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Abstract

We consider the setting of online linear regression for arbitrary deterministic sequences, with the

square loss. We are interested in regret bounds that hold uniformly over all vectors u ∈ R
d. Vovk

(2001) showed a d lnT lower bound on this uniform regret. We exhibit forecasters with closed-

form regret bounds that match this d ln T quantity. To the best of our knowledge, earlier works only

provided closed-form regret bounds of 2d lnT +O(1).

Keywords: Adversarial learning, regret bounds, linear regression, (non-linear) ridge regression

1. Introduction and setting

We consider the setting of online linear regression for arbitrary deterministic sequences with the

square loss, which unfolds as follows. First, the environment chooses a sequence of outputs (yt)t>1

in R and a sequence of input vectors (xt)t>1 in R
d. The output sequence (yt)t>1 is initially hidden

to the learner, while the input sequence may be given in advance or be initially hidden as well,

depending on the setting considered: “beforehand-known features” or “sequentially revealed fea-

tures”. At each forecasting instance t > 1, Nature reveals xt (if it was not initially given), then the

learner forms a prediction ŷt ∈ R. The output yt ∈ R is then revealed and instance t+1 starts. The

goal of the learner is to perform on the long run (when T is large enough) almost as well as the best

fixed linear predictor in hindsight. To do so, the learner minimizes her cumulative regret ,

RT (u) =

T∑

t=1

(yt − ŷt)
2 −

T∑

t=1

(yt − u · xt)
2 , (1)

either with respect to specific vectors u ∈ R
d (e.g., in a compact space) or uniformly over Rd. In

this article, we will be interested in

sup
u∈Rd

RT (u) ,

which we will refer to as the uniform regret over Rd (or simply, the uniform regret). The worst-case

uniform regret corresponds to the largest uniform regret of a strategy, when considering all possible

sequences of features xt and (bounded) observations yt.
The two settings described above are summarized in Figure 1.
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Sequentially revealed features Beforehand-known features

Given: [No input] Given: x1, . . . ,xT ∈ R
d

For t = 1, 2, . . . , T , the learner: For t = 1, 2, . . . , T , the learner:

• observes xt ∈ R
d

• predicts ŷt ∈ R • predicts ŷt ∈ R

• observes yt ∈ R • observes yt ∈ R

• incurs (ŷt − yt)
2 ∈ R • incurs (ŷt − yt)

2 ∈ R

Figure 1: The two online linear regression settings considered

Literature review. Linear regression with batch stochastic data has been extensively studied by

the statistics community. Our setting of online linear regression for arbitrary sequences is of more

recent interest; it dates back to Foster (1991), who considered binary labels yt ∈ {0, 1} and vectors

uwith bounded ℓ1–norm. We refer the interested reader to the monograph (Cesa-Bianchi and Lugosi,

2006, Chapter 11) for a thorough introduction to this literature and to Bartlett et al. (2015) for an

overview of the state of the art. Here, we will mostly highlight some key contributions. One is by

Vovk (2001) and Azoury and Warmuth (2001): they designed the non-linear ridge regression (2),

which achieves a regret of order O(d ln T ) uniformly over vectors u with bounded ℓ2–norm. Vovk

(2001) also provided a matching minimax lower bound dB2 lnT −O(1) on the worst-case uniform

regret over Rd of any forecaster, where B is a bound on the outputs |yt|. More recently, Bartlett et al.

(2015) computed the minimax regret for the problem with beforehand-known features and provided

an algorithm that is optimal under some assumptions on the sequences (xt)t>1 and (yt)t>1 of fea-

tures and observations. This algorithm is scale-invariant with respect to the sequence of features

(xt)t>1. Their analysis emphasizes the importance of a data-dependent metric to regularize the

algorithm, which is harder to construct when the features are only revealed sequentially. To that

end, Malek (2017, Chapter 3) shows that, under quite intricate constraints on the features and ob-

servations, the backward algorithm of Bartlett et al. (2015) can also be computed in a forward (and

thus legitimate) fashion in the case when the features are only revealed sequentially. It is thus also

optimal; see, e.g., Lemma 39 and Theorem 46 therein.

Organization of the paper and contributions. We first recall and discuss the regret bound of

the non-linear ridge regression algorithm (Section 2.1), which will be a building block for our new

analyses. We also state and re-prove (Section 2.2) the regret lower bound by Vovk (2001), as most of

the discussions in this paper will be about the optimal constant in front of the dB2 lnT regret bound;

this constant equals 1. Our proof reuses several ideas from the original proof (features xt with only

one non-zero input equal to 1, Bernoulli observations yt, the use of randomization with a Beta prior

distribution, etc.). The main difference lies in the exposition: we resort to a general argument,

namely, the van Trees inequality (see Gill and Levit, 1995), to lower bound the error made by any

forecaster, while Vovk (2001) was heavily relying on the fact that in a Bayesian stochastic context,

the optimal strategy can be determined. This new tool for the machine learning community could

be of general interest to derive lower bounds in other settings. We also believe that our analysis

is enlightening for statisticians. It shows that the expectation of the regret is larger than a sum of

quadratic estimation errors for a d–dimensional parameter. Each of these errors corresponds to an

estimation based on a sample of respective length t, thus is larger than something of the order of d/t,
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which is the optimal parametric estimation rate. Hence the final d(1 + 1/2 + . . . + 1/T ) ∼ d lnT
regret lower bound.

We next show (Section 3) that in the case of beforehand-known features, the non-linear ridge

regression algorithm and its analysis may make good use of a proper metric ‖ · ‖
GT

described in (9)

to get an optimal dB2 ln(1 + T/d) + dB2 bound on the uniform regret over Rd. To the best of

our knowledge, this is perhaps the first optimal closed-form regret bound for the uniform regret:

previous closed-form bounds typically had an extra factor of 2. See the corresponding discus-

sions for the non-linear ridge regression algorithm, in Section 2.1, and for the minimax forecaster

by Bartlett et al. (2015), in Remark 7 of Section 3.

Question then is (Section 4) whether a dB2 lnT + O(1) regret bound can be achieved on the

uniform regret in the most interesting setting of sequentially revealed features. Among the several

approaches taken, one worked and surprised us; it provides a new understanding of this well-known

algorithm. Indeed, it turns out that even if the traditional bound for the non-linear ridge regression

forecaster blows up when the regularization parameter vanishes, λ = 0 (see Section 2.1), an ad hoc

analysis can be made in this case; it yields a uniform regret bound of dB2 lnT+OT (1). The leading

term is thus the optimal one. Also, no parameter needs to be tuned, which is a true relief. The only

drawback of this bound, compared to other bounds mentioned above, is that the OT (1) remainder

term depends on the sequence of features. For each sequence of features, it is a constant, but that

constant may be large. But all in all, we think that it was worth proving that the regularization term

λ ‖u‖2 in the defining equation (2) of the non-linear ridge regression algorithm is not so useful,

while the seemingly harmless regularization term (u · xt)
2 is crucial.

2. Sequentially revealed features / Known results

In this section, we recall and reestablish some known results regarding the regret with the quadratic

loss function. We recall the definition and the regret bound (Section 2.1) of the non-linear ridge

regression algorithm of Vovk (2001); Azoury and Warmuth (2001). This regret bound is used later

in this article to design and study our new strategies. We reestablish as well a

dB2
(
lnT − (3 + ln d)− ln lnT

)

lower bound on the regret of any forecaster (Section 2.2), which indicates that the upper bounds

dB2 lnT + O(1) obtained later in this article are first-order optimal; in particular, they get the

optimal dB2 constant.

2.1. Upper bound on the regret / Reminder of a known result

The non-linear ridge regression algorithm of Vovk, Azoury and Warmuth uses at each time-step t a

vector ût such that û1 = (0, . . . , 0)T and for t > 2,

ût ∈ argmin
u∈Rd

{
t−1∑

s=1

(ys − u · xs)
2 + (u · xt)

2 + λ ‖u‖2
}
, (2)

where ‖ · ‖ denotes the Euclidean norm. Note that this definition is not scale invariant. By scale

invariance, we mean that if the xt are all multiplied by some γ > 0 (or even by an invertible matrix

Γ), the the vector ût used should also be just divided by γ (or multiplied by Γ−1). We may similarly

define what a scale invariant bound is.
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Notation 1 Given features x1,x2, . . . ∈ R
d, we denote by Gt =

∑t
s=1 xsx

T
s the associated d × d

Gram matrix at step t > 1. This matrix is symmetric and admits d eigenvalues, which we sort in non-

increasing order and refer to as λ1(Gt), . . . , λd(Gt). Furthermore, we denote by rt = rank(Gt)
the rank of Gt. In particular, λrt(Gt) is the smallest positive eigenvalue of Gt.

For λ > 0, we have a unique, closed-form solution of (2): denoting At = λ Id +Gt, which is

a symmetric definite positive thus invertible matrix, and bt−1 =
∑t−1

s=1 yt xt,

ût = A−1
t bt−1 . (3)

We recall the proof of the following theorem in Appendix B, mostly for the sake of completeness

as we will use some standard inequalities extracted from it.

Theorem 2 (see Theorem 11.8 of Cesa-Bianchi and Lugosi, 2006) Let the non-linear ridge re-

gression be run with parameter λ > 0. For all T > 1, for all sequences x1, . . . ,xT ∈ R
d and all

y1, . . . , yT ∈ [−B,B], for all u ∈ R
d,

RT (u) 6 λ ‖u‖2 +B2
d∑

k=1

ln

(
1 +

λk(GT )

λ

)
.

Question is whether this regret bound, which is seemingly non uniform over Rd, can lead to a

uniform regret bound. The answer is yes, but the best bound which we could obtain from it is of

the form 2dB2 ln(T )+OT (1), and holds under an additional boundedness assumption: there exists

X > 0 such that ‖xt‖ 6 X for all t > 1. However, as we show in the next sections the constant 2
in the leading term 2dB2 lnT of the regret is suboptimal. Despite all our efforts, we were unable to

get the known-to-be optimal constant 1 for the non-linear ridge regression algorithm. But working

on the derivation below and trying to improve on it, we designed the forecaster of Section 3, which

achieves the optimal constant 1 in its uniform regret bound.

Corollary 3 Let the non-linear ridge regression be run with parameter λ > 0. For all T > 1, for

all sequences x1, . . . ,xT ∈ R
d with ‖xt‖ 6 X and all y1, . . . , yT ∈ [−B,B],

sup
u∈Rd

RT (u) 6 rTB
2 ln

(
1 +

TX2

rTλ

)
+

λ

λrT (GT )
TB2 .

Proper choices for λ to minimize the upper bound above are roughly of the order of 1/T , to

get rid of the linear part of the bound given by TB2; because of the T/λ term in the logarithm, the

resulting bound has unfortunately a main term of order dB2 lnT 2 = 2dB2 lnT . For instance, the

choice λ = 1/T , that does not require any beforehand knowledge of the features xt, together with

the bound rT 6 d and the fact that u 7→ (1/u) ln(1 + u) is decreasing over (0,+∞), leads to a

regret bound less than

2dB2 lnT +
B2

λrT (GT )
+ dB2 ln

(
1 +X2/d

)
.

Proof We assume that the Gram matrix GT is full rank; otherwise, we may adapt the proof below by

resorting to Moore-Penrose pseudoinverses, just as we do in Appendix C for the proof of Theorem 6.
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Theorem 2 indicates that

T∑

t=1

(yt − ût · xt)
2
6 inf

u∈Rd

{
T∑

t=1

(yt − u · xt)
2 + λ ‖u‖2

}
+B2

d∑

k=1

ln

(
1 +

λk(GT )

λ

)
.

Now, as in (3), we have a closed-form expression of the unique vector achieving the following,

infimum:

inf
u∈Rd

{
T∑

t=1

(yt − u · xt)
2

}
=

T∑

t=1

(yt − u⋆ · xt)
2

Namely, u⋆ = G−1
T bT , so that

‖u⋆‖ =
∥∥G−1/2

T G
−1/2
T bT

∥∥ 6 λ1

(
G

−1/2
T

) ∥∥∥G−1/2
T bT

∥∥∥ =
1√

λd(GT )

∥∥∥G−1/2
T bT

∥∥∥

6
1√

λd(GT )
B
√
T , (4)

where we used, for the final inequality, an elementary argument of orthogonal projection that is

at the heart of the proof of Theorem 6: see (15) and the sentence after it. In addition, Jensen’s

inequality (or the alternative treatement of Cesa-Bianchi and Lugosi, 2006, page 320) indicates that

d∑

k=1

ln

(
1 +

λk(GT )

λ

)
6 d ln

(
1 +

∑d
k=1 λk(GT )

dλ

)
= d ln

(
1 +

Tr(GT )

dλ

)
6 d ln

(
1 +

TX2

dλ

)

where Tr is the trace operator. All in all, we get

T∑

t=1

(yt − ût · xt)
2
6 inf

u∈Rd

{
T∑

t=1

(yt − u · xt)
2+

}
+ λ ‖u⋆‖2 + dB2 ln

(
1 +

TX2

dλ

)

and the claimed bound follows by substituting the bound (4).

2.2. Lower bound on the uniform regret / Known result but new proof

In this section, we study the uniform regret sup
{
RT (u) : u ∈ R

d
}

, in the worst case, that is,

R⋆
T, [−B,B]

def
= inf

forecasters
sup

(xt,yt)∈[0,1]d×[−B,B]

{
T∑

t=1

(yt − ŷt)
2 − inf

u∈Rd

T∑

t=1

(yt − u · xt)
2

}
,

where the first infimum is over all forecasters (all forecasting strategies) and the supremum is over

all individual sequences (xt, yt) in [0, 1]d × [−B,B], where t > 1. Vovk (2001, Theorem 2)

indicated a result of the following form.

Theorem 4 For all T > 8 and B > 0, we have R⋆
T, [−B,B] > dB2

(
lnT − (3 + ln d)− ln lnT

)
.

5
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The high-level idea of our proof of this known bound is to see the desired d lnT bound as

a sum of parametric estimation errors in R
d, of order each at least d/t. It is a classic result in

parametric statistics that the estimation of a d–dimensional parameter based on a sample of size t
can be performed at best at rate d/t in quadratic error, and this is exactly what is used in our proof.

Our proof reuses several ideas from the original proof of Vovk (2001, Theorem 2), namely,

taking features xt with only one non-zero input equal to 1 and Bernoulli observations yt, resorting

to a randomization with a Beta prior distribution, etc. The main difference lies in the exposition:

we resort to a general argument, namely, the van Trees inequality (see Gill and Levit, 1995), to

lower bound the error made by any forecaster, while Vovk (2001, Theorem 2) was heavily relying

on the fact that in a Bayesian stochastic context, the optimal strategy can be determined: his proof

states that “since Nature’s strategy is known, it is easy to find the best, on the average, strategy for

Statistician (the Bayesian strategy).”

In some sense, our argument is more generic and works for any strategy, not only for the optimal

one. In this respect, the van Trees inequality could reveal itself a new tool of general interest for

the machine learning community to derive lower bounds in other settings. It indeed holds for any

estimator (unlike the Cramér-Rao bound, which only holds for unbiased estimators).

Remark 5 Note that the sequences considered in the definition of R⋆
T, [−B,B] are fixed beforehand,

they do not need to be constructed in an adaptive way to fool the considered forecaster. Note

also that the features xt could be any element of Rd (by a scaling property on the u), they do not

necessarily need to be restricted to [0, 1]d; it is merely that our proof relies on such [0, 1]d–valued

features. Compare to Theorem 6, where no boundedness assumption is required on the features.

Proof We start with a case where yt ∈ [0, 1] and explain at the end of the proof (in Appendix A)

how to draw the result for the desired case where yt ∈ [−B,B].
We fix a forecaster and consider the following randomization over the possible individual se-

quences. Given θ⋆ ∈ [0, 1]d, we define a joint distribution Pθ⋆ on [0, 1]d ×{0, 1} as the distribution

of the pair (eJ , Y ) where J is uniformly distributed over {1, . . . , d}, where ej denotes the unit vec-

tor (0, . . . , 0, 1, 0, . . . , 0)T along the j-th coordinate (the 1 is in position j), and where Y has a con-

ditional distribution with respect to J given by a Bernoulli distribution with parameter θ⋆ ·eJ = θ⋆J .

We consider a sequence of i.i.d. pairs (Jt, Yt), for t = 1, 2, . . ..
Now, given the features considered above, that are unit vectors, each forecasting strategy can

be termed as picking only linear combinations ŷt = ût · eJt as predictions. Indeed, we denote by

ŷt(j) the prediction output by the strategy when Jt = j given the past; and we then consider the

vector ût ∈ R
d whose j–th component equals ûj,t = ŷt(j). This way, in our specific stochastic

setting, outputting direct predictions ŷt of the observations or outputting vectors ût ∈ R
d to form

linear combinations are the same thing.

