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DYNAMICAL LIOUVILLE

CHRISTOPHE GARBAN

Abstract. The aim of this paper is to analyze an SPDE which arises naturally
in the context of Liouville quantum gravity. This SPDE shares some common
features with the so-called Sine-Gordon equation and is built to preserve the
Liouville measure which has been constructed recently on the two-dimensional
sphere S2 and the torus T2 in the work by David-Kupiainen-Rhodes-Vargas
[DK+16, DRV16]. The SPDE we shall focus on has the following (simplified)
form:

∂tX =
1

4π
∆X − eγX + ξ ,

where ξ is a space-time white noise on R+ × S2 or R+ × T2. The main aspect
which distinguishes this singular stochastic SPDE with well-known SPDEs
studied recently (KPZ, dynamical Φ4

3, dynamical Sine-Gordon, generalized
KPZ, etc.) is the presence of intermittency. One way of picturing this effect is
that a naive rescaling argument suggests the above SPDE is sub-critical for
all γ > 0, while we don’t expect solutions to exist when γ > 2. In this work,
we initiate the study of this intermittent SPDE by analyzing what one might
call the “classical” or “Da Prato-Debussche” phase which corresponds here to
γ ∈ [0, γdPD = 2

√
2 −
√

6). By exploiting the positivity of the non-linearity
eγX , we can push this classical threshold further and obtain this way a weaker
notion of solution when γ ∈ [γdPD, γpos = 2

√
2 − 2). Our proof requires an

analysis of the Besov regularity of natural space/time Gaussian multiplicative
chaos (GMC) measures. Regularity Structures of arbitrary high degree should
potentially give strong solutions all the way to the same threshold γpos and
should not push this threshold further unless the notion of regularity is suitably
adapted to the present intermittent situation. Of independent interest, we
prove along the way (using techniques from [HS16]) a stronger convergence
result for approximate GMC measures µε → µ which holds in Besov spaces.
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2 CHRISTOPHE GARBAN

1. Introduction

The SPDE we shall focus on is motivated by Liouville Quantum Gravity. We
start with some background on Liouville Quantum Gravity before stating our
main results.

1.1. Liouville measure and uniformisation of planar maps.
Duplantier and Sheffield conjectured in their seminal paper [DS11] that the

conformal embedding of planar maps with the topology of the sphere S2 or the
torus T2 is described asymptotically (as the number of faces tends to infinity) by
multiplicative chaos measures of the form

eγXdxdy

where X is a Gaussian Free Field on the sphere S2 (or T2) (with, say, average 0)
and γ depends on the universality class of the chosen planar map model. One has
the useful correspondance γ ≡

√
κ if the planar map is naturally associated with

SLEκ processes. See [DS11, Gar12, RV16, Ber, Kup16b, Var17] for background
on this embedding conjecture and more generally on Liouville quantum gravity.

In order to write down a precise conjecture, several difficulties need to be
addressed.

(1) Since the Gaussian Free Field X is a highly oscillating random distribution,
one first has to precise what is the meaning of eγXdxdy. This part is now
standard and is known as multiplicative chaos theory. It goes back to
the work of Kahane [Ka85]. See [RV14, Ber, Ar17] and references therein
for useful reviews on this theory.

(2) A more serious difficulty has to do with the appropriate choice of normali-
sation. Planar maps are naturally equipped with a probability measure
which assigns mass 1/n on each of the n faces of the planar map. The
asymptotic random measure should then be a random probability measure
on the sphere or the torus. Now, as the sphere and the torus have no
boundary, the Gaussian Free Field X is only well-defined up to additive
constants. One convenient way to proceed is to fix that additive constant
so that

∫
S2 X = 0, say. If one proceeds this way, it is easy to check

that the multiplicative chaos measure eγXdxdy as constructed in [Ka85]
will have some random positive mass. To make the conjecture precise,
one should then renormalize eγXdxdy in some way in order to obtain a
probability measure. Two natural ideas first come to mind: either consider
eγX/

(∫
S2 e

γXdxdy
)
or condition the free field X so that eγXdxdy is a prob-

ability measure on S2 (same thing on T2). As we shall see below, the right
candidate does not correspond to either of these two naïve procedures.

(3) The last difficulty before settling a precise conjecture has to do with
Riemann uniformisation. Here one needs to distinguish the cases of the
sphere and the torus.
a) A conformal embedding in S2 (using either circle packings, Riemann

uniformisation or any other natural choice) is rigid up the Möbius
transformations S2 → S2. To break this Möbius invariance which
has three complex degrees of freedom (6 real degrees of freedom),
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the easiest way is to consider maps with three marked vertices
w1, w2, w3 and to add the additional constraint that the conformal
embedding should send these marked vertices to three prescribed
points on the sphere x1, x2, x3.

b) In the case of the torus T2, the situation is different as there are also
several possible ways of equipping T2 with a conformal structure. The
possible conformal structures are given by the Modular space which
in the case of T2 is non-trivial and is parametrised by a subset of C
(any fundamental domain for the action of PSL2(Z) on the upper-
half plane H). We refer to [DRV16] for background and notations.
Once the choice τ ∈ H of conformal structure on T2 is prescribed,
the conformal embedding is unique up to Möbius transformations
T2 → T2 which have only one complex degree of freedom. As such,
it is enough to consider planar maps on T with one marked vertex
w1 which is mapped to some x1 ∈ T2.

Summarising the above discussion, a precise conjecture for the conformal
embedding of large planar maps ' S2 or T2 should consist of a random prob-
ability measure on S2 (resp. T2) which is locally of the form eγXdxdy and
globally parametrized by three prescribed points x1, x2, x3 ∈ S2 (resp. a conformal
structure τ ∈ H and one prescribed point z ∈ T2). Such a random probability
measure on S2 was successfully built in the work [DK+16] and the case of T2 was
solved in [DRV16]. Each of these measures will naturally be called from then on
Liouville measures. See the works [HRV18, CRV16, Rem18] for extensions of
this construction to other topologies (disk, genus g ≥ 2, annuli) and the works
[DK+17, KRV15, Dozz] for striking recent results on the structure and properties
of the Liouville field (DOZZ formula etc). In the case of S2, a different viewpoint
on the Liouville field is provided by the works [She16, DMS14]. These works
introduce the so-called quantum cones measures which in some sense describe
the similar conformal embedding of planar maps except two out of three complex
degrees of freedom are fixed. See the work [AHS17] which highlight a deep and
non-trivial connection between the Liouville action approach and the Mating of
Trees approach.

The measure constructed in [DK+16] has an explicit and rather involved
Radon-Nikodym derivative w.r.t the random measure eγXdxdy which we shall
now describe.

1.2. Liouville measure on the sphere. The construction in [DK+16] relies on
the following Liouville action from which Liouville quantum field theory
(LQFT) is built.

SL(X, g) :=
1

4π

∫
S2

(|∇gX|2 +QRg(z)X(z) + 4πµeγX(z))g(z)dz (1.1)

where Q = Qγ = 2
γ

+ γ
2
is an important running constant in Liouville quan-

tum gravity that we shall use throughout. The quadratic term in the action
1

4π

∫
S2 |∇gX|2g(z)dz corresponds to a well-known Gaussian process called the

Gaussian Free Field.



4 CHRISTOPHE GