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Abstract

We consider the setting of online linear regression for arbitrary deterministic sequences, with the

square loss. We are interested in the aim set by Bartlett et al. (2015): obtain regret bounds that

hold uniformly over all competitor vectors. When the feature sequence is known at the beginning

of the game, they provided closed-form regret bounds of 2dB2 lnT + OT (1), where T is the

number of rounds and B is a bound on the observations. Instead, we derive bounds with an optimal

constant of 1 in front of the dB2 lnT term. In the case of sequentially revealed features, we also

derive an asymptotic regret bound of dB2 lnT for any individual sequence of features and bounded

observations. All our algorithms are variants of the online non-linear ridge regression forecaster,

either with a data-dependent regularization or with almost no regularization.

Keywords: Adversarial learning, regret bounds, linear regression, (non-linear) ridge regression

1. Introduction and setting

We consider the setting of online linear regression for arbitrary deterministic sequences with the

square loss, which unfolds as follows. First, the environment chooses a sequence of observations

(yt)t>1 in R and a sequence of feature vectors (xt)t>1 in R
d. The observation sequence (yt)t>1 is

initially hidden to the learner, while the sequence of feature vectors (see Bartlett et al., 2015) may be

given in advance or be initially hidden as well, depending on the setting considered: “beforehand-

known features” (also called the fixed-design setting) or “sequentially revealed features”. At each

forecasting instance t > 1, Nature reveals xt (if it was not initially given), then the learner forms a

prediction ŷt ∈ R. The observation yt ∈ R is then revealed and instance t + 1 starts. In all results

of this paper, the observations yt will be assumed to be bounded in [−B,B] (but the forecaster will

have no knowledge of B), while we will avoid as much as possible boundedness assumptions of the

features xt. See Figure 1.

c© 2019 P. Gaillard, S. Gerchinovitz, M. Huard & G. Stoltz.
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Sequentially revealed features Beforehand-known features

Given: [No input] Given: x1, . . . ,xT ∈ R
d

For t = 1, 2, . . . , T , the learner: For t = 1, 2, . . . , T , the learner:

• observes xt ∈ R
d

• predicts ŷt ∈ R • predicts ŷt ∈ R

• observes yt ∈ [−B,B] • observes yt ∈ [−B,B]
• incurs (ŷt − yt)

2 ∈ R • incurs (ŷt − yt)
2 ∈ R

Figure 1: The two online linear regression settings considered, introduced by Bartlett et al. (2015);

the learner has no knowledge neither of B nor (in the left case) of T .

The goal of the learner is to perform on the long run (when T is large enough) almost as well as

the best fixed linear predictor in hindsight. To do so, the learner minimizes her cumulative regret,

RT (u) =

T∑

t=1

(yt − ŷt)
2 −

T∑

t=1

(yt − u · xt)
2 ,

either with respect to specific vectors u ∈ R
d (e.g., in a compact subset) or uniformly over Rd. In

this article, and following Bartlett et al. (2015), we will be interested in

sup
u∈Rd

RT (u) =

T∑

t=1

(yt − ŷt)
2 − inf

u∈Rd

T∑

t=1

(yt − u · xt)
2 , (1)

which we will refer to as the uniform regret over Rd (or simply, the uniform regret). The worst-case

uniform regret corresponds to the largest uniform regret of a strategy, when considering all possible

sequences of features xt and (bounded) observations yt; we will also refer to it as a twice uniform

regret, see Section 4.1.

Notation. Bounded sequences of real numbers (at)t>1, possibly depending on external quantities

like the feature vectors x1,x2, . . ., are denoted by aT = OT (1). For a given positive function f ,

the piece of notation aT = OT

(
f(T )

)
then indicates that aT /f(T ) = OT (1). Also, the notation

aT = ΘT (1) is a short-hand for the facts that aT = OT (1) and 1/aT = OT (1), i.e., for the fact that

(at)t>1 is bounded from above and from below. We define a similar extension aT = ΘT

(
f(T )

)

meaning that aT /f(T ) = ΘT (1).

Earlier works. Linear regression with batch stochastic data has been extensively studied by the

statistics community. Our setting of online linear regression for arbitrary sequences is of more recent

interest; it dates back to Foster (1991), who considered binary labels yt ∈ {0, 1} and vectors u with

bounded ℓ1–norm. We refer the interested reader to the monograph by Cesa-Bianchi and Lugosi

(2006, Chapter 11) for a thorough introduction to this literature and to Bartlett et al. (2015) for an

overview of the state of the art. Here, we will mostly highlight some key contributions. One is

by Vovk (2001) and Azoury and Warmuth (2001): they designed the non-linear ridge regression

recalled in Section 2.1, which achieves a regret of order d lnT only uniformly over vectors u with

bounded ℓ2–norm. Vovk (2001) also provided a matching minimax lower bound dB2 lnT −OT (1)
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on the worst-case uniform regret over Rd of any forecaster, where B is a bound on the observa-

tions |yt| (see also the lower bound provided by Takimoto and Warmuth, 2000). More recently,

Bartlett et al. (2015) computed the minimax regret for the problem with beforehand-known fea-

tures and provided an algorithm that is optimal under some (stringent) conditions on the sequences

(xt)t>1 and (yt)t>1 of features and observations. The best closed-form (but general: for all se-

quences) uniform regret they could obtain for this algorithm was of order 2dB2 lnT . This algorithm

is scale invariant with respect to the sequence of features (xt)t>1. Their analysis emphasizes the im-

portance of a data-dependent metric to regularize the algorithm, which is harder to construct when

the features are only revealed sequentially. To that end, Malek and Bartlett (2018) show that, under

quite intricate constraints on the features and observations, the backward algorithm of Bartlett et al.

(2015) can also be computed in a forward (and thus legitimate) fashion in the case when the features

are only revealed sequentially. It is thus also optimal; see, e.g., Lemma 39 and Theorem 46 therein.

Organization of the paper and contributions. We first recall and discuss the regret bound of the

non-linear ridge regression algorithm (Section 2.1), whose proof will be a building block for our

new analyses; we will show that perhaps surprisingly it enjoys a uniform regret bound 2dB2 lnT +
OT (1). For the sake of completeness, we also state and re-prove (Section 2.2) the regret lower

bound by Vovk (2001) (and Takimoto and Warmuth, 2000), as most of the discussions in this paper

will be about the optimal constant in front of the dB2 lnT regret bound; this optimal constant

will be seen to equal 1. Our proof resorts to a general argument, namely, the van Trees inequality

(see Gill and Levit, 1995), to lower bound the error made by any forecaster, while Vovk (2001)

was heavily relying on the fact that in a Bayesian stochastic context, the optimal strategy can be

determined. This new tool for the machine learning community could be of general interest to

derive lower bounds in other settings. We also believe that our lower bound proof is enlightening for

statisticians. It shows that the expectation of the regret is larger than a sum of quadratic estimation

errors for a d–dimensional parameter. Each of these errors corresponds to an estimation based on

a sample of respective length t − 1, thus is larger than something of the order of d/t, which is the

optimal parametric estimation rate. Hence the final d(1 + 1/2 + . . . + 1/T ) ∼ d lnT regret lower

bound.

We next show (Section 3) that in the case of beforehand-known features, the non-linear ridge

regression algorithm and its analysis may make good use of a proper metric ‖ · ‖
GT

described in (8)

instead of the Euclidean norm. This leads to a worst-case bound of dB2 ln(1 + T/d) + dB2 on

the uniform regret over Rd, which is optimal (with an optimal constant of 1) in view of the per-

fectly matching minimax lower bound of Section 2.2. To the best of our knowledge, earlier closed-

form worst-case upper bounds were suboptimal by a factor of 2. See the corresponding discus-

sions for the non-linear ridge regression algorithm, in Section 2.1, and for the minimax forecaster

by Bartlett et al. (2015), in Remark 8 of Section 3.

The question then is (Section 4) whether a dB2 lnT + OT (1) regret bound can be achieved

on the uniform regret in the most interesting setting of sequentially revealed features. Surprisingly

enough, even if the traditional bound for the non-linear ridge regression forecaster blows up when

the regularization parameter vanishes, λ = 0 (see Section 2.1), an ad hoc analysis can be made

in this case; it yields a uniform regret bound of dB2 lnT + OT (1). This bound holds for any

fixed sequence of features and bounded observations; we do not impose stringent conditions as in

Malek and Bartlett (2018). Also, no parameter needs to be tuned, which is a true relief. The only

drawback of this bound, compared to the bounds obtained in the case of beforehand-known features,
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is that the OT (1) remainder term depends on the sequence of features. We thus could not derive a

worst-case uniform regret bound.

Therefore, a final open question is stated in Section 4.1 and consists in determining if such a

twice uniform regret bound of order dB2 lnT (over comparison vectors u ∈ R
d and over feature

vectors xt ∈ R
d and bounded observations yt) may hold in the case of sequentially revealed features,

or whether the lower bound should be improved. The proofs of the lower bound (the ones by Vovk,

2001, Takimoto and Warmuth, 2000, and our one) generate observations and feature vectors ex ante,

independently of the strategy considered, and reveal them to the latter before the prediction game

starts. However, it might be the case that truly sequential choices to annoy the strategy considered

or generating feature sequences with difficult-to-predict sequences of Gram matrices lead to a larger

regret being suffered.

2. Sequentially revealed features / Partially known results

In this section, we recall and reestablish some known results regarding the regret with the square

loss function. We recall the definition and the regret bound (Section 2.1) of the non-linear ridge

regression algorithm of Vovk (2001), Azoury and Warmuth (2001). The (proof of this) regret bound

is used later in this article to design and study our new strategies. We reestablish as well a

dB2
(
lnT − (3 + ln d)− ln lnT

)

lower bound on the regret of any forecaster (Section 2.2), which implies that the worst-case uniform

regret bound dB2 ln(1+T/d)+dB2 obtained in Section 3 is first-order optimal: it gets the optimal

dB2 lnT main term.

2.1. Upper bound on the regret / Reminder of a known result + a new consequence of it

The non-linear ridge regression algorithm of Vovk, Azoury and Warmuth uses at each time-step t a

vector ût such that û1 = (0, . . . , 0)T and for t > 2,

ût ∈ argmin
u∈Rd

{
t−1∑

s=1

(ys − u · xs)
2 + (u · xt)

2 + λ ‖u‖2
}
, (2)

where ‖ · ‖ denotes the Euclidean norm, and predicts ŷt = ût · xt. No clipping can take place to

form the prediction as the learner has no knowledge of the range [−B,B] of the observations.

Note that the definition (2) is not scale invariant. By scale invariance, we mean that if the xt are

all multiplied by some γ > 0 (or even by an invertible matrix Γ), the vector ût used should also be

just divided by γ (or multiplied by Γ−1). We may also define what a scale-invariant bound on the

uniform regret is: a bound that is unaffected by a rescaling of the feature vectors xt (as the vectors

u ∈ R
d compensate for the rescaling).

Notation 1 Given features x1,x2, . . . ∈ R
d, we denote by Gt =

∑t
s=1 xsx

T
s the associated d× d

Gram matrix at step t > 1. This matrix is symmetric and positive semidefinite; it admits d eigenval-

ues, which we sort in non-increasing order and refer to as λ1(Gt), . . . , λd(Gt). Furthermore, we

denote by rt = rank(Gt) the rank of Gt. In particular, λrt(Gt) is the smallest positive eigenvalue

of Gt.
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For λ > 0, we have a unique, closed-form solution of (2): denoting At = λ Id +Gt, which is

a symmetric definite positive thus invertible matrix, and bt−1 =
∑t−1

s=1 yt xt,

ût = A−1
t bt−1 . (3)

We recall the proof of the following theorem in Appendix B, mostly for the sake of completeness

and because we will use some standard inequalities extracted from it.

Theorem 2 (see Theorem 11.8 of Cesa-Bianchi and Lugosi, 2006) Let the non-linear ridge re-

gression (2) be run with parameter λ > 0. For all T > 1, for all sequences x1, . . . ,xT ∈ R
d and

all y1, . . . , yT ∈ [−B,B], for all u ∈ R
d,

RT (u) 6 λ ‖u‖2 +B2
d∑

k=1

ln

(
1 +

λk(GT )

λ

)
.

The regret bound above involves a λ ‖u‖2 term, which blows up when the supremum over

u ∈ R
d is taken. However, under an additional boundedness assumption on the features xt, we

could prove the following uniform regret bound. To the best of our knowledge, this is the first

uniform regret bound proved for this well-known forecaster. Other uniform regret bounds (see

Bartlett et al., 2015) were proved for ad-hoc and more involved forecasters, not for a standard, good

old forecaster like the non-linear ridge regression (2).

However, despite our best efforts, the uniform regret bound we could prove is only of the form

2dB2 ln(T ) + OT (1). It has two drawbacks: first, as we show in the next sections, the constant 2
in the leading term is suboptimal; second, the OT (1) strongly depends on the sequence of feature

vectors. The proof is provided in Section B and essentially consists in noting that it is unnecessary

to worry about vectors u ∈ R
d with too large a norm, as they never achieve the infimum in (1).

Corollary 3 Let the non-linear ridge regression (2) be run with parameter λ > 0. For all T > 1,

for all sequences x1, . . . ,xT ∈ R
d with ‖xt‖ 6 X and all y1, . . . , yT ∈ [−B,B],

sup
u∈Rd

RT (u) 6 rTB
2 ln

(
1 +

TX2

rTλ

)
+

λ

λrT (GT )
TB2 .

Proper choices for λ to minimize the upper bound above are roughly of the order of 1/T , to

get rid of the linear part of the bound given by TB2; because of the T/λ term in the logarithm, the

resulting bound has unfortunately a main term of order dB2 lnT 2 = 2dB2 lnT . For instance, the

choice λ = 1/T , that does not require any beforehand knowledge of the features xt, together with

the bound rT 6 d and the fact that u 7→ (1/u) ln(1 + u) is decreasing over (0,+∞), leads to a

regret bound less than

2dB2 lnT +
B2

λrT (GT )
+ dB2 ln

(
1 +X2/d

)
.

The B2/λrT (GT ) quantity in the regret bound is not uniformly bounded over sequences of fea-

tures xt. In this respect, Corollary 3 only constitues a minor improvement on Theorem 2. We note

a scaling issue: for a fixed sequence of observations y1, y2, . . ., while the uniform regret is not af-

fected by a scaling of the feature vectors, the upper bound exhibited above is so. The deep reason

for this issue is the lack of invariance of the non-linear ridge regression (2) itself.
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2.2. Lower bound on the uniform regret / Improvement on known results

In this section, we study the uniform regret sup
{
RT (u) : u ∈ R

d
}

, in the minimax case (of befo-

rehand-known features, which is the most difficult setting for a lower bound). That is, we are

interested in

R⋆
T, [−B,B]

def
= inf

forecasters
sup

x1,...,xT∈×[0,1]d
sup

yt∈[−B,B]

{
T∑

t=1

(yt − ŷt)
2 − inf

u∈Rd

T∑

t=1

(yt − u · xt)
2

}
,

(4)

where the first infimum is over all forecasters (all forecasting strategies) that can possibly access

beforehand all the features x1, . . . ,xT that are considered next, and the second supremum is over

all individual sequences y1, . . . , yT ∈ [−B,B], that are sequentially revealed. Our result is the fol-

lowing; we carefully explain in Remark 6 why this result slightly improves on the existing literature.

Theorem 4 For all T > 8 and B > 0, we have R⋆
T, [−B,B] > dB2

(
lnT − (3 + ln d)− ln lnT

)
.

Remark 5 Note that the features xt could be any element of Rd (by a scaling property on the u),

they do not necessarily need to be restricted to [0, 1]d; it is merely that our proof relies on such

[0, 1]d–valued features. Compare to Theorem 7, where no boundedness assumption is required on

the features.

Remark 6 Our proof reuses several ideas from the original proof of Vovk (2001, Theorem 2),

namely, taking features xt with only one non-zero input equal to 1 and Bernoulli observations yt, re-

sorting to a randomization with a Beta prior distribution, etc.; see also the proof of Takimoto and Warmuth

(2000, Theorem 4). However, we believe that we achieve a more satisfactory result than the

(d − ε)B2 lnT − Cε lower bound of Vovk (2001, Theorem 2), where ε > 0 is a parameter and

Cε is a finite value; also, the proof technique somewhat relied on the boundedness of the features

to derive the general case d > 2 from the special case d = 1. See also similar results for the case

d = 1 in Takimoto and Warmuth (2000, Theorem 4), with the same issue for the generalization to

d > 2. Our proof, on the contrary, directly tackles the d–dimensional case, which turns out to be

more efficient (and more elegant). However, our alternative proof for the lower bound is admittedly

a minor variation of existing results, it merely sheds a slightly different light on the bound, see the

interpretation below in terms of parametric estimation rate.

The high-level idea of our proof of this known bound is to see the desired d lnT bound as

a sum of parametric estimation errors in R
d, each of order at least d/t. It is a classic result in

parametric statistics that the estimation of a d–dimensional parameter based on a sample of size t
can be performed at best at rate d/t in quadratic error, and this is exactly what is used in our proof.

Vovk (2001, Theorem 2) was heavily relying on the fact that in a Bayesian stochastic context, the

optimal strategy can be determined: his proof states that “since Nature’s strategy is known, it is

easy to find the best, on the average, strategy for Statistician (the Bayesian strategy).” In contrast,

our argument does not require to explicitly compute the optimal strategy. It relies on the van Trees

inequality (see Gill and Levit, 1995), that lower bounds the estimator error of any, possibly biased,

forecaster—unlike the Cramér-Rao bound, which only holds for unbiased estimators. In this respect,

the van Trees inequality could reveal itself a new tool of general interest for the machine learning

community to derive lower bounds in other settings.
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Proof (sketch) The complete proof can be bound in Appendix A and we merely indicate here its

most salient arguments. We start with a case where yt ∈ [0, 1] and explain later how to draw the

result for the desired case where yt ∈ [−B,B].
We fix any forecaster. A sequence J1, . . . , JT is drawn independently and uniformly at random

over {1, . . . , d} and we associate with it the sequence of feature vectors eJ1 , . . . , eJT , where ej
denotes the unit vector (0, . . . , 0, 1, 0, . . . , 0)T along the j-th coordinate (the 1 is in position j).

The forecaster is informed of this sequence of feature vectors and the sequential prediction problem

starts. We actually consider several prediction problems, each indexed by θ⋆ ∈ [0, 1]d: conditionally

on the feature vectors eJ1 , . . . , eJT , at each round t the observation Yt is drawn independently

according to a Bernoulli distribution with parameter θ⋆ ·eJt = θ⋆Jt . Expectations with respect to the

randomization thus defined will be denoted by Eθ⋆ .

Now, given the features considered above, that are unit vectors, each forecasting strategy can

be termed as picking only linear combinations ŷt = ût · eJt as predictions. Indeed, we denote

by ŷt(j) the prediction output by the strategy when Jt = j given the past observations Y1, . . . , Ys

and the features J1, . . . , JT . We then consider the vector ût ∈ R
d whose j–th component equals

ûj,t = ŷt(j). This way, in our specific stochastic setting, outputting direct predictions ŷt of the

observations or outputting vectors ût ∈ R
d to form linear combinations are the same thing.

The sketchy part of the proof starts here (again, details can be found in Appendix A). By ex-

changing an expectation and an infimum and by repeated uses of the tower rule, we have, for each

θ⋆ ∈ [0, 1]d:

Eθ⋆

[
sup
u∈Rd

RT (u)

]
>

T∑

t=1

Eθ⋆

[
(Yt−ŷt)

2
]
− inf

u∈Rd

T∑

t=1

Eθ⋆

[
(Yt−u·eJt)2

]
>

T∑

t=1

1

d
Eθ⋆

[wwût−θ⋆
ww2

2

]
.

(5)

The inequality above being valid for all forecasters accessing in advance to the entire sequence of

feature vectors, we thus proved, for any prior π over [0, 1]d,

R⋆
T, [0,1] > inf

forecasters

T∑

t=1

∫

[0,1]d

1

d
Eθ⋆

[wwût − θ⋆
ww2

2

]
dπ(θ⋆) .

An immediate application of the (multi-dimentional) van Trees inequality with a Beta(α,α) prior π
shows that for all forecasters, all t > 1 and α > 3,

∫

[0,1]d

1

d
Eθ⋆

[wwût − θ⋆
ww2

2

]
dπ(θ⋆) >

d

4t+ 2t/(α − 1) + 16dα
,

which is roughly of order d/(4t), as we will take large values of α (of order lnT ). Straightforward

calculations conclude the proof and lead to a lower bound on R⋆
T, [0,1] of order (d/4) ln T , which

entails a lower bound of order dB2 lnT on R⋆
T, [−B,B].

3. Beforehand-known features / New result

In this section we assume that the features are known beforehand and exhibit a simple forecaster

with a closed-form regret bound of dB2 lnT + OT (1) uniformly over R
d and all sequences of

7
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features and of bounded observations. Combined with the minimax lower bound of Theorem 4,

this upper bound implies that the minimax regret for beforehand-known features has a leading term

exactly equal to dB2 lnT . It thus closes a gap between dB2 lnT and 2dB2 lnT left open by earlier

closed-form results such as those of Bartlett et al. (2015, Theorem 8). See a more detailed discussion

below, in Remark 8.

The non-linear ridge regression algorithm with adapted regularization will pick weight vectors

as follows: û1 = (0, . . . , 0)T and for t > 2,

ût ∈ argmin
u∈Rd

{
t−1∑

s=1

(ys − u · xs)
2 + (u · xt)

2 + λ
T∑

s=1

(u · xs)
2

}
(6)

with the constraint that ût should be of minimal norm within all vectors of the stated argmin. It

then predicts ŷt = ût · xt. As shown in Appendix C.2, the closed-form expression for ût reads

ût =
(
λGT +Gt

)†
bt−1 , (7)

where † denotes the Moore-Penrose inverse of a matrix (see Appendix E.3) and where bt−1 was

defined in (3).

The difference to (2) lies in the regularization term, which can be denoted by

λ ‖u‖2
GT

def
= λuTGTu = λ

T∑

s=1

(u · xs)
2 ; (8)

that is, this regularization term can be seen as a metric adapted to the known-in-advance features

x1, . . . ,xT . This algorithm has the desirable property of being scale invariant. Actually, as will be

clear from the equality (12) in the proof of Theorem 7, the strategy (6) considered here consists of

“whitening” the feature vectors xt into x̃t = G
−1/2
T xt and applying the “classic” non-linear ridge

regression (2) to these whitened feature vectors x̃t. Their associated Gram matrix is the identity,

which helps obtaining a sharper bound from Theorem 2 than the suboptimal but general bound

obtained in Corollary 3.

Theorem 7 Let the non-linear ridge regression algorithm with adapted regularization (6) be run

with parameter λ > 0. For all T > 1, for all feature sequences x1, . . . ,xT ∈ R
d and all

y1, . . . , yT ∈ [−B,B],

sup
u∈Rd

RT (u) 6 λTB2 + rTB
2 ln
(
1 +

1

λ

)
,

where rT = rank(GT ).

By taking λ = rT /T , we get the bound rTB
2
(
1+ ln(1+ T/rT )

)
. Of course, rT 6 d and since

u 7→ (1/u) ln(1 + u) is decreasing over (0,+∞), the final optimized regret bound reads

sup
u∈Rd

RT (u) 6 B2

(
rT ln

(
1 +

T

rT

)
+ rT

)
6 dB2 ln

(
1 +

T

d

)
+ dB2 .

Note that the leading constant is 1, which is known to be optimal because of Theorem 4.

8
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Remark 8 Bartlett et al. (2015) study some minimax uniform regret, namely

R⋆
T = sup

x1,...,xT∈Rd

satisfying (9)

inf
ŷ1

sup
y1∈[−B,B]

· · · inf
ŷT

sup
yT∈[−B,B]

sup
u∈Rd

RT (u) ,

and design a forecaster called MM based on backward induction. It uses vectors ût = Ptbt−1 for

t > 2, where the sequence P1,P2, . . . ,PT is defined in a backward manner as

PT = G
†
T and Pt−1 = Pt +Ptxtx

T

tPt .

Because MM is minimax optimal if the (stringent) conditions

∀t ∈ {1, . . . , T},
t−1∑

s=1

∣∣∣xs
TP

†
txt

∣∣∣ 6 1 , (9)

on the feature sequence x1, . . . ,xT are met, a consequence of Theorem 7 is that MM also satisfies the

regret bound dB2
(
1 + ln(1 + T/d)

)
for those feature sequences. Bartlett et al. (2015, Theorem 8)

showed a regret bound with a leading term of 2dB2 lnT . This closed-form bound actually also held

for any sequence of features, not only the ones satisfying (9), but it is suboptimal by a multiplicative

factor of 2. See Appendix C.1 for further technical details. We do not know whether this suboptimal

bound is unavoidable (i.e., is due to the algorithm itself) or whether a different analysis could lead

to a better bound for the MM forecaster on sequences not satisfying (9).

Remark 9 It is worth to notice that our result holds in a less restrictive setting than beforehand-

known features. Indeed, in the definition of the weight vector ût, see Equations (6) and (8), the only

forward information used lies in the regularization term λuTGTu. Therefore, our algorithm does

not need to know the whole sequence of features x1, . . . ,xT in advance: it is enough to know the

Gram matrix GT , in which case our results still hold true. A particular case is when the sequence

of features is only known beforehand up to an unknown (and possibly random) permutation, as

considered, e.g., by Kotłowski et al. (2017).

Proof In order to keep things simple, we will assume here that GT is full rank; the proof in the

general case can be found in Appendix C.2. Then, all matrices λGT +Gt are full rank as well.

The proof of this theorem relies on the bound of the non-linear ridge regression algorithm of

Section 2.1, applied on a modified sequence of features

x̃t = G
−1/2
T xt ,

where G
−1/2
T is the inverse square root of the of the symmetric matrix GT . We successively prove

the following two inequalities (where we replaced rT by its value d, as GT is full rank),

T∑

t=1

(yt − ût · xt)
2

6 inf
u∈Rd

{
T∑

t=1

(yt − u · x̃t)
2 + λ ‖u‖2

}
+ dB2 ln

(
1 +

1

λ

)
(10)

6 inf
u∈Rd

{
T∑

t=1

(yt − u · xt)
2

}
+ λTB2 + dB2 ln

(
1 +

1

λ

)
. (11)

9
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Proof of (10). We first show that the strategy (2) on the x̃t leads to the same forecasts as the

strategy (6) on the original xt; that is, we show that

ũt · x̃t = ût · xt , where ũt ∈ argmin
u∈Rd

{
t−1∑

s=1

(ys − u · x̃s)
2 + (u · x̃t)

2 + λ ‖u‖2
}
. (12)

The equality above follows from the definition x̃t = G
−1/2
T xt and the fact that ũt = G

1/2
T ût.

Indeed, the closed-form expression (3) indicates that

ũt =

(
λ Id +

t∑

s=1

x̃sx̃
T

s

)−1 t−1∑

s=1

ysx̃s =
(
λId +G

−1/2
T GtG

−1/2
T

)−1
G

−1/2
T bt−1 .

Now,

(
λId +G

−1/2
T GtG

−1/2
T

)−1
=
(
G

−1/2
T

(
λGT +Gt

)
G

−1/2
T

)−1
= G

1/2
T

(
λGT +Gt

)−1
G

1/2
T ,

so that

ũt = G
1/2
T

(
λGT +Gt

)−1
G

1/2
T G

−1/2
T bt−1 = G

1/2
T

(
λGT +Gt

)−1
bt−1 = G

1/2
T ût .

We apply the bound of Theorem 2 on sequences x̃1, . . . , x̃T ∈ R
d and y1, . . . , yT ∈ [−B,B], to

get, for all u ∈ R
d,

T∑

t=1

(yt−ŷt)
2 =

T∑

t=1

(yt−ũt·x̃t)
2
6

T∑

t=1

(yt−u·x̃t)
2+λ ‖u‖2+B2

d∑

k=1

ln


1 +

λk

(∑T
t=1 x̃tx̃

T
t

)

λ


 .

(13)

The Gram matrix of the x̃t equals

T∑

t=1

x̃tx̃
T

t = G
−1/2
T

(
T∑

t=1

xtxt
T

)
G

−1/2
T = G

−1/2
T GT G

−1/2
T = Id , (14)

so that
d∑

k=1

ln


1 +

λk

(∑T
t=1 x̃tx̃

T
t

)

λ


 = d ln

(
1 +

1

λ

)
.

Taking the infinimum over u in R
d in (13) concludes the proof of (10).

Proof of (11). We bound

inf
u∈Rd

{
T∑

t=1

(yt − u · x̃t)
2 + λ ‖u‖2

}
,

by evaluating it at u⋆ ∈ argmin
u∈Rd

{ T∑

t=1

(yt − u · x̃t)
2

}
, which is a singleton with closed-form ex-

pression

10
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u⋆ =

(
T∑

t=1

x̃tx̃
T

t

)−1( T∑

t=1

ytx̃t

)
= G

−1/2
T bT ,

where we used (14) and where bT was defined in (3). We first bound ‖u⋆‖2. By denoting

XT =
[
x1 · · · xT

]
and yT =




y1
...

yT


 ,

which are respectively, a d× T and a T × 1 matrix, we have

u⋆ = G
−1/2
T XTyT , thus ‖u⋆‖2 = yT

TX
T

TG
−1
T XTyT . (15)

Noting that XT

TG
−1
T XT is an orthogonal projection (on the image of XT

T ) entails the inequalities

‖u⋆‖2 6 ‖yT ‖2 6 TB2. Putting all elements together, we proved so far

inf
u∈Rd

{
T∑

t=1

(yt − u · x̃t)
2 + λ ‖u‖2

}
6 inf

u∈Rd

{
T∑

t=1

(yt − u · x̃t)
2

}
+ λTB2 .

We conclude the proof of (11) by a change of dummy variable v = G
1/2
T u and the fact that since

GT is full rank, its image is Rd:

inf
u∈Rd

{
T∑

t=1

(yt − u · x̃t)
2

}
= inf

u∈Rd

{
T∑

t=1

(yt −G
1/2
T u · xt)

2

}
= inf

v∈Rd

{
T∑

t=1

(yt − v · xt)
2

}
.

4. Sequentially revealed features / New result

In this section we do not assume that the features are known beforehand (i.e., unlike in the previ-

ous section) and yet exhibit a simple forecaster with a regret bound of dB2 lnT + OT (1) holding

uniformly over Rd. Perhaps unexpectedly, the solution that we propose is just to remove the regu-

larization term λ ‖u‖2
GT

in (6), which cannot be computed in advance. This amounts to considering

the standard non-linear ridge regression algorithm (2) with a regularization factor λ = 0. The reason

why this is a natural choice is explained in Remark 13 below.

Thus, weights vectors defined as in Equations (2) or (6) with regularization parameter λ = 0 are

picked: û1 = (0, . . . , 0)T and for t > 2,

ût ∈ argmin
u∈Rd

{
t−1∑

s=1

(ys − u · xs)
2 + (u · xt)

2

}
, hence ût = G

†
tbt−1 , (16)

where the closed-form expression corresponds to (7). It then predicts ŷt = ût · xt (and as already

indicated after (2), no clipping can take place as B is unknown to the learner).

Note that no parameter requires to be tuned in this case, which can be a true relief.

11
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Remark 10 The traditional bound for the non-linear ridge regression forecaster blows up when

the regularization parameter is set as λ = 0 (see Section 2.1) but, perhaps surprisingly, an ad hoc

analysis could be performed here—see Theorem 11. It provides a new understanding of this well-

known non-linear regression algorithm: the regularization term λ ‖u‖2 in its defining equation (2)

is not so useful, while the seemingly harmless regularization term (u · xt)
2 therein is crucial.

The theorem below follows from a combination of arguments all already present in the litera-

ture, namely, (Forster and Warmuth, 2003, Theorem 3.2), Cesa-Bianchi et al. (2005, Lemma D.1),

Luo et al. (2016, Theorem 4 of Appendix D), with a slightly more careful analysis at only one small

point in the proof of the latter; see details in Appendix D. The proof is actually based on the proof

of Theorem 2 but requires adaptations to account for the fact that ût is defined in (16) in terms of

a possibly non-invertible matrix Gt. There are strong links between the results of Theorem 11 and

Theorem 2; see Remark 12 below.

The result of Theorem 11 is not that straightforward, and in particular, some tricks that were

suggested to us when presenting this work, e.g., neglecting finitely many rounds till the Gram matrix

is full rank (if this ever happens), would probably work but would lead to an even larger constant

term. Generally speaking, neglecting finitely many rounds may have important side-effects, see an

illustration in Remark 12.

Theorem 11 For all T > 1, for all sequences x1, . . . ,xT ∈ R
d and all y1, . . . , yT ∈ [−B,B], the

non-linear ridge regression algorithm with λ = 0 as in (16) achieves the uniform regret bound

sup
u∈Rd

RT (u) 6 B2
T∑

t=1

xT

tG
†
txt 6 B2

rT∑

k=1

ln
(
λk(GT )

)
+B2

∑

t∈[[1,T ]]∩T

ln

(
1

λrt(Gt)

)
+ rTB

2

where rt and λk are defined in Notation 1, and where the set T contains rT rounds, given by the

smallest s > 1 such that xs is not null, and all the s > 2 for which rank(Gs−1) 6= rank(Gs).

We recall in Appendix E.1 that rank(Gt) is a non-decreasing sequence, with increments of 1,

hence the claimed cardinality rT of T , and the fact that λrt(Gt) > 0 for all t ∈ T .

Note that the regret bound obtained is scale invariant, which is natural and was expected, as the

forecaster also is; to see why this is the case, note that it only involves quantities λk(GT )/λrt(Gt).
The same (standard) arguments as the ones at the end of the proof of Corollary 3 show the

following consequence of this bound (which is scale invariant as far as multiplications of the features

by scalar factors only are concerned): for all X > 0, for all sequences x1,x2, . . . of features with

‖xt‖ 6 X,

sup
u∈Rd

RT (u) 6 dB2 lnT + dB2 +B2
∑

t∈[[1,T ]]∩T

ln

(
X2

λrt(Gt)

)

︸ ︷︷ ︸
this is our OT (1) here

.

Note that the OT (1) term stops increasing once the matrix GT is full rank: then, for rounds T ′ > T ,

only the leading term increases to dB2 lnT ′. But this OT (1) can admittedly be large and blows up as

all sequences of feature vectors are considered, just as in the bound of Corollary 3. The dependency

on the eigenvalues is however slightly improved to a logarithmic one, here.

The bound of Theorem 11 thus still remains somewhat weak, hence our main open question.
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4.1. Open question—Double uniformity over R
d: for the u and for the xt

For the time being, no dB2 ln(T )+OT (1) regret bound simultaneously uniform over all comparison

vectors u ∈ R
d and over all features xt with ‖xt‖ 6 X and bounded observations yt ∈ [−B,B]

is provided in the case of sequentially revealed features (what we called worst-case uniform regret

bounds). Indeed, the bound of Theorem 2 is not uniform over the comparison vectors u ∈ R
d.

The bound of Corollary 3 is of order 2dB2 ln(T ) (and is not uniform over even bounded feature

vectors). The bound of Theorem 7 enjoys the double uniformity and is of proper order, but only

holds for beforehand-known features. The bound of Theorem 11 is uniform over the comparison

vectors u ∈ R
d, is of proper order dB2 ln(T ) and holds in the sequential case, but is not uniform

over bounded features xt (its remainder term can be large).

The lower bound of Theorem 4 (and earlier lower bounds by Vovk, 2001 and Takimoto and Warmuth,

2000) are proved in the case of feature vectors that are initially revealed to the regression strategy.

The open question is therefore whether we can improve the lower bound and make it larger for

strategies that only discover the features on the fly, or if a doubly uniform regret upper bound of

dB2 ln(T )+OT (1) over the u and the xt, yt is also possible in the case of sequentially revealed fea-

tures. For the lower bound, it seems that choosing random feature vectors that are independent over

time might not be a good idea, since the final normalized Gram matrix GT /T may be concentrated

around its expectation G, and the regression strategy might use the possibly known G to transform

the features xt as in Theorem 7. Instead, choosing random features xt that are dependent over time

might make the task of predicting the final Gram matrix GT virtually impossible, and might help to

improve the lower bound. Alternatively, we could construct features xt in a truly sequential manner,

as functions of the strategy’s past predictions, so as to annoy the regression strategy.

4.2. Some further technical remarks

We provide details on two claims issued above.

Remark 12 (Links between Theorem 11 and Theorem 2) Assume that we use the non-linear

ridge regression algorithm with λ = 0 as in (16) but feed it first with d warm-up feature vectors

x−t = (0, . . . , 0,
√
λ, 0, . . . , 0), where the

√
λ is in position t ∈ {1, . . . , d}, and that the observa-

tions are y−t = 0. Then for each u ∈ R
d, a cumulative loss of λ ‖u‖2 is suffered, and to neglect

these d additional rounds in the regret bound obtained by Theorem 11, we need to add a λ ‖u‖2
term to it. As all terms corresponding to the new eigenvalues introduced λrt(Gt) are equal to λ,

given the choice of these warm-up features, we are thus essentially back to the bound of Theorem 2.

Remark 13 (How we came up with the forecaster (16)) A natural attempt to transform the fore-

caster (6) designed for the case of beforehand-known features into a fully sequential algorithm is to

replace the matrix GT that is unknown at the beginning of round t by its sequential estimate Gt and

to regularize at time t with (u ·xt)
2+λ ‖u‖2

Gt
instead of (u ·xt)

2+λ ‖u‖2
GT

as in (6). However, in

this case, the closed-form expression for the vector ût is ût = G
†
tbt−1/(1 + λ), that is, the λ only

acts as a multiplicative bias to the vector otherwise considered in (16). The analysis we followed led

to a regret bound increasing in λ, so that we finally picked λ = 0 and ended up with our non-linear

ridge regression algorithm with λ = 0 as in (16).
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Appendix A. Details on the proof of Theorem 4

Details on getting (5)

By exchanging an expectation and an infimum, the expectation of the uniform regret of any fixed

forecaster considered can be bounded as

Eθ⋆

[
sup
u∈Rd

RT (u)

]
>

T∑

t=1

Eθ⋆

[
(Yt − ŷt)

2
]
− inf

u∈Rd

T∑

t=1

Eθ⋆

[
(Yt − u · eJt)2

]
. (17)

Since ŷt is measurable w.r.t. Ft−1, the σ–algebra generated by the information available at the be-

ginning of round t, namely, J1, . . . , JT and Y1, . . . , Yt−1, and since Yt is distributed, conditionally

on Ft−1 according to a Bernoulli distribution with parameter θ⋆Jt , a conditional bias–variance de-

composition yields

Eθ⋆

[
(ŷt − Yt)

2
∣∣Ft−1

]
= (ŷt − θ⋆Jt)

2 + Eθ⋆

[
(Yt − θ⋆Jt)

2
∣∣Ft−1

]

=
(
ûJt,t − θ⋆Jt

)2
+ θ⋆Jt

(
1− θ⋆Jt

)
,

where we also used that by construction, ŷt = ût · eJt = ûJt,t. Similarly, for all u ∈ R
d,

Eθ⋆

[
(Yt − u · eJt)2

∣∣Ft−1

]
=
(
uJt − θ⋆Jt

)2
+ θ⋆Jt

(
1− θ⋆Jt

)
.

By the tower rule and since the variance terms θ⋆Jt
(
1− θ⋆Jt

)
cancel out, we thus proved that

Eθ⋆

[
sup
u∈Rd

RT (u)

]
>

T∑

t=1

Eθ⋆

[
(ŷt − Yt)

2
]
− inf

u∈Rd

T∑

t=1

Eθ⋆

[
(Yt − u · eJt)2

]

=

T∑

t=1

Eθ⋆

[(
ûJt,t − θ⋆Jt

)2]− inf
u∈Rd

T∑

t=1

Eθ⋆

[(
uJt − θ⋆Jt

)2]

=

T∑

t=1

Eθ⋆

[
(ûJt,t − θ⋆Jt)

2
]
.

Now, by resorting to the tower rule again, integrating over Jt conditionally on Y1, . . . , Yt−1 and

J1, . . . , Jt−1, Jt+1, . . . , JT , we get

Eθ⋆

[
sup
u∈Rd

RT (u)

]
>

T∑

t=1

Eθ⋆

[
(ûJt,t − θ⋆Jt)

2
]
=

T∑

t=1

1

d
Eθ⋆

[wwût − θ⋆
ww2

2

]
. (18)

We now show that each term in the sum is larger than something of the order of d/t. This order

of magnitude d/t is the parametric rate of optimal estimation; indeed, due to the randomness of

the Js, over t periods, each component is used about t/d times, while the rate of convergence in

quadratic error of any d–dimensional estimator based on τ = t/d unbiased i.i.d. observations is at

best d/τ = d2/t. Taking into account the 1/d factor gets us the claimed d/t rate. The next steps

(based on the van Trees inequality) transform this intuition into formal statements.
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Conclusion of the proof, given the application of the van Trees inequality

We resume at (18) and consider a prior π over the θ⋆ ∈ [0, 1]d. Since an expectation is always

smaller than a supremum, we have first, given the defining equation (4) of R⋆
T, [0,1],

R⋆
T, [0,1] > inf

forecasters

∫

[0,1]d
Eθ⋆

[
sup
u∈Rd

RT (u)

]
dπ(θ⋆)

> inf
forecasters

T∑

t=1

∫

[0,1]d

1

d
Eθ⋆

[wwût − θ⋆
ww2

2

]
dπ(θ⋆) ,

where the second inequality follows by mixing both sides of (18) according to π. Now, an immediate

application of the (multi-dimentional) van Trees inequality with a Beta(α,α) prior π shows that for

all forecasters, all t > 1 and α > 3,

∫

[0,1]d

1

d
Eθ⋆

[wwût − θ⋆
ww2

2

]
dπ(θ⋆) >

d

4(t− 1) + 2(t− 1)/(α − 1) + 16dα
,

see Lemma 14 below. We thus proved

R⋆
T, [0,1] >

T−1∑

t=0

d(
4 + 2/(α − 1)

)
t+ 16dα

> d

∫ T

0

1(
4 + 2/(α − 1)

)
t+ 16dα

dt

=
d

4 + 2/(α − 1)
ln

(
4 + 2/(α − 1)

)
T + 16dα

16dα

>
d

4 + 2/(α − 1)
ln

4T

16dα

=
d

4 + 2/(α − 1)

(
lnT − ln(4dα)

)
,

which we lower bound in a crude way by resorting to 1/(1 + u) > 1− u and by taking α such that

α − 1 = lnT ; this is where our condition T > 8 > e2 is used, to ensure that α > 3. We also use

that since T > e2, we have 1 6 (ln T )/2 thus 4dα 6 4d(1 + lnT ) 6 6d ln T . We get

R⋆
T, [0,1] >

d

4

(
1− 1

2(α − 1)︸ ︷︷ ︸
>0

)(
lnT − ln(6d ln T )

)

>
d

4

(
1− 1

2 ln T

)
(ln T − ln(6d) − ln lnT ) >

d

4

(
lnT − (3 + ln d)− ln lnT

)
. (19)

The factor 3 above corresponds to 1/2+ ln 6 6 3. So, we covered the case of R⋆
T, [0,1] and now turn

to R⋆
T, [−B,B] for a general B > 0.

Going from R⋆
T, [0,1] to R⋆

T, [−B,B]

To get a lower bound of exact order d lnT , that is, to get rid of the annoying multiplicative factor of

1/4, we proceed as follows. With the notation above, Zt = 2B(Yt−1/2) lies in [−B,B]. Denoting
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by ẑt the forecasts output by a given forecaster sequentially fed with the (Zs, eJs), we have

(ẑt − Zt)
2 = 4B2(ŷt − Yt)

2 where the ŷt =
ẑt + 1/2

2B

also correspond to predictions output by a legitimate forecaster, and

inf
v∈Rd

T∑

t=1

E

[
(Zt−v·eJt)2

]
= 4B2 inf

v∈Rd

T∑

t=1

E

[(
Yt−

1

2
−v · eJt

2B

)2]
= 4B2 inf

u∈Rd

T∑

t=1

E

[
(Yt−u·eJt)2

]

by considering the transformation v ↔ u given by uj = vj/(2B)− 1/2. (We use here that the sum

of the components of the eJt equal 1.) We thus showed that R⋆
T, [−B,B] is larger than 4B2 times the

lower bound (19) exhibited on (17), which concludes the proof.

Details on the application of the van Trees inequality

The van Trees inequality is a Bayesian version of the Cramér-Rao bound, but holding for any esti-

mator (not only the unbiased ones); see Gill and Levit (1995, Section 4) for a multivariate statement

(and refer to Van Trees, 1968 for its first statement).

Recall that we denoted above by Pθ⋆ the distribution of the sequence of pairs (Jt, Yt), with

1 6 t 6 T , considered in Section 2.2 for a given θ⋆ ∈ [0, 1]d. We also considered the family P
of these distributions and thus, for clarity, indexed all expectations E by the underlying parameter

θ⋆ at hand. We introduce a product of independent Beta(α,α) distributions as a prior π on the

θ⋆ ∈ [0, 1]d; its density with respect to the Lebesgue measure equals

β(d)
α,α(t1, . . . , td) 7−→ βα,α(t1) · · · βα,α(td) , where βα,α : t 7→ Γ(2α)

(
Γ(α)

)2 t
α−1(1− t)α−1 .

The reason why Beta distributions are considered is because of the form of the Fisher information

of the P family, see calculations (22) below.

The multivariate van Trees inequality ensures that for all estimators ût, that is, for all random

variables which are measurable functions of J1, . . . , JT and Y1, . . . , Yt−1, we have

∫

[0,1]d
Eθ⋆

[wwût − θ⋆
ww2

2

]
β(d)
α,α(θ

⋆) dθ⋆ >
(Tr Id)

2

Tr I
(
β(d)
α,α

)
+

∫

[0,1]d

(
Tr I(θ⋆)

)
β(d)
α,α(θ

⋆) dθ⋆
, (20)

where dθ⋆ denotes the integration w.r.t. Lebesgue measure, Tr is the trace operator, I(θ⋆) stands

for the Fisher information of the family P at θ⋆, see (21), while each component (i, i) of the other

matrix in the denominator is given by

I
(
β(d)
α,α

)
i,i

def
=

∫

[0,1]d

(
∂β

(d)
α,α

∂θ⋆i
(θ⋆)

)2 1

β
(d)
α,α(θ⋆)

dθ⋆ ,

which may equal +∞ (in which case the lower bound is void). There are conditions for the inequal-

ity to be satisfied, we detail them in the proof of the lemma below.
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Lemma 14 When the family P is equipped with a prior given by a product of independent Beta(α,α)

distributions, where α > 3, it follows from the van Trees inequality and from simple calculations

that ∫

[0,1]d

Eθ⋆

[wwût − θ⋆
ww2

2

]
β(d)
α,α(θ

⋆) dθ⋆ >
d2

16dα + 4(t− 1) + 2(t− 1)/(α − 1)
.

Proof We denote by

fθ⋆ : (j1, . . . , jT , y1, . . . , yt−1) ∈ {1, . . . , d}T × {0, 1}t−1 7−→ 1

dT

t−1∏

s=1

θ⋆js
ys(1− θ⋆js)

1−ys

the density of Pθ⋆ w.r.t. to the counting measure µ on {1, . . . , d}T × {0, 1}t−1.

The sufficient conditions of Gill and Levit (1995, Section 4) for (20) are met, since on the one

hand β
(d)
α,α is C1–smooth, vanishes on the border of [0, 1]d, and is positive on its interior, while on

the other hand, θ⋆ 7→ fθ⋆(j1, . . . , jT , y1, . . . , yt−1) is C1–smooth for all (j1, . . . , jT , y1, . . . , yt−1),
with, for all i ∈ {1, . . . , d},

Li(θ
⋆) =

∂

∂θ⋆i
ln fθ⋆(J1, . . . , JT , Y1, . . . , Yt−1) =

t−1∑

s=1

(
Ys

θ⋆Js
− 1− Ys

1− θ⋆Js

)
1{Js=i}

being square integrable, so that the Fisher information matrix I(θ⋆) of the P model at θ⋆ exists and

has a component (i, i) given by

I(θ⋆)i,i def
= Eθ⋆

[
Li(θ

⋆)2
]
= (t− 1) Eθ⋆

[(
Y1

θ⋆J1
− 1− Y1

1− θ⋆J1

)2
1{J1=i}

]

=
t− 1

d

(
1

θ⋆i
+

1

1− θ⋆i

)
=

t− 1

d θ⋆i (1− θ⋆i )
, (21)

and therefore, is such that θ⋆ 7→
√

I(θ⋆) is locally integrable w.r.t. the Lebesgue measure. The

second inequality in (21) is because Li(θ
⋆) is a sum of t− 1 centered, independent and identically

distributed variables, while the third inequality is obtained by the tower rule, by first taking the

conditional expectation with respect to J1.