By exchanging an expectation and an infimum, the expectation of the uniform regret of any

fixed forecaster considered can be bounded as

E

[
sup
u∈Rd

RT (u)

]
>

T∑

t=1

E

[
(Yt − ŷt)

2
]
− inf

u∈Rd

T∑

t=1

E

[
(Yt − u · eJt)2

]
(5)
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Since ŷt is measurable w.r.t. Ft−1, the σ–algebra generated by Jt and the (Js, Ys) where s 6 t− 1,

a conditional bias–variance decomposition yields

E

[
(ŷt − Yt)

2
∣∣Ft−1

]
= E

[
(ŷt − θ⋆Jt)

2
∣∣Ft−1

]
+ E

[
(Yt − θ⋆Jt)

2
∣∣Ft−1

]

= E

[(
ûJt,t − θ⋆Jt

)2 ∣∣Ft−1

]
+ θ⋆Jt

(
1− θ⋆Jt

)
,

where we used first that by construction, ŷt = ût · eJt = ûJt,t, and second, that the conditional

distribution of Yt is a Bernoulli distribution with parameter θ⋆Jt . Similarly, for all u ∈ R
d,

E

[
(Yt − u · eJt)2

∣∣Ft−1

]
= E

[(
uJt − θ⋆Jt

)2 ∣∣Ft−1

]
+ θ⋆Jt

(
1− θ⋆Jt

)
.

By the tower rule and since the variance terms θ⋆Jt
(
1− θ⋆Jt

)
cancel out, we thus proved that

E

[
sup
u∈Rd

RT (u)

]
>

T∑

t=1

E

[
(ŷt − Yt)

2
]
− inf

u∈Rd

T∑

t=1

E

[
(Yt − u · eJt)2

]

=

T∑

t=1

E

[(
ûJt,t − θ⋆Jt

)2]− inf
u∈Rd

T∑

t=1

E

[(
uJt − θ⋆Jt

)2]
=

T∑

t=1

E

[
(ûJt,t − θ⋆Jt)

2
]
.

Now, by resorting to the tower rule again, integrating over Jt conditionally to the (Js, Ys) where

s 6 t− 1, we get

E

[
sup
u∈Rd

RT (u)

]
>

T∑

t=1

E

[
(ûJt,t − θ⋆Jt)

2
]
=

T∑

t=1

1

d
E

[wwût − θ⋆
ww2

2

]
, (6)

and we now show that each term in the sum is larger than something of the order of d/t, from which

the desired d lnT bound will follow.

This order of magnitude d/t is the parametric rate of optimal estimation; indeed, due to the

randomness of the Js, over t periods, each component is used about t/d times, while the rate of

convergence in quadratic error of any d–dimensional estimator based on τ = t/d unbiased i.i.d.

observations is at best d/τ = d2/t. Taking into account the 1/d factor gets us the claimed d/t rate.

See Appendix A for full details and conclusion of this proof.

3. Beforehand-known features / New result

In this section we assume that the features are known beforehand and exhibit a simple forecaster

with a regret bound of dB2 lnT + OT (1) uniformly over Rd and all sequences of features and of

bounded observations. A uniform bound of the form 2dB2 lnT + OT (1) was already proved by

Bartlett et al. (2015), in a different way (studying minimax values), see a more detailed discussion

below.

The non-linear ridge regression algorithm with adapted regularization will pick weight vectors

as follows: û1 = (0, . . . , 0)T and for t > 2,

ût ∈ argmin
u∈Rd

{
t−1∑

s=1

(ys − u · xs)
2 + (u · xt)

2 + λ

T∑

s=1

(u · xs)
2

}
(7)

7
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with the constraint that ût should be of minimal norm within all vectors of the stated argmin. As

shown in Appendix C, the closed-form expression for ût reads

ût =
(
λGT +Gt

)†
bt−1 , (8)

where † denotes the Moore-Penrose inverse of a matrix.

The difference to (2) lies in the regularization term, which can be denoted by

λ ‖u‖2
GT

def
= λuTGTu = λ

T∑

s=1

(u · xs)
2 ; (9)

that is, this regularization term can be seen as a metric adapted to the known-in-advance features

x1, . . . ,xT . Note that this algorithm has the desirable property of being scale invariant.

Theorem 6 Let the non-linear ridge regression algorithm with adapted regularization be run with

parameter λ > 0. For all T > 1, for all sequences x1, . . . ,xT ∈ R
d and all y1, . . . , yT ∈ [−B,B],

sup
u∈Rd

RT (u) 6 λTB2 + rTB
2 ln
(
1 +

1

λ

)
,

where rT = rank(GT ).

By taking λ = rT /T , we get the bound rTB
2
(
1+ ln(1+ T/rT )

)
. Of course, rT 6 d and since

u 7→ (1/u) ln(1 + u) is decreasing over (0,+∞), the final optimized regret bound reads

sup
u∈Rd

RT (u) 6 B2

(
rT ln

(
1 +

T

rT

)
+ rT

)
6 dB2 ln

(
1 +

T

d

)
+ dB2 .

Note that the leading constant is 1, which is known to be optimal because of Theorem 4.

Remark 7 Bartlett et al. (2015) study some minimax uniform regret, namely

R⋆
T = sup

x1,...,xT∈Rd

verifying some condition

inf
ŷ1

sup
y1∈[−B,B]

· · · inf
ŷT

sup
yT∈[−B,B]

sup
u∈Rd

RT (u) .

The minimax regret is also the regret of the associated minimax forecaster (which can be computed

by backward induction); note that the latter forecaster strongly depends on T . Because of the

minimax optimality, R⋆
T is smaller than the bound of Theorem 6.

However, this was not reflected, to the best of our understanding, in the original analysis by

Bartlett et al. (2015), which rather gets a bound of order 2dB2 lnT , that is, which suffers from an

extra multiplicative factor of 2. Indeed, Theorem 5 therein indicates, in the case where d = 1 and

B = 1, that

∀T > 1, R⋆
T 6 f(T ) (10)

for any function f : {1, 2, . . .} → R+ satisfying e−f(T )/2 6 f(T + 1)− f(T ) for all T > 1. As

they showed, the function f(T ) = 2 ln(1 + T/2) + 1 is a suitable choice, but it leads to the extra

multiplicative factor of 2 that we pointed out above. However, this choice for f does not seem to be

8
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easily improvable; for instance, functions f of the form T 7→ a ln T + b for some a < 2 and b ∈ R

are such that

e−f(T )/2 = Ω
(
T−a/2

)
and f(T + 1)− f(T ) = a ln

(
1 +

1

T

)
= Ω

(
T−1

)
,

hence, are not suitable choices for the bound (10).

Remark 8 It is worth to notice that our result holds in a less restrictive setting than beforehand-

known features. Indeed, in the definition of the weight vector ût, see Equations (7) and (9), the only

forward information used lies in the regularization term λuTGTu. Therefore, our algorithm does

not need to know the whole sequence of features x1, . . . ,xT in advance: it is enough to know the

Gram matrix GT , in which case our results still hold true. A particular case is when the sequence

of features is only known beforehand up to an unknown (and possibly random) permutation, as

considered, e.g., by Kotlowski et al. (2017).

Proof In order to keep things simple, we will assume here that GT is full rank; the proof in the

general case can be found in Appendix C. Then, all matrices λGT +Gt are full rank as well.

The proof of this theorem relies on the bound of the non-linear ridge regression algorithm of

Section 2.1, applied on a modified sequence of features

x̃t = G
−1/2
T xt ,

where G
−1/2
T is the inverse square root of the of the symmetric matrix GT . We successively prove

the following two inequalities (where we replaced rT by its value d, as GT is full rank),

T∑

t=1

(yt − ût · xt)
2

6 inf
u∈Rd

{
T∑

t=1

(yt − u · x̃t)
2 + λ ‖u‖2

}
+ dB2 ln

(
1 +

1

λ

)
(11)

6 inf
u∈Rd

{
T∑

t=1

(yt − u · xt)
2

}
+ λTB2 + dB2 ln

(
1 +

1

λ

)
. (12)

Proof of (11). We first show that the strategy (2) on the x̃t leads to the same forecasts as the

strategy (7) on the original xt; that is, we show that

ũt · x̃t = ût · xt , where ũt ∈ argmin
u∈Rd

{
t−1∑

s=1

(ys − u · x̃s)
2 + (u · x̃t)

2 + λ ‖u‖2
}
.

The equality above follows from the definition x̃t = G
−1/2
T xt and the fact that ũt = G

1/2
T ût.

Indeed, the closed-form expression (3) indicates that

ũt =

(
λ Id +

t∑

s=1

x̃tx̃
T

t

)−1 t−1∑

s=1

ysx̃s =
(
λId +G

−1/2
T GtG

−1/2
T

)−1
G

−1/2
T bt−1 .

Now,

(
λId +G

−1/2
T GtG

−1/2
T

)−1
=
(
G

−1/2
T

(
λGT +Gt

)
G

−1/2
T

)−1
= G

1/2
T

(
λGT +Gt

)−1
G

1/2
T ,

9
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so that

ũt = G
1/2
T

(
λGT +Gt

)−1
G

1/2
T G

−1/2
T bt−1 = G

1/2
T

(
λGT +Gt

)−1
bt−1 = G

1/2
T ût .

