H 1 , we have lim n→∞ ϕ n {a n , b} = 0.

(3.14)

We state the following result, analogous to Theorem 7.1 in [START_REF] Ge | Estimations of the best constant involving the L 2 norm in Wente's inequality and compact H-surfaces in Euclidean space[END_REF].

Lemma 6 Under the above assumptions, we have that:

(1) if ψ = 0, then α = β = 0; or (2) if ψ = 0, then (α, β, ψ) is a minimum of the energy E on F m . Moreover, the following holds:

a n -→ α strongly in H 1 , b n -→ β strongly in H 1 , ϕ n -→ ψ strongly in H 1 .
Proof. The proof is the same as the proof of Theorem 7.1 in [START_REF] Ge | Estimations of the best constant involving the L 2 norm in Wente's inequality and compact H-surfaces in Euclidean space[END_REF], but here we work with equivariant maps.

In the following, we will suppose that ψ = α = β = 0. Denote by M (R 2 ) the space of non-negative measures on R 2 with finite mass. Set µ n = 1 2 (|∇a n | 2 + |∇b n | 2 )dx and ν n = |∇ϕ n | 2 dx. We consider the extensions of µ n and ν n to all of R 2 by valuing 0 in R 2 \ Ω. Then {µ n } and {ν n } are bounded in M (R 2 ). Modulo a subsequence, we may assume that µ n -→ µ, ν n -→ ν weakly in the sense of measures where µ and ν are bounded non-negative measure on R 2 .

Lemma 7 Under assumptions of Lemma 6, if ψ = α = β = 0, then we have

G m (Ω) ≥ √ mG(Ω). Proof. Clearly, µ(R 2 \ Ω) = ν(R 2 \ Ω) = 0. Choose ξ ∈ C ∞ (R 2
). Denote by ψ n the unique solution of equation (1.3) for a = ξa n and b = ξb n , that is

-△ψ n = {ξa n , ξb n }, in Ω ψ = 0, on ∂Ω.
A computation using the same arguments as in the proof of Lemma 7.5 in [START_REF] Ge | Estimations of the best constant involving the L 2 norm in Wente's inequality and compact H-surfaces in Euclidean space[END_REF] gives

lim n→∞ ∇(ψ n -ξ 2 ϕ n ) 2 = 0.
Hence, we obtain

G(Ω) ∇(ξ 2 ϕ n ) 2 + o(1) = G(Ω) ∇ψ n 2 ≤ 1 2 ( ∇(ξa n ) 2 2 + ∇(ξb n ) 2 
2 ).

Passing to the limit as n -→ ∞, there holds

G(Ω) ξ 4 dν ≤ ξ 2 dµ, ∀ξ ∈ C ∞ 0 (R 2 ). (3.15)
By approximation, therefore,

G(Ω) ν(E) ≤ µ(E) (E ⊂ R 2 , E Borel). ( 3 

.16)

Now since µ is a finite measure, the set

D ≡ {x ∈ Ω, µ({x}) > 0}
is at most countable. We can therefore write D = {x j } j∈J , µ x j = µ({x j })(j ∈ J) so that µ ≥ j∈J µ x j δ x j .

Since (3.16) implies ν is absolutely continuous relative to µ, we can write Finally, define ν x j ≡ h(x j )µ x j . Then we get ν = j∈J ν x j δ x j , and G(Ω) √ ν x j ≤ µ x j .

ν(E) = E hdµ (E Borel), ( 3 
However, by symmetry of functions in F m , we have A i x j ∈ D for i = 1, 2, ..., m-1 provided x j ∈ D. Consequently, by suitably relabelling the x j , we may assume that x j ∈ Ω θ 0 ( where Ω θ 0 is defined as in the proof of Lemma 3) for j ∈ {1, ..., k} = J ′ and k = card(J)m -1 and ν = m-1 i=0 j∈J ′ ν x j δ A i x j and µ ≥ m-1 i=0 j∈J ′ µ x j δ A i x j .

On the other hand, we have ν( Ω) = 1 and µ( Ω) = G m (Ω). This implies

G m (Ω) = µ( Ω) ≥ m j∈J ′ µ x j ≥ m j∈J ′ G(Ω) √ ν x j ≥ mG(Ω) j∈J ′ ν x j = √ mG(Ω).

Proof of the main Theorem

In view of Lemma 6, the result follows if there is no concentration (i.e. case (1) in Lemma 6 for minimizing sequences does not occur). By Lemma 7, a sufficient condition for that is to assume G m (Ω) < √ mG(Ω). For this purpose, we set a(x, y) = x and b(x, y) = y. It is obvious to see that (a, b) ∈ F m and E(a, b, Ω) > 0. For any fixed r 0 > 0, we can choose some m ∈ N such that √ mG(Ω) > E(a, b, Ω) ≥ G m (Ω).

Thus, the main Theorem is proved.

  and ϕa = 0 on ∂Ω, then we have Ω ϕ{a, b} = Ω a{b, ϕ}.

Lemma 4

 4 Assume that Θ = (a, b) ∈ F m . Then we have

  for µ-a.e. x ∈ R 2 . On the other hand, from (3.16), we have (G(Ω)) 2 ν(B(x, r)) µ(B(x, r)) ≤ µ(B(x, r)), provided µ(B(x, r)) = 0. Thus we infer h = 0 µ-a.e. x ∈ R 2 \ D. (3.19)
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