We now compute all elements of the denominator of (20). First, by symmetry and then by

substituting (21),

∫

[0,1]d

(
Tr I(θ⋆)

)
β(d)
α,α(θ

⋆) dθ⋆

= d

∫

[0,1]d
I(θ⋆)1,1 β(d)

α,α(θ
⋆) dθ⋆

= d

∫

[0,1]d

t− 1

d θ⋆1(1− θ⋆1)

Γ(2α)
(
Γ(α)

)2 (θ
⋆
1)

α−1(1− θ⋆1)
α−1 βα,α(θ

⋆
2) · · · βα,α(θ⋆d) dθ⋆ (22)

= (t− 1)
Γ(2α)
(
Γ(α)

)2
∫

[0,1]
zα−2(1− z)α−2 dz = (t− 1)

Γ(2α)
(
Γ(α)

)2

(
Γ(α− 1)

)2

Γ
(
2(α− 1)

) ,
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where we used the expression of the density of the Beta(α − 1, α − 1) distribution for the last

equality. Using that xΓ(x) = Γ(x+ 1) for all real numbers x > 0, we finally get

∫

[0,1]d

(
Tr I(θ⋆)

)
β(d)
α,α(θ

⋆) dθ⋆ =
(2α− 1)(2α − 2)

(α − 1)2
(t−1) =

4α− 2

α− 1
(t−1) = 4(t−1)+

2(t− 1)

α− 1
.

Second, as far as the Tr I
(
β
(d)
α,α

)
in (20) is concerned, because β

(d)
α,α is a product of univariate

distributions,

I
(
β(d)
α,α

)
i,i

=

∫

[0,1]d

(
∂β

(d)
α,α

∂θ⋆i
(θ⋆)

)2 1

β
(d)
α,α(θ⋆)

dθ⋆ =

∫

[0,1]

(
∂βα,α
∂z

(z)

)2 1

βα,α
(z) dz ,

so that TrI
(
β
(d)
α,α

)
equals d times this value, that is, d times

∫

[0,1]

Γ(2α)
(
Γ(α)

)2

(
(α− 1) zα−2(1− z)α−1 − (α− 1) zα−1(1− z)α−2

)2

zα−1(1− z)α−1
dz

=
(α− 1)2 Γ(2α)
(
Γ(α)

)2
∫

[0,1]
(1− 2z)2 zα−3(1− z)α−3 dz

=
(α− 1)2 Γ(2α)
(
Γ(α)

)2

(
Γ(α− 2)

)2

Γ
(
2(α− 2)

) E
[
(1− 2Zα−2)

2
]
=

(α− 1)2 Γ(2α)
(
Γ(α)

)2

(
Γ(α− 2)

)2

Γ
(
2(α − 2)

) 4Var(Zα−2)

where Zα−2 is a random variable following the Beta(α−2, α−2) distribution; its expectation equals

indeed E[Zα−2] = 1/2 by symmetry of the distribution w.r.t. 1/2, so that

E

[
(1−2Zα−2)

2
]
= 4 E

[
(1/2−Zα−2)

2
]
= 4Var(Zα−2) where Var(Zα−2) =

1

4(2α − 3)

by a classical formula. Collecting all elements together and using again that xΓ(x) = Γ(x+1) for

all real numbers x > 0, we get

TrI
(
β(d)
α,α

)
= d

(α− 1)2
(
Γ(α− 2)

)2
(
Γ(α)

)2
︸ ︷︷ ︸

1/(α−2)2

Γ(2α)

(2α− 3) Γ
(
2(α − 2)

)
︸ ︷︷ ︸
=(2α−1)(2α−2)(2α−4)

= d
4(2α − 1)(α − 1)

α− 2

hence the upper bound Tr I
(
β
(d)
α,α

)
6 16dα for α > 3, which concludes the proof.

Appendix B. Proof of Theorem 2 and of Corollary 3

We start with the proof of Corollary 3.

Proof We assume that the Gram matrix GT is full rank; otherwise, we may adapt the proof below

by resorting to Moore-Penrose pseudoinverses, just as we do in Appendix C.2 for the proof of

Theorem 7.
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Theorem 2 indicates that

T∑

t=1

(yt − ût · xt)
2
6 inf

u∈Rd

{
T∑

t=1

(yt − u · xt)
2 + λ ‖u‖2

}
+B2

d∑

k=1

ln

(
1 +

λk(GT )

λ

)
.

Now, as in (3), we have a closed-form expression of the unique vector achieving the following,

infimum:

inf
u∈Rd

{
T∑

t=1

(yt − u · xt)
2

}
=

T∑

t=1

(yt − u⋆ · xt)
2

Namely, u⋆ = G−1
T bT , so that

‖u⋆‖ =
∥∥G−1/2

T G
−1/2
T bT

∥∥ 6 λ1

(
G

−1/2
T

) ∥∥∥G−1/2
T bT

∥∥∥ =
1√

λd(GT )

∥∥∥G−1/2
T bT

∥∥∥

6
1√

λd(GT )
B
√
T , (23)

where we used, for the final inequality, an elementary argument of orthogonal projection that is

at the heart of the proof of Theorem 7: see (15) and the sentence after it. In addition, Jensen’s

inequality (or the alternative treatment of Cesa-Bianchi and Lugosi, 2006, page 320) indicates that

d∑

k=1

ln

(
1 +

λk(GT )

λ

)
6 d ln

(
1 +

∑d
k=1 λk(GT )

dλ

)
= d ln

(
1 +

Tr(GT )

dλ

)
6 d ln

(
1 +

TX2

dλ

)

where Tr is the trace operator. All in all, we get

T∑

t=1

(yt − ût · xt)
2
6 inf

u∈Rd

{
T∑

t=1

(yt − u · xt)
2+

}
+ λ ‖u⋆‖2 + dB2 ln

(
1 +

TX2

dλ

)

and the claimed bound follows by substituting the bound (23).

Now, we move to the proof of Theorem 2, which we essentially extract from Cesa-Bianchi and Lugosi

(2006, Chapter 11). We merely provide it because we will later need the first inequality of (24) in

the proof of Theorem 11 and we wanted this article to be self-complete. But of course, this is ex-

tremely standard content and it should be skipped by any reader familiar with the basic results of

sequential linear regression.

Proof We successively prove the following two inequalities,

RT (u) 6 λ ‖u‖2 +
T∑

t=1

y2t x
T

tA
−1
t xt 6 λ ‖u‖2 +B2

d∑

k=1

ln

(
1 +

λk(GT )

λ

)
(24)

Proof of the first inequality in (24). We denote by Lreg

t−1 the cumulative loss up to round t − 1
included, to which we add the regularization term:

Lreg

t−1(u) =

t−1∑

s=1

(ys − u · xs)
2 + λ ‖u‖2
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For all t > 1, we denote by

ŭt ∈ argmin
u∈Rd

{
t−1∑

s=1

(ys − u · xs)
2 + λ ‖u‖2

}
= argmin

u∈Rd

Lreg

t−1(u) ,

the vector output by the (ordinary) ridge regression; that is, when no (u · xt)
2 term is added to the

regularization. In particular, ŭ1 = (0, . . . , 0)T. By the very definition of ŭT+1, for all u ∈ R
d,

Lreg

T (ŭT+1) 6
T∑

t=1

(yt − u · xt)
2 + λ ‖u‖2 ,

so that, for all u ∈ R
d,

RT (u) 6

T∑

t=1

(yt − ŷt)
2 + λ ‖u‖2 − Lreg

T (ŭT+1)

= λ ‖u‖2 +
T∑

t=1

(
(yt − ŷt)

2 + Lreg

t−1(ŭt)− Lreg

t (ŭt+1)
)
,

where the equality comes from a telescoping argument together with Lreg

0 (ŭ0) = 0. We will prove

by means of direct calculations that

(yt−ŷt)
2+Lreg

t−1(ŭt)−Lreg

t (ŭt+1) = (ŭt+1 − ût)
T
At(ŭt+1−ût)−(ût − ŭt)

T
At−1(ût−ŭt) ; (25)

the first inequality in (24) will then be obtained, as the second term in (25) is negative and as the

first term in (25) can be rewritten as y2t x
T
tA

−1
t xt thanks to the equality (27) below, which states

At(ŭt+1 − ût) = ytxt.

To prove (25), we recall the closed-form expression (3), that is, ût = A−1
t bt−1, and note that

we similarly have ŭt+1 = A−1
t bt. Now, Lreg

t rewrites, for all u ∈ R
d,

Lreg

t (u) =

(
t∑

s=1

y2s

)
− 2bT

tu+ uTAtu ,

so that the minimum of this quadratic form, achieved at u = ŭt+1 = A−1
t bt, equals

Lreg

t (ŭt+1) =

(
t∑

s=1

y2s

)
− 2bT

tA
−1
t︸ ︷︷ ︸

=ŭT
t+1

Atŭt+1 + ŭT

t+1Atŭt+1 =

(
t∑

s=1

y2s

)
− ŭT

t+1Atŭt+1 .

In particular,

Lreg

t−1(ŭt)− Lreg

t (ŭt+1) = −y2t + ŭT

t+1Atŭt+1 − ŭT

tAt−1ŭt . (26)

We now expand the first term in (25). To that end, we use that from the closed-form expressions

of ût and ŭt+1,

At(ŭt+1 − ût) = At

(
A−1

t bt −A−1
t bt−1

)
= bt − bt−1 = ytxt . (27)
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Therefore, ytŷt = ytx
T
t ût = (ŭt+1 − ût)

T
Atût and

(yt − ŷt)
2 = y2t − 2ytŷt + ŷ2t = y2t − 2(ŭt+1 − ût)

T
Atût + ûT

txtx
T

t ût

= y2t − 2(ŭt+1 − ût)
T
Atût + ûT

t(At −At−1)ût , (28)

where in the last equality we used that by definition At −At−1 = xtx
T
t .