We apply the bound of Theorem 2 on sequences x̃1, . . . , x̃T ∈ R
d and y1, . . . , yT ∈ [−B,B], to

get, for all u ∈ R
d,

T∑

t=1

(yt−ŷt)
2 =

T∑

t=1

(yt−ũt·x̃t)
2
6

T∑

t=1

(yt−u·x̃t)
2+λ ‖u‖2+B2

d∑

k=1

ln


1 +

λk

(∑T
t=1 x̃x̃

T

)

λ


 .

(13)

The Gram matrix of the x̃t equals

T∑

t=1

x̃tx̃
T

t = G
−1/2
T

(
T∑

t=1

xtxt
T

)
G

−1/2
T = G

−1/2
T GT G

−1/2
T = Id , (14)

so that
d∑

k=1

ln


1 +

λk

(∑T
t=1 x̃x̃

T

)

λ


 = d ln

(
1 +

1

λ

)
.

Taking the infinimum over u in R
d in (13) concludes the proof of (11).

Proof of (12). We bound

inf
u∈Rd

{
T∑

t=1

(yt − u · x̃t)
2 + λ ‖u‖2

}
,

by evaluating it at u⋆ ∈ argmin
u∈Rd

{
T∑

t=1

(yt − u · x̃t)
2

}
, which is a singleton with closed-form ex-

pression

u⋆ =

(
T∑

t=1

x̃tx̃
T

t

)−1( T∑

t=1

ytx̃t

)
= G

−1/2
T bT ,

where we used (14). To that end, we first bound ‖u⋆‖2. By denoting

XT =
[
x1 · · · xT

]
and yT =




y1
...

yT


 ,

which are respectively, a d× T and a T × 1 matrix, we have

u⋆ = G
−1/2
T XTyT , thus ‖u⋆‖2 = yT

TX
T

TG
−1
T XTyT . (15)

Noting that XT

TG
−1
T XT is an orthogonal projection (on the image of XT

T ) entails the inequalities

‖u⋆‖2 6 ‖yT ‖2 6 TB2.

10
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Putting all elements together, we proved so far

inf
u∈Rd

{
T∑

t=1

(yt − u · x̃t)
2 + λ ‖u‖2

}
6 inf

u∈Rd

{
T∑

t=1

(yt − u · x̃t)
2

}
+ λTB2 .

We conclude the proof of (12) by a change of dummy variable v = G
1/2
T u,

inf
u∈Rd

{
T∑

t=1

(yt − u · x̃t)
2

}
= inf

u∈Rd

{
T∑

t=1

(yt −G
1/2
T u · xt)

2

}
= inf

v∈Rd

{
T∑

t=1

(yt − v · xt)
2

}
.

4. Sequentially revealed features / New result

In this section we do not assume that the features are known beforehand (i.e., unlike in the previ-

ous section) and yet exhibit a simple forecaster with a regret bound of dB2 lnT + OT (1) holding

uniformly over Rd. Perhaps unexpectedly, the solution that we propose is just to remove the regu-

larization term λ ‖u‖2
GT

in (7), which cannot be computed in advance. The non-linear regression

algorithm with almost no regularization picks weight vectors as defined in Equations (2) or (7) with

regularization parameter λ = 0; that is, û1 = (0, . . . , 0)T and for t > 2,

ût ∈ argmin
u∈Rd

{
t−1∑

s=1

(ys − u · xs)
2 + (u · xt)

2

}
, hence ût = G

†
tbt−1 ,

where the closed-form expression corresponds to (8). Note that no parameter requires to be tuned

in this case, which can be a relief.

Why and how we were led to consider this forecaster is explained in the discussion following

Theorem 10; we were surprised that even if the traditional bound for the non-linear ridge regression

forecaster blows up when the regularization parameter vanishes, λ = 0 (see Section 2.1), an ad hoc

analysis could be performed here. It provides a new understanding of this well-known non-linear

regression algorithm: the regularization term λ ‖u‖2 in its defining equation (2) is not so useful,

while the seemingly harmless regularization term (u · xt)
2 therein is crucial.

Remark 9 The ridge regression with regularization factor λ = 0, that is, the ordinary linear least-

squares (OLS) regression, cannot achieve such a logarithmic bound on the regret. Even worse (but

not surprisingly), its regret grows in a linear fashion. Indeed, consider d = 1 and for a given T ,

consider the bounded sequences of scalar numbers

y1 = y2 = · · · = yT = 1 , and x1 = x2 = · · · = xT−1 =
1√
T

while xT = 1 .

Then OLS picks û1 = 0 and û2 = · · · = ûT =
√
T and its cumulative loss satisfies

T∑

t=1

(yt − ûtxt)
2
> (yT − ûTxT )

2 =
(
1−

√
T
)2 ∼ T ,

11
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while, for the choice v = (1 +
√
T )/2,

inf
u∈R

T∑

t=1

(yt − uxt)
2
6

T∑

t=1

(yt − vxt)
2 = (T − 1)

(
1− 1

2
√
T

− 1

2

)2
+

(
1− 1

2
−

√
T

2

)2
∼ T

2
.

This proves that the regret of OLS grows as T/2.

The proof of the regret bound below for the non-linear regression algorithm with almost no

regularization can be found in Appendix D.

Theorem 10 For all T > 1, for all sequences x1, . . . ,xT ∈ R
d and all y1, . . . , yT ∈ [−B,B], for

all u ∈ R
d, the non-linear regression algorithm with almost no regularization achieves the uniform

regret bound

sup
u∈Rd

RT (u) 6 B2
rT∑

k=1

ln
(
λk(GT )

)
+B2

∑

t∈[[1,T ]]∩T

ln

(
1

λrt(Gt)

)
+ rTB

2

where the set T contains rT rounds, given by s = 1 and the s > 2 when rank(Gs−1) 6= rank(Gs).

Note that the regret bound obtained is scale invariant, which is natural and was expected, as the

forecaster also is. The same (standard) arguments as the ones at the end of the proof of Corollary 3

show the following consequence of this bound: for all X > 0, for all sequences x1,x2, . . . of

features with ‖xt‖ 6 X,

sup
u∈Rd

RT (u) 6 dB2 lnT + dB2 ln
(
X2
)
+B2

∑

t∈[[1,T ]]∩T

ln

(
1

λrt(Gt)

)
+ dB2

︸ ︷︷ ︸
this is our OT (1) here

.

Discussion of this OT (1) term. The OT (1) term above has two desirable properties. First, it only

increases when the rank of the Gram matrix Gt increases, which occurs at most d times. Once the

matrix GT is full rank, it thus stops increasing; for rounds T ′ > T , only the leading term increases

to dB2 lnT ′. Second, it is scale invariant in the features xt, which is not a surprise, at the algorithm

itself is scale invariant—in constrast to the non-linear Ridge forecaster (2), which was not scale

invariant mostly because of the regularization factor λ.

A drawback of this OT (1) term is however that it strongly depends on the input sequence

(xt)t>1. In particular, it is not invariant by a permutation of the (xt)t>1 and is not uniformly

bounded over all sequences (xt)t>1. The underlying issue is that the algorithm does not know in

advance the correct metric to use on the feature space and may not scale back or regularize properly

certain directions when they start being observed and get significant. Unfortunately, we could not

get rid of this additional remainder term (we detail below some attempts made to do so). The deep

reason might be that it is unavoidable due to the sequential nature of the problem: there might be

a price to pay for not knowing GT in advance. The lower bound of Theorem 4 is perhaps improv-

able as far as its remainder terms are considered: could they explicitly depend on the sequence of

features?

12
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Attempts made to improve on this OT (1) term. We first note that in dimension d = 1, the

metrics endowed by ‖ · ‖ and ‖ · ‖GT
are equal up to a scaling factor. The adaptation to ‖ · ‖GT

thus reduces to a proper calibration of the regularization parameter λ > 0, which can be achieved

without too much technicalities. But for dimensions d > 2, the metric endowed by ‖ · ‖GT
can be

significantly different from the one associated with ‖ · ‖ because, in particular, of different scalings

between directions.

Our first attempt to improve on this OT (1) term when d > 2 was to replace the matrix GT

that is unknown at the beginning of round t by its sequential estimate Gt and to regularize at time

t with (u · xt)
2 + λ ‖u‖2

Gt
instead of (u · xt)

2 + λ ‖u‖2
GT

. However, in this case, the closed-form

expression for the vector ût is ût = G
†
tbt−1/(1 + λ), that is, the λ only acts as a multiplicative bias

to the vector otherwise considered. The analysis we followed led to a regret bound increasing in λ,

so that we finally picked λ = 0 and ended up with our non-linear regression algorithm with almost

no regularization.

A second attempt was to add d artificial initial steps before the real game starts, indexed by

τ = −d + 1, . . . , 0, with features of the form x̃τ = (0, . . . , 0,
√
λ, 0, . . .) and with observations

ỹτ = 0. This ensures that all increases of the ranks are controlled, with ln
(
1/λrt(Gt

)
terms all

being equal to ln(1/λ). However, the additive price to pay in the regret bound equals λ ‖u‖2 and

we are thus essentially back to the bound of Theorem 2.

A variation on this second attempt was to ignore new directions brought by new inputs xt, by

approximating xt with its projection onto Im(Gt−1), and do so while these directions, which lie in

Ker(Gt−1), are not strong enough, i.e., have not been observed enough.

A final attempt aimed to discretize the space of possible Gram matrices GT together with the

consideration of a meta-aggregation algorithm on the considered approximations of GT . It did

not correct the issues mentioned above and it worsened the constant factor of 1 in front of the

leading dB2 lnT term, not mentioning the prohibitive computational complexity associated with

this approach (exponential in d).
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Appendix A. End of the proof of Theorem 4

Proof We resume at (6). We now (re)index all expectations relative to Pθ⋆ by the parameter θ⋆ and

consider a prior π on these θ⋆ ∈ [0, 1]d. The randomizations considered in the main body of the

proof can be mixed according to π, so that we get, by mixing both sides of (6)

R⋆
T, [0,1] > inf

forecasters

∫

[0,1]d

Eθ⋆

[
sup
u∈Rd

RT (u)

]
dπ(θ⋆)

> inf
forecasters

T∑

t=1

∫

[0,1]d

1

d
Eθ⋆

[wwût − θ⋆
ww2

2

]
dπ(θ⋆)

(Recall that we are considering the interval [0, 1] here.) Now, an immediate application of the

(multi-dimentional) van Trees inequality with a Beta(α,α) prior π shows that for all forecasters, all

t > 1 and α > 3,

∫

[0,1]d

1

d
Eθ⋆

[wwût − θ⋆
ww2

2

]
dπ(θ⋆) >

d

4t+ 2t/(α − 1) + 16dα
,

see Lemma 11 below. We thus proved

R⋆
T, [0,1] >

T∑

t=1

d(
4 + 2/(α − 1)

)
t+ 16dα

> d

∫ T+1

1

1(
4 + 2/(α − 1)

)
t+ 16dα

dt

=
d

4 + 2/(α − 1)
ln

(
4 + 2/(α − 1)

)
(T + 1) + 16dα(

4 + 2/(α − 1)
)
+ 16dα

>
d

4 + 2/(α − 1)
ln

(
4 + 2/(α − 1)

)
T(

4 + 2/(α − 1)
)
+ 16dα

=
d

4 + 2/(α − 1)

(
lnT − ln

(
1 +

16dα

4 + 2/(α − 1)

))
>

d

4 + 2/(α − 1)

(
lnT − ln(1 + 4dα)

)
,

which we lower bound in a crude way by resorting to 1/(1 + u) > 1− u and by taking α such that

α − 1 = lnT ; this is where our condition T > 8 > e2 is used, to ensure that α > 3. We also use

that since T > e2, we have 1 6 (ln T )/2 thus 1 + 4dα 6 1 + 4d(1 + lnT ) 6 7d ln T . We get

R⋆
T, [0,1] >

d

4

(
1− 1

2(α − 1)︸ ︷︷ ︸
>0

)(
lnT − ln(7d ln T )

)

>
d

4

(
1− 1

2 ln T

)
(ln T − ln(7d) − ln lnT ) >

d

4

(
lnT − (3 + ln d)− ln lnT

)
. (16)

The factor 3 above corresponds to 1/2+ ln 7 6 3. So, we covered the case of R⋆
T, [0,1] and now turn

to R⋆
T, [−B,B] for a general B > 0.

To get a lower bound of exact order d lnT , that is, to get rid of the annoying multiplicative

factor of 1/4, we proceed as follows. With the notation above, Zt = 2B(Yt − 1/2) lies in [−B,B].
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Denoting by ẑt the forecasts output by a given forecaster sequentially fed with the (Zs, eJs), we

have

(ẑt − Zt)
2 = 4B2(ŷt − Yt)

2 where the ŷt =
ẑt + 1/2

2B

also correspond to predictions output by a legitimate forecaster, and

inf
v∈Rd

T∑

t=1

E

[
(Zt−v·eJt)2

]
= 4B2 inf

v∈Rd

T∑

t=1

E

[(
Yt−

1

2
−v · eJt

2B

)2]
= 4B2 inf

u∈Rd

T∑

t=1

E

[
(Yt−u·eJt)2

]

by considering the transformation v ↔ u given by uj = vj/(2B)− 1/2. (We use here that the sum

of the components of the eJt equal 1.) We thus showed that R⋆
T, [−B,B] is larger than 4B2 times the

lower bound (16) exhibited on (5), which concludes the proof.

Details on the application of the van Trees inequality

The van Trees inequality is a Bayesian version of the Cramér-Rao bound, but holding for any esti-

mator (not only the unbiased ones); see Gill and Levit (1995, Section 4) for a multivariate statement

(and refer to Van Trees, 1968 for its first statement).

Recall that we denoted above by Pθ⋆ the distribution of the i.i.d. pairs (J, Y ) considered in

Section 2.2 for a given θ⋆ ∈ [0, 1]d. We also considered the family P of these distributions and

thus, for clarity, indexed all expectations E by the underlying parameter θ⋆ at hand. We introduce

a product of independent Beta(α,α) distributions as a prior π on the θ⋆ ∈ [0, 1]d; its density with

respect to the Lebesgue measure equals

β(d)
α,α(t1, . . . , td) 7−→ βα,α(t1) · · · βα,α(td) , where βα,α : t 7→ Γ(2α)

(
Γ(α)

)2 t
α−1(1− t)α−1 .

The reason why Beta distributions are considered is because of the form of the Fisher information

of the P family, see calculations (19) below.

The multivariate van Trees inequality ensures that for all estimators ût, that is, for all random

variables which are measurable functions of the (Js, Ys), where 1 6 s 6 t, we have

∫

[0,1]d

Eθ⋆

[wwût − θ⋆
ww2

2

]
β(d)
α,α(θ

⋆) dθ⋆ >
(Tr Id)

2

Tr I
(
β(d)
α,α

)
+ t

∫

[0,1]d

(
Tr I(θ⋆)

)
β(d)
α,α(θ

⋆) dθ⋆
, (17)

where dθ⋆ denotes the integration w.r.t. Lebesgue measure, Tr is the trace operator, I(θ⋆) stands

for the Fisher information of the family P at θ⋆, see (18), while each component (i, i) of the other

matrix in the denominator is given by

I
(
β(d)
α,α

)
i,i

=

∫

[0,1]d

(
∂β

(d)
α,α

∂θ⋆i
(θ⋆)

)2 1

β
(d)
α,α(θ⋆)

dθ⋆ ,

which may equal +∞ (in which case the lower bound is void). There are conditions for the inequal-

ity to be satisfied, we detail them in the proof of the lemma below.
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Lemma 11 When the family P is equipped with a prior given by a product of independent Beta(α,α)

distributions, where α > 3, it follows from the van Trees inequality and from simple calculations

that ∫

[0,1]d

Eθ⋆

[wwût − θ⋆
ww2

2

]
β(d)
α,α(θ

⋆) dθ⋆ >
d2

16dα + 4t+ 2t/(α − 1)
.

Proof We denote by

fθ⋆ : (j, y) ∈ {1, . . . , d} × {0, 1} 7−→ 1

d
θ⋆j

y(1− θ⋆j )
1−y

the density of Pθ⋆ w.r.t. to the counting measure µ on {1, . . . , d} × {0, 1}.

The sufficient conditions of Gill and Levit (1995, Section 4) for (17) are met, since on the one

hand β
(d)
α,α is C1–smooth, vanishes on the border of [0, 1]d, and is positive on its interior, while on

the other hand, θ⋆ 7→ fθ⋆(j, y) is C1–smooth for all (j, y), with, for all i ∈ {1, . . . , d},

∂

∂θ⋆i
ln fθ⋆(J, Y ) =

(
Y

θ⋆J
− 1− Y

1− θ⋆J

)
1{J=i}

being square integrable, so that the Fisher information matrix I(θ⋆) of the P model at θ⋆ exists and

has a component (i, i) given by

I(θ⋆)i,i = Eθ⋆

[(
Y

θ⋆J
− 1− Y

1− θ⋆J

)2
1{J=i}

]
=

1

d

(
1

θ⋆i
+

1

1− θ⋆i

)
=

1

d θ⋆i (1− θ⋆i )
, (18)

and therefore, is such that θ⋆ 7→
√

I(θ⋆) is locally integrable w.r.t. the Lebesgue measure.