Putting (26) and (28) together, we proved

(yt − ŷt)
2 + Lreg

t−1(ŭt)− Lreg

t (ŭt+1)

= −2(ŭt+1 − ût)
T
Atût + ûT

t(At −At−1)ût + ŭT

t+1Atŭt+1 − ŭT

tAt−1ŭt

= ŭT

t+1Atŭt+1 − 2ŭT

t+1Atût + ûT

tAtût −
(
ûT

tAt−1ût − 2ûT

t Atût︸ ︷︷ ︸
=At−1ŭt

+ŭT

tAt−1ŭt

)
.

In the last equation, we are about to use the equality Atût = At−1ŭt = bt−1, which we get from

the closed-form expressions of ût and ŭt. We then recognize the desired difference between two

quadratic forms:

(yt − ŷt)
2 + Lreg

t−1(ŭt)− Lreg

t (ŭt+1)

=
(
ŭT

t+1Atŭt+1 − 2ŭT

t+1Atût + ûT

tAtût

)
−
(
ûT

tAt−1ût − 2ûT

tAt−1ŭt + ŭT

tAt−1ŭt

)

= (ŭt+1 − ût)
T
At(ŭt+1 − ût)− (ût − ŭt)

T
At−1(ût − ŭt) .

Proof of the second inequality in (24). Because y2t 6 B2, we only need to prove

T∑

t=1

xT

tA
−1
t xt 6

d∑

k=1

ln

(
1 +

λk(GT )

λ

)
.

Now, Lemma 15 below shows that

T∑

t=1

xT

tA
−1
t xt =

T∑

t=1

(
1− det(At−1)

det(At)

)
.

We then use 1− u 6 − lnu for u > 0 and identify a telescoping sum,

T∑

t=1

(
1− det(At−1)

det(At)

)
6

T∑

t=1

ln
det(At)

det(At−1)
= ln

det(AT )

det(A0)
.

All in all, we proved so far
T∑

t=1

xT

tA
−1
t xt 6 ln

det(AT )

det(A0)
,

and may conclude by noting that

det(AT ) = det(λ Id +GT ) =
d∏

k=1

(λ+ λk(GT )) and det(A0) = det(λ Id) = λd .
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Lemma 15 Let V an arbitrary d× d full-rank matrix, let u and v two arbitrary vectors of Rd, and

let U = V − uvT. Then

vTV−1u = 1− det(U)

det(V)
.

Proof If V = Id, we are left to show that det(Id−uvT) = 1−vTu. The result follows from taking

the determinant of every term of the equality

[
Id 0
vT 1

] [
Id − uvT −u

0 1

] [
Id 0
−vT 1

]
=

[
Id −u

0 1− vTu

]
.

Now, we can reduce the case of a general V to this simpler case by noting that

det(U) = det
(
V− uvT

)
= det(V) det

(
Id −

(
V−1u

)
vT

)
= det(V)

(
1− vTV−1u

)
.

Appendix C. Technical complements to Section 3

In this section we provide some additional discussions to those of Remark 8 (Section C.1) and also

extend the proof of Theorem 7 to work in the general case (Section C.2).

C.1. Complements to Remark 8

We detail here why the derivation of a closed-form bound as led by Bartlett et al. (2015) only entails

a bound of the order of 2dB2 lnT and why it cannot easily be improved.

Indeed, Theorem 5 by Bartlett et al. (2015) indicates, in the case where d = 1 and B = 1, that

∀T > 1, R⋆
T 6 f(T ) (29)

for any function f : {1, 2, . . .} → R+ satisfying e−f(T )/2 6 f(T + 1)− f(T ) for all T > 1. As

they showed, the function f(T ) = 2 ln(1 + T/2) + 1 is a suitable choice, but it leads to the extra

multiplicative factor of 2 that we pointed out.

However, this choice for f does not seem to be easily improvable; for instance, functions f of

the form T 7→ a ln T + b for some a < 2 and b ∈ R are such that

e−f(T )/2 = ΘT

(
T−a/2

)
and f(T + 1)− f(T ) = a ln

(
1 +

1

T

)
= OT

(
T−1

)
,

hence, are not suitable choices for the bound (29).

C.2. Proof of Theorem 7 in the general case

In this section we extend the proof of Theorem 7, provided only in the case of a full-rank Gram

matrix GT in Section 3, to the general case of a possibly non-invertible Gram matrix GT .

To that end, we first explain how the closed-form expression (7) is derived. We rewrite the

definition equation (6) of ût as

ût ∈ argmin
u∈Rd

{
uT(λGT +Gt)u− 2bT

t−1u
}
.
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Because the matrix λGT + Gt is positive semidefinite, the considered argmin is also the set of

values u′ where the gradient vanishes: (λGT + Gt)u
′ = bt−1. This system is possibly under-

defined because u′ ∈ R
d and λGT + Gt is a matrix of size d × d, possibly not full rank. The

system has at least one solution but the one with minimal Euclidean norm is given by the Moore-

Penrose inverse, see Corollary 19 (e):

ût =
(
λGT +Gt

)†
bt−1 .

We may now turn to the general proof of Theorem 7. For an integer k > 1, we denote therein by Ik
the k × k identity matrix.

Proof As a consequence of the spectral theorem applied to the symmetric matrix GT , there exists

a matrix U of size d × rT and a full rank square matrix Σ of size rT × rT such that UTU = IrT

and GT = UΣUT. We could even impose that the matrix Σ be diagonal but this property will not

be used in this proof.

We will apply the (already proven) bound of Theorem 7 in the full rank case. To that end, we

consider the modified sequence of features

x̃t = UTxt

and first prove that the strategy (6) on the x̃t leads to the same forecasts as the same strategy on the

original features xt; that is,

ũt · x̃t = ût ·xt , where ũt ∈ argmin
v∈R

rT

{
t−1∑

s=1

(ys − v · x̃s)
2 + (v · x̃t)

2 + λ

T∑

s=1

(v · x̃s)
2

}
.

It suffices to prove Uũt = ût, which we do below. Then, from this equality and the definition

x̃t = UTxt, we have, as desired,

ũt · x̃t = ũt ·
(
UTxt

)
=
(
Uũt

)
· xt = ût · xt .

Now, to prove Uũt = ût, we resort to the closed-form expression (7), which gives that

Uũt = U

(
λ

T∑

s=1

x̃sx̃
T

s +
t∑

s=1

x̃sx̃
T

s

)† t−1∑

s=1

ysx̃s = U
(
UT(λGT +Gt)U

)†
UTbt−1 .

To simplify this expression, we use twice the property of Moore-Penrose pseudoinverses stated in

Corollary 19 (b), once with M = U and the second time with N = UT, which both satisfy the

required condition for Corollary 19 (b), as well as the matrix equalities in Corollary 19 (c), and we

get

U
(
UT(λGT +Gt)U

)†
UT =

(
UUT(λGT +Gt)UUT

)†
= (λGT +Gt)

† ,

where the last equality comes from

UUT(λGT +Gt)UUT = λGT +Gt . (30)

Indeed, from UTU = IrT
we get UUT = PIm(GT ), the orthogonal projector on the image of

GT ; we recall in (39) why Im(Gt) ⊆ Im(GT ), which implies UUT(λGT +Gt) = λGT +Gt.
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Transposing this leads to (λGT + Gt)UUT = λGT + Gt, from which the desired equality (30)

follows by a left multiplication again by UUT = PIm(GT ).

We may now apply the bound of the Theorem 7 in the full rank case on feature sequences

x̃1, . . . , x̃T ∈ R
rT and observations y1, . . . , yT ∈ [−B,B]; this is because the associated Gram

matrix UTGTU = Σ is now full rank. We get, for all v ∈ R
rT ,

T∑

t=1

(yt − ût · xt)
2 =

T∑

t=1

(yt − ũt · x̃t)
2
6

T∑

t=1

(yt − v · x̃t)
2 + λTB2 + rTB

2 ln

(
1 +

1

λ

)
. (31)

To conclude the proof, its only remains to show that

inf
v∈R

rT

T∑

t=1

(yt − v · x̃t)
2 = inf

u∈Rd

T∑

t=1

(yt − u · xt)
2 . (32)

Now, a basic argument of linear algebra, recalled in (38) of Appendix E, indicates Im(Gt) =
Im(Xt). Together with the inclusion Im(Gt) ⊆ Im(GT ) and the fact that UUT = PIm(GT ), both

already used above, we get UUTxt = xt. A direct consequence is that for any u in R
d,

u · xt = u ·
(
UUTxt

)
=
(
UTu

)
·
(
UTxt

)
=
(
UTu

)
· x̃t ,

from which (32) follows, by considering v = UTu and by the surjectivity of UT onto R
rT (recall

that U and UT are of rank rT ).

Appendix D. Proof of Theorem 11

We recall in Appendix E many basic properties of Gram matrices and Moore-Penrose pseudoin-

verses to be used in the proof below.

Proof We successively prove the following two inequalities,

RT (u) 6
T∑

t=1

y2t x
T

tG
†
txt 6 B2

rT∑

k=1

ln
(
λk(GT )

)
+B2

∑

t∈[[1,T ]]∩T

ln

(
1

λrt(Gt)

)
+ rTB

2 , (33)

where actually, the first inequality is a classic inequality already proved by Forster and Warmuth

(2003, Theorem 3.2). We provide its derivation for the sake of completeness only.

Proof of the first inequality in (33). We obtain it as a limit case. To do so, we start by exactly

rewriting the first inequality of (24), where a λ > 0 regularization factor was considered:

T∑

t=1

(
yt−xT

t(λId+Gt)
−1bt−1

)2−
T∑

t=1

(yt−u ·xt)
2
6

T∑

t=1

y2t x
T

t(λId+Gt)
−1xt+λ ‖u‖2 . (34)

Since

Gt = XtX
T

t where Xt =
[
x1 · · · xt

]
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we note that xT
t(λId + Gt)

−1 is the last line of the matrix XT
t

(
λId + XtX

T
t

)−1
, which tends to

X† when λ → 0 as indicated by Corollary 19 (d). Now, X† = XT
t

(
XtX

T
t

)†
= XT

tG
†
t by Corol-

lary 19 (a), thus

lim
λ→0

xT

t(λId +Gt)
−1 = xT

tG
†
t .