We now compute all elements of the denominator of (17). First, by symmetry and then by

substituting (18),
∫

[0,1]d

(
Tr I(θ⋆)

)
β(d)
α,α(θ

⋆) dθ⋆

= d

∫

[0,1]d
I(θ⋆)1,1 β(d)

α,α(θ
⋆) dθ⋆

= d

∫

[0,1]d

1

d θ⋆1(1− θ⋆1)

Γ(2α)
(
Γ(α)

)2 (θ
⋆
1)

α−1(1− θ⋆1)
α−1 βα,α(θ

⋆
2) · · · βα,α(θ⋆d) dθ⋆ (19)

=
Γ(2α)
(
Γ(α)

)2
∫

[0,1]
tα−2(1− t)α−2 dt =

Γ(2α)
(
Γ(α)

)2

(
Γ(α− 1)

)2

Γ
(
2(α − 1)

) ,

where we used the expression of the density of the Beta(α − 1, α − 1) distribution for the last

equality. Using that xΓ(x) = Γ(x+ 1) for all real numbers x > 0, we finally get
∫

[0,1]d

(
Tr I(θ⋆)

)
β(d)
α,α(θ

⋆) dθ⋆ =
(2α− 1)(2α − 2)

(α− 1)2
=

4α − 2

α− 1
= 4 +

2

α− 1
.

Second, as far as the Tr I
(
β
(d)
α,α

)
in (17) is concerned, because β

(d)
α,α is a product of univariate

distributions,

I
(
β(d)
α,α

)
i,i

=

∫

[0,1]d

(
∂β

(d)
α,α

∂θ⋆i
(θ⋆)

)2 1

β
(d)
α,α(θ⋆)

dθ⋆ =

∫

[0,1]

(
∂βα,α
∂t

(t)

)2 1

βα,α
(t) dt ,

17
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so that TrI
(
β
(d)
α,α

)
equals d times this value, that is, d times

∫

[0,1]

Γ(2α)
(
Γ(α)

)2

(
(α− 1) tα−2(1− t)α−1 − (α− 1) tα−1(1− t)α−2

)2

tα−1(1− t)α−1
dt

=
(α− 1)2 Γ(2α)
(
Γ(α)

)2
∫

[0,1]
(1− 2t)2 tα−3(1− t)α−3 dt

=
(α− 1)2 Γ(2α)
(
Γ(α)

)2

(
Γ(α− 2)

)2

Γ
(
2(α− 2)

) E
[
(1− 2Zα−2)

2
]
=

(α− 1)2 Γ(2α)
(
Γ(α)

)2

(
Γ(α− 2)

)2

Γ
(
2(α − 2)

) 4Var(Zα−2)

where Zα−2 is a random variable following the Beta(α−2, α−2) distribution; its expectation equals

indeed E[Zα−2] = 1/2 by symmetry of the distribution w.r.t. 1/2, so that

E

[
(1−2Zα−2)

2
]
= 4 E

[
(1/2−Zα−2)

2
]
= 4Var(Zα−2) where Var(Zα−2) =

1

4(2α − 3)

by a classical formula. Collecting all elements together and using again that xΓ(x) = Γ(x+1) for

all real numbers x > 0, we get

TrI
(
β(d)
α,α

)
= d

(α− 1)2
(
Γ(α− 2)

)2
(
Γ(α)

)2
︸ ︷︷ ︸

1/(α−2)2

Γ(2α)

(2α− 3) Γ
(
2(α − 2)

)
︸ ︷︷ ︸
=(2α−1)(2α−2)(2α−4)

= d
4(2α − 1)(α − 1)

α− 2

hence the upper bound Tr I
(
β
(d)
α,α

)
6 16dα for α > 3, which concludes the proof.

18
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Appendix B. Proof of Theorem 2

We essentially extract the proof from Cesa-Bianchi and Lugosi (2006, Chapter 11). We merely

provide it because we will later need the first inequality of (20) in the proof of Theorem 10 and

we wanted our submission to be self-complete. But of course, all the content of this section is

extremely standard and should be skipped by any reader familiar with the basic results of sequential

linear regression.

Proof We successively prove the following two inequalities,

RT (u) 6 λ ‖u‖2 +
T∑

t=1

y2t x
T

tA
−1
t xt 6 λ ‖u‖2 +B2

d∑

k=1

ln

(
1 +

λk(GT )

λ

)
(20)

Proof of the first inequality in (20). We denote by Lreg

t−1 the cumulative loss up to round t − 1
included, to which we add the regularization term:

Lreg

t−1(u) =
t−1∑

s=1

(ys − u · xs)
2 + λ ‖u‖2

For all t > 1, we denote by

ŭt ∈ argmin
u∈Rd

{
t−1∑

s=1

(ys − u · xs)
2 + λ ‖u‖2

}
= argmin

u∈Rd

Lreg

t−1(u) ,

the vector output by the (ordinary) ridge regression; that is, when no (u · xt)
2 term is added to the

regularization. In particular, ŭ1 = (0, . . . , 0)T. By the very definition of ŭT+1, for all u ∈ R
d,

Lreg

T (ŭT+1) 6

T∑

t=1

(yt − u · xt)
2 + λ ‖u‖2 ,

so that, for all u ∈ R
d,

RT (u) 6

T∑

t=1

(yt − ŷt)
2 + λ ‖u‖2 − Lreg

T (ŭT+1)

= λ ‖u‖2 +
T∑

t=1

(
(yt − ŷt)

2 + Lreg

t−1(ŭt)− Lreg

t (ŭt+1)
)
,

where the equality comes from a telescoping argument together with Lreg

0 (ŭ0) = 0. We will prove

by means of direct calculations that

(yt−ŷt)
2+Lreg

t−1(ŭt)−Lreg

t (ŭt+1) = (ŭt+1 − ût)
T
At(ŭt+1−ût)−(ût − ŭt)

T
At−1(ût−ŭt) ; (21)

the first inequality in (20) will then be obtained, as the second term in (21) is negative and as the

first term in (21) can be rewritten as y2t x
T
tA

−1
t xt thanks to the equality (23) below, which states

At(ŭt+1 − ût) = ytxt.
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To prove (21), we recall the closed-form expression (3), that is, ût = A−1
t bt−1, and note that

we similarly have ŭt+1 = A−1
t bt. Now, Lreg

t rewrites, for all u ∈ R
d,

Lreg

t (u) =

(
t∑

s=1

y2s

)
− 2bT

tu+ uTAtu ,

so that the minimum of this quadratic form, achieved at u = ŭt+1 = A−1
t bt, equals

Lreg

t (ŭt+1) =

(
t∑

s=1

y2s

)
− 2bT

tA
−1
t︸ ︷︷ ︸

=ŭT
t+1

Atŭt+1 + ŭT

t+1Atŭt+1 =

(
t∑

s=1

y2s

)
− ŭT

t+1Atŭt+1 .

In particular,

Lreg

t−1(ŭt)− Lreg

t (ŭt+1) = −y2t + ŭT

t+1Atŭt+1 − ŭT

tAt−1ŭt . (22)

We now expand the first term in (21). To that end, we use that from the closed-form expressions

of ût and ŭt+1,

At(ŭt+1 − ût) = At

(
A−1

t bt −A−1
t bt−1

)
= bt − bt−1 = ytxt . (23)

Therefore, ytŷt = ytx
T
t ût = (ŭt+1 − ût)

T
Atût and

(yt − ŷt)
2 = y2t − 2ytŷt + ŷ2t = y2t − 2(ŭt+1 − ût)

T
Atût + ûT

txtx
T

t ût

= y2t − 2(ŭt+1 − ût)
T
Atût + ûT

t(At −At−1)ût , (24)

where in the last equality we used that by definition At −At−1 = xtx
T
t .

Putting (22) and (24) together, we proved

(yt − ŷt)
2 + Lreg

t−1(ŭt)− Lreg

t (ŭt+1)

= −2(ŭt+1 − ût)
T
Atût + ûT

t(At −At−1)ût + ŭT

t+1Atŭt+1 − ŭT

tAt−1ŭt

= ŭT

t+1Atŭt+1 − 2ŭT

t+1Atût + ûT

tAtût −
(
ûT

tAt−1ût − 2ûT

t Atût︸ ︷︷ ︸
=At−1ŭt

+ŭT

tAt−1ŭt

)
.

In the last equation, we are about to use the equality Atût = At−1ŭt = bt−1, which we get from

the closed-form expressions of ût and ŭt. We then recognize the desired difference between two

quadratic forms:

(yt − ŷt)
2 + Lreg

t−1(ŭt)− Lreg

t (ŭt+1)

=
(
ŭT

t+1Atŭt+1 − 2ŭT

t+1Atût + ûT

tAtût

)
−
(
ûT

tAt−1ût − 2ûT

tAt−1ŭt + ŭT

tAt−1ŭt

)

= (ŭt+1 − ût)
T
At(ŭt+1 − ût)− (ût − ŭt)

T
At−1(ût − ŭt) .

Proof of the second inequality in (20). Because y2t 6 B2, we only need to prove

T∑

t=1

xT

tA
−1
t xt 6

d∑

k=1

ln

(
1 +

λk(GT )

λ

)
.
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Now, Lemma 12 below shows that

T∑

t=1

xT

tA
−1
t xt 6

T∑

t=1

1− det(At−1)

det(At)
.

We then use 1− u 6 − lnu for u > 0 and identify a telescoping sum,

T∑

t=1

1− det(At−1)

det(At)
6

T∑

t=1

ln
det(At)

det(At−1)
= ln

det(AT )

det(A0)
.

All in all, we proved so far
T∑

t=1

xT

tA
−1
t xt 6 ln

det(AT )

det(A0)
,

and may conclude by noting that

det(AT ) = det(λ Id +GT ) =

d∏

k=1

(λ+ λk(GT )) and det(A0) = det(λ Id) = λd .

Lemma 12 Let V an arbitrary d× d full-rank matrix, let u and v two arbitrary vectors of Rd, and

let U = V − uvT. Then

vTV−1u = 1− det(U)

det(V)
.

Proof If V = Id, we are left to show that det(Id−uvT) = 1−vTu. The result follows from taking

the determinant of every term of the equality

[
Id 0
vT 1

] [
Id − uvT −u

0 1

] [
Id 0
−vT 1

]
=

[
Id −u

0 1− vTu

]
.

Now, we can reduce the case of a general V to this simpler case by noting that

det(U) = det
(
V− uvT

)
= det(V) det

(
Id −

(
V−1u

)
vT

)
= det(V)

(
1− vTV−1u

)
.
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Appendix C. Proof of Theorem 6 in the general case

In this section we extend the proof of Theorem 6, provided only in the case of a full-rank Gram

matrix GT in Section 3, to the general case of a possibly non-invertible Gram matrix GT .

To that end, we first explain how the closed-form expression (8) is derived. We rewrite the

definition equation (7) of ût as

ût ∈ argmin
u∈Rd

{
uT(λGT +Gt)u− 2bT

t−1u
}
.

Because the matrix λGT + Gt is positive semidefinite, the considered argmin is also the set of

values u′ where the gradient vanishes: (λGT + Gt)u
′ = bt−1. This system is possibly under-

defined because u′ ∈ R
d and λGT + Gt is a matrix of size d × d, possibly not full rank. The

system has at least one solution but the one with minimal Euclidean norm is given by the Moore-

Penrose inverse, see Corollary 16 (e):

ût =
(
λGT +Gt

)†
bt−1 .

We may now turn to the general proof of Theorem 6. For an integer k > 1, we denote therein by Ik
the k × k identity matrix.

Proof As a consequence of the spectral theorem applied to the symmetric matrix GT , there exists

a matrix U of size d × rT and a full rank square matrix Σ of size rT × rT such that UTU = IrT

and GT = UΣUT. We could even impose that the matrix Σ be diagonal but this property will not

be used in this proof.

We will apply the (already proven) bound of Theorem 6 in the full rank case. To that end, we

consider the modified sequence of features

x̃t = UTxt

and first prove that the strategy (7) on the x̃t leads to the same forecasts as the same strategy on the

original features xt; that is,

ũt · x̃t = ût ·xt , where ũt ∈ argmin
v∈R

rT

{
t−1∑

s=1

(ys − v · x̃s)
2 + (v · x̃t)

2 + λ

T∑

s=1

(v · x̃s)
2

}
.

It suffices to prove Uũt = ût, which we do below. Then, from this equality and the definition

x̃t = UTxt, we have, as desired,

ũt · x̃t = ũt ·
(
UTxt

)
=
(
Uũt

)
· xt = ût · xt .

Now, to prove Uũt = ût, we resort to the closed-form expression (8), which gives that

Uũt = U

(
λ

T∑

s=1

x̃tx̃
T

t +
t∑

s=1

x̃tx̃
T

t

)† t−1∑

s=1

ysx̃s = U
(
UT(λGT +Gt)U

)†
UTbt−1 .

To simplify this expression, we use twice the property of Moore-Penrose inverses stated in Corol-

lary 16 (b), once with M = U and the second time with N = UT, which both satisfy the required

condition for Corollary 16 (b), as well as the matrix equalities in Corollary 16 (c), and we get

U
(
UT(λGT +Gt)U

)†
UT =

(
UUT(λGT +Gt)UUT

)†
= (λGT +Gt)

† ,
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where the last equality comes from

UUT(λGT +Gt)UUT = λGT +Gt . (25)

Indeed, from UTU = IrT
we get UUT = PIm(GT ), the orthogonal projector on the image of

GT ; we recall in (34) why Im(Gt) ⊆ Im(GT ), which implies UUT(λGT +Gt) = λGT +Gt.

Transposing this leads to (λGT + Gt)UUT = λGT + Gt, from which the desired equality (25)

follows by a left multiplication again by UUT = PIm(GT ).

We may now apply the bound of the Theorem 6 in the full rank case on feature sequences

x̃1, . . . , x̃T ∈ R
rT

and observations y1, . . . , yT ∈ [−B,B]; this is because the associated Gram

matrix UTGTU = Σ is now full rank. We get, for all v ∈ R
rT ,

T∑

t=1

(yt − ût · xt)
2 =

T∑

t=1

(yt − ũt · x̃t)
2
6

T∑

t=1

(yt − v · x̃t)
2 + λTB2 + rTB

2 ln

(
1 +

1

λ

)
. (26)

To conclude the proof, its only remains to show that

inf
v∈R

rT

T∑

t=1

(yt − v · x̃t)
2 = inf

u∈Rd

T∑

t=1

(yt − u · xt)
2 . (27)

Now, a basic argument of linear algebra, recalled in (33) of Section E, indicates Im(Gt) = Im(Xt).
Together with the inclusion Im(Gt) ⊆ Im(GT ) and the fact that UUT = PIm(GT ), both already

used above, we get UUTxt = xt. A direct consequence is that for any u in R
d,

u · xt = u ·
(
UUTxt

)
=
(
UTu

)
·
(
UTxt

)
=
(
UTu

)
· x̃t ,

from which (27) follows, by considering v = UTu and by the surjectivity of UT onto R
rT

(recall

that U and UT are of rank rT ).
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Appendix D. Proof of Theorem 10

Proof We successively prove the following two inequalities,

RT (u) 6

T∑

t=1

y2t x
T

tG
†
txt 6 B2

rT∑

k=1

ln
(
λk(GT )

)
+B2

∑

t∈[[1,T ]]∩T

ln

(
1

λrt(Gt)

)
+ rTB

2 (28)

Proof of the first inequality in (28). We start by exactly rewriting the first inequality of (20):

T∑

t=1

(
yt−xT

t(λId+Gt)
−1bt−1

)2−
T∑

t=1

(yt−u ·xt)
2
6

T∑

t=1

y2t x
T

t(λId+Gt)
−1xt+λ ‖u‖2 . (29)

Since

Gt = XtX
T

t where Xt =
[
x1 · · · xt

]

we note that xT
t(λId + Gt)

−1 is the last line of the matrix XT
t

(
λId + XtX

T
t

)−1
, which tends to

X† when λ → 0 as indicated by Corollary 16 (d). Now, X† = XT
t

(
XtX

T
t

)†
= XT

tG
†
t by Corol-

lary 16 (a), thus

lim
λ→0

xT

t(λId +Gt)
−1 = xT

tG
†
t .

Therefore, the desired inequality for the considered forecaster,

RT (u) =
T∑

t=1

(
yt − xT

tG
†
tbt−1

)2 −
T∑

t=1

(yt − u · xt)
2
6

T∑

t=1

y2t x
T

tG
†
txt ,

is obtained by taking the limit λ → 0 in (29).

Proof of the second inequality in (28). Because y2t 6 B2, we only need to prove

T∑

t=1

xT

tG
†
txt 6

rT∑

k=1

ln
(
λk(GT )

)
+

∑

t∈T ∩[[1,T ]]

ln

(
1

λrt(Gt)

)
+ rT .