Therefore, the desired inequality for the considered forecaster,

RT (u) =

T∑

t=1

(
yt − xT

tG
†
tbt−1

)2 −
T∑

t=1

(yt − u · xt)
2
6

T∑

t=1

y2t x
T

tG
†
txt ,

is obtained by taking the limit λ → 0 in (34).

Proof of the second inequality in (33). The first part of our derivation is similar to what is performed

in Luo et al. (2016, Theorem 4 of Appendix D), while the second part slightly improves on their

result thanks to a more careful analysis using however the same ingredients.

Because y2t 6 B2, we only need to prove

T∑

t=1

xT

tG
†
txt 6

rT∑

k=1

ln
(
λk(GT )

)
+

∑

t∈T ∩[[1,T ]]

ln

(
1

λrt(Gt)

)
+ rT .

Now, Lemma 16 below shows that

T∑

t=1

xT

tG
†
txt =

T∑

t=1

(
1−

rt∏

k=1

λk(Gt−1)

λk(Gt)

)
;

we assumed with no loss of generality that x1 is not the null vector, hence all Gt are at least of

rank 1. Indeed, when xt is the null vector, all linear combinations result in the same prediction

equal to 0 and incur the same instantaneous quadratic loss.

Now, given the definition of the set T , whose cardinality is rT , we have λrt(Gt−1) = 0 when

t ∈ T (and this includes t = 1, with the convention that G0 is the null matrix), while rt−1 = rt if

t /∈ T . Therefore,

T∑

t=1

xT

tG
†
txt 6

∑

t∈T ∩[[1,T ]]

(
1−

rt∏

k=1

λk(Gt−1)

λk(Gt)

)
+

∑

t∈[[1,T ]]\T

(
1−

rt∏

k=1

λk(Gt−1)

λk(Gt)

)

= rT +
∑

t∈[[1,T ]]\T

(
1− Dt−1

Dt

)
,

where Dt =

rt∏

k=1

λk(Gt) is the product of the positive eigenvalues of Gt.

Now (this is where our analysis is more careful), using 1 − u 6 − lnu for u > 0, we get an

almost telescoping sum,

∑

t∈[[1,T ]]\T

(
1− Dt−1

Dt

)
6

∑

t∈[[1,T ]]\T

ln
Dt

Dt−1
= ln

DT

D1
+

∑

t∈T ∩[[2,T ]]

ln
Dt−1

Dt
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(note that we dealt separately with t = 1, which belongs to T ). Because eigenvalues cannot decrease

with t, see (40), we have in particular λk(Gt−1) 6 λk(Gt) for all 1 6 k 6 rt − 1. Thus, for t ∈ T
with t 6= 1, we have

ln
Dt−1

Dt
6 ln

(
1

λrt(Gt)

)
,

Substituting the definition of DT and the equality D1 = λr1(G1), and collecting all bounds together

leads to the second inequality in (33).

The lemma below was essentially stated and proved by Cesa-Bianchi et al. (2005, Lemma D.1).

Lemma 16 (Rewriting of xTA†x) Let B be a d× d symmetric positive semidefinite matrix (pos-

sibly the null matrix), let x ∈ R
d, and and let A = B+xxT. Denote by r the rank of A and assume

that r > 1. Then

xTA†x = 1−
r∏

k=1

λk(B)

λk(A)
. (35)

Proof This lemma is a consequence of the less general Lemma 15. As a consequence of the spectral

theorem applied to the symmetric matrix A, there exists a matrix U of size d × r and a full rank

square matrix Σ of size r × r such that UTU = Ir and A = UΣUT. We can and will even

impose that the matrix Σ is diagonal, with diagonal values equal to λ1(A), . . . , λr(A), the positive

eigenvalues of A. Let Γ = Σ−UTx(UTx)T
. Lemma 15 with Γ, Σ and UTx indicates that

xT
(
UΣ−1UT

)
x =

(
UTx

)
T
Σ−1

(
UTx

)
= 1− det(Γ)

det(Σ)
where det(Σ) =

r∏

k=1

λk(A) .

Now, it can be easily checked (by noting that all four properties in Proposition 18 are satisfied) that

A† = UΣ−1UT, so that from the above equality, it suffices to show that

det(Γ) =

r∏

k=1

λk(B)

to conclude the proof. To do so, we first remark that B = A− xxT = UΣUT − xxT, which yields

UTBU = UTUΣUTU−UTxxTU = Σ−UTxxTU = Γ .

Using again that UTU = Ir, we note that uTu = (Uu)T
Uu for all u ∈ R

r. From this and

UTBU = Γ, we get in particular

sup
06=u∈Rr

uTΓu

uTu
= sup

06=u∈Rr

(Uu)T
B(Uu)

(Uu)T
Uu

. (36)

Next we show that

sup
06=u∈Rr

(Uu)T
B(Uu)

(Uu)T
Uu

= sup
06=v∈Rd

vTB(v)

vTv
, (37)
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which indicates, together with (36) and the characterization (41) of the eigenvalues of symmetric

positive semidefinite matrices, that B and Γ have the same top r eigenvalues, as claimed. Now, to

show (37), we recall that for a symmetric matrix B, we have R
d = ker(B)⊕ Im(B), so that,

sup
06=v∈Rd

vTB(v)

vTv
= sup

06=v∈Im(B)

vTB(v)

vTv
.

This leads to (37) via the inclusions

Im(B) ⊆ Im(U) ⊆ R
d

which themselves follow from the inclusions

Im(B) ⊆ Im(A) ⊆ Im(U) .

Indeed, Im(A) ⊆ Im(U) because A = UΣUT and Im(B) ⊆ Im(A), or equivalently, given that

we are considering symmetric matrices, kerA ⊆ kerB, as for all y ∈ R
d,

Ay = 0 =⇒ yTAy = 0 =⇒
[
yTBy = 0 and yTxxTy = 0

]
=⇒

√
By = 0 =⇒ By = 0 ,

where we used A = B+xxT to get the second implication, and where we multiplied
√
By by

√
B

to get the final implication.

Appendix E. Some basic facts of linear algebra

We gather in this appendix some useful results of linear algebra, that are either reminder of well-

known facts or are easy to prove (yet, we prefer prove them here rather for the proofs above to be

more focused).

E.1. Gram matrices versus matrices of features

Recall that we denoted by

Xt =
[
x1 · · · xt

]

the d× t matrix consisting the first t features. By definition,

Im(Xt) = span{x1, . . . ,xt} and Gt = XtX
T

t .

The aim of this section is to show that, for all t > 1,

Im(Gt) = Im(Xt) . (38)

which in turn implies that for all t > 2,

Im(Gt−1) ⊆ Im(Gt) , (39)

and that rank(Gt−1) and rank(Gt) differ from at most 1.

First, as for any (not necessarily square) matrix M we have Im(M) = ker
(
MT
)⊥

, we note

that (38) is equivalent to ker
(
Gt

)⊥
= ker

(
XT

t

)⊥
, thus to ker

(
Gt

)
= ker

(
XT

t

)
. It is clear by defi-

nition of Gt that ker
(
XT

t

)
⊆ ker

(
Gt

)
; furthermore, for any vector u ∈ R

d, we have the equality

uTGtu = ‖XT
tu‖2, which yields the opposite inclusion ker

(
Gt

)
⊆ ker

(
XT

t

)
.

The inclusion (39) follows from (38) as by definition, the image of Xt is generated by the image

of Xt−1 and xt.
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E.2. Dynamic of the eigenvalues of Gram matrices

The above result gives us an idea of how eigenspaces and eigenvalues of the covariance matrix

evolve. Another relationship is the following one: for t > 1,

λk

(
Gt−1

)
6 λk

(
Gt

)
, (40)

where we recall that λk

(
Gt

)
denotes the kth eigenvalue of Gt in decreasing order. To prove this we

remark that for all u ∈ R
d, we have

uTGt−1u 6 uTxtu+ uTGt−1u = uTGtu

and use the fact that for all symmetric positive semidefinite matrices M,

λk(M) = max

{
min
u

{
uTMu

uTu
| u ∈ U and u 6= 0

} ∣∣∣∣∣ U vector space with dim(U) = k

}
(41)

E.3. Moore-Penrose pseudoinverses: definition and basic properties

In this appendix, we recall the definition and some basic properties of the Moore-Penrose pseudoin-

verse. It was introduced by E.H. Moore in 1920 and is a generalization of the inverse operator for

non-invertible (and non-square) matrices.

Definition 17 (Moore-Penrose pseudoinverse) The Moore-Penrose pseudoinverse of an m × n
matrix M is a n×m matrix denoted by M† and defined as

M† def
= lim

α→0

(
MTM+ αIn)

−1MT ,

where In ∈ R
n×n is the identity matrix and α → 0 while α > 0.

We have the following characterization of M†.

Proposition 18 Let M be a m× n matrix. Its Moore-Penrose pseudoinverse M† is unique and is

characterized as the only n×m matrix simultaneously satisfying the following four properties:

(P1) MM†M = M

(P2) M†MM† = M†
(P3)

(
MM†

)T
= MM†

(P4)
(
M†M

)T
= M†M

The proof can be found in Penrose (1955). In particular, in our analysis we use the following

consequences of Proposition 18. (We leave the standard proofs to the reader.)

Corollary 19 Let M be a m× n matrix and N a n× p matrix. Then,

(a) M† = MT
(
MMT

)†
;

(b) if MTM = In or NNT = In then
(
MN

)†
= N†M†;

(c) if MTM = In, then MT = M† and M =
(
MT
)†
;

(d) M† = lim
α→0

MT
(
λIm +MMT

)−1
;

(e) if the equation Mx = z with unknown z ∈ R
m admits a solution x ∈ R

n, then M†z is the

solution in R
n with minimal Euclidean norm.
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