Now, Lemma 13 below shows that

T∑

t=1

xT

tG
†
txt 6

T∑

t=1

(
1−

rt∏

k=1

λk(Gt−1)

λk(Gt)

)
;

we assumed with no loss of generality that x1 is not the null vector, hence all Gt are at least of

rank 1. Indeed, when xt is the null vector, all linear combinations result in the same prediction

equal to 0 and incur the same instantaneous quadratic loss.

Now, given the definition of the set T , whose cardinality is rT , we have λrt(Gt−1) = 0 when

t ∈ T (and this includes t = 1, with the convention that G0 is the null matrix), while rt−1 = rt if

t /∈ T . Therefore,

T∑

t=1

xT

tG
†
txt 6

∑

t∈T ∩[[1,T ]]

(
1−

rt∏

k=1

λk(Gt−1)

λk(Gt)

)
+

∑

t∈[[1,T ]]\T

(
1−

rt∏

k=1

λk(Gt−1)

λk(Gt)

)

= rT +
∑

t∈[[1,T ]]\T

(
1− Dt−1

Dt

)
,
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where Dt =

rt∏

k=1

λk(Gt) is the product of the positive eigenvalues of Gt.

Using 1− u 6 − lnu for u > 0, we get an almost telescoping sum,

∑

t∈[[1,T ]]\T

(
1− Dt−1

Dt

)
6

∑

t∈[[1,T ]]\T

ln
Dt

Dt−1
= ln

DT

D1
+

∑

t∈T ∩[[2,T ]]

ln
Dt−1

Dt

(note that we dealt separately with t = 1, which belongs to T ). Because eigenvalues cannot decrease

with t, see (35), we have in particular λk(Gt−1) 6 λk(Gt) for all 1 6 k 6 rt − 1. Thus, for t ∈ T
with t 6= 1, we have

ln
Dt−1

Dt
6 ln

(
1

λrt(Gt)

)
,

Substituting the definition of DT and the equality D1 = λr1(G1), and collecting all bounds together

leads to the second inequality in (28).

Lemma 13 (Rewriting of xTA†x) Let B be a d× d symmetric positive semidefinite matrix (pos-

sibly the null matrix), let x ∈ R
d, and and let A = B+xxT. Denote by r the rank of A and assume

that r > 1. Then

xTA†x = 1−
r∏

k=1

λk(B)

λk(A)
. (30)

Proof This lemma is a consequence of the less general Lemma 12. As a consequence of the spectral

theorem applied to the symmetric matrix A, there exists a matrix U of size d × r and a full rank

square matrix Σ of size r × r such that UTU = Ir and A = UΣUT. We can and will even

impose that the matrix Σ is diagonal, with diagonal values equal to λ1(A), . . . , λr(A), the positive

eigenvalues of A. Let Γ = Σ−UTx(UTx)T
. Lemma 12 with Γ, Σ and UTx indicates that

xT
(
UΣ−1UT

)
x =

(
UTx

)
T
Σ−1

(
UTx

)
= 1− det(Γ)

det(Σ)
where det(Σ) =

r∏

k=1

λk(A) .

Now, it can be easily checked (by noting that all four properties in Proposition 15 are satisfied) that

A† = UΣ−1UT, so that from the above equality, it suffices to show that

det(Γ) =
r∏

k=1

λk(B)

to conclude the proof. To do so, we first remark that B = A− xxT = UΣUT − xxT, which yields

UTBU = UTUΣUTU−UTxxTU = Σ−UTxxTU = Γ .

Using again that UTU = Ir, we note that uTu = (Uu)T
Uu for all u ∈ R

r. From this and

UTBU = Γ, we get in particular

sup
06=u∈Rr

uTΓu

uTu
= sup

06=u∈Rr

(Uu)T
B(Uu)

(Uu)T
Uu

. (31)
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Next we show that

sup
06=u∈Rr

(Uu)T
B(Uu)

(Uu)T
Uu

= sup
06=v∈Rd

vTB(v)

vTv
, (32)

which indicates, together with (31) and the characterization (36) of the eigenvalues of symmetric

positive semidefinite matrices, that B and Γ have the same top r eigenvalues, as claimed. Now, to

show (32), we recall that for a symmetric matrix B, we have R
d = ker(B)⊕ Im(B), so that,

sup
06=v∈Rd

vTB(v)

vTv
= sup

06=v∈Im(B)

vTB(v)

vTv
.

This leads to (32) via the inclusions

Im(B) ⊆ Im(U) ⊆ R
d

which themselves follow from the inclusions

Im(B) ⊆ Im(A) ⊆ Im(U) .

Indeed, Im(A) ⊆ Im(U) because A = UΣUT and Im(B) ⊆ Im(A), or equivalently, given that

we are considering symmetric matrices, kerA ⊆ kerB, as for all y ∈ R
d,

Ay = 0 =⇒ yTAy = 0 =⇒
[
yTBy = 0 and yTxxTy = 0

]
=⇒

√
By = 0 =⇒ By = 0 ,

where we used A = B+xxT to get the second implication, and where we multiplied
√
By by

√
B

to get the final implication.
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Appendix E. Some basic facts of linear algebra

We gather in this appendix some useful results of linear algebra, that are either reminder of well-

known facts or are easy to prove (yet, we prefer prove them here rather for the proofs above to be

more focused).

E.1. Gram matrices versus matrices of features

Recall that we denoted by

Xt =
[
x1 · · · xt

]

the d× t matrix consisting the first t features. By definition,

Im(Xt) = span{x1, . . . ,xt} and Gt = XtX
T

t .

The aim of this section is to show that, for all t > 1,

Im(Gt) = Im(Xt) . (33)

which in turn implies, for all t > 2,

Im(Gt−1) ⊆ Im(Gt) . (34)

First, as for any (not necessarily square) matrix M we have Im(M) = ker
(
MT
)⊥

, we note

that (33) is equivalent to ker
(
Gt

)⊥
= ker

(
XT

t

)⊥
, thus to ker

(
Gt

)
= ker

(
XT

t

)
. It is clear by

definition of Gt that ker
(
XT

t

)
⊆ ker

(
Gt

)
; furthermore, for any vector u ∈ R

d, we have uTGtu =

‖XT
tu‖2, which yields the opposite inclusion ker

(
Gt

)
⊆ ker

(
XT

t

)
.

The inclusion (34) follows from (33) as by definition, the image of Xt is generated by the image

of Xt−1 and xt.

E.2. Dynamic of the eigenvalues of Gram matrices

The above result gives us an idea of how eigenspaces and eigenvalues of the covariance matrix

evolve. Another relationship is the following one: for t > 1,

λk

(
Gt−1

)
6 λk

(
Gt

)
, (35)

where we recall that λk

(
Gt

)
denotes the kth eigenvalue of Gt in decreasing order. To prove this we

remark that for all u ∈ R
d, we have

uTGt−1u 6 uTxtu+ uTGt−1u = uTGtu

and use the fact that for all symmetric positive semidefinite matrices M,

λk(M) = max

{
min
u

{
uTMu

uTu
| u ∈ U and u 6= 0

} ∣∣∣∣∣ U vector space with dim(U) = k

}
(36)
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E.3. Moore-Penrose inverses: definition and basic properties

In this appendix, we recall the definition and some basic properties of the Moore-Penrose pseudoin-

verse. It was introduced by E.H. Moore in 1920 and is a generalization of the inverse operator for

non-invertible (and non-square) matrices.

Definition 14 (Moore-Penrose pseudoinverse) The Moore-Penrose pseudoinverse of an m × n
matrix M is a n×m matrix denoted by M† and defined as

M† def
= lim

α→0

(
MTM+ αIn)

−1MT ,

where In ∈ R
n×n is the identity matrix and α → 0 while α > 0.

We have the following characterization of M†.

Proposition 15 Let M be a m× n matrix. Its Moore-Penrose pseudoinverse M† is unique and is

characterized as the only n×m matrix simultaneously satisfying the following four properties:

(P1) MM†M = M

(P2) M†MM† = M†
(P3)

(
MM†

)T
= MM†

(P4)
(
M†M

)T
= M†M

The proof can be found in Penrose (1955). In particular, in our analysis we use the following

consequences of Proposition 15. (We leave the standard proofs to the reader.)

Corollary 16 Let M be a m× n matrix and N a n× p matrix. Then,

(a) M† = MT
(
MMT

)†
;

(b) if MTM = In or NNT = In then
(
MN

)†
= N†M†;

(c) if MTM = In, then MT = M† and M =
(
MT
)†
;

(d) M† = lim
α→0

MT
(
λIm +MMT

)−1
;

(e) if the equation Mx = z with unknown z ∈ R
m admits a solution x ∈ R

n, then M†z is the

solution in R
n with minimal Euclidean norm.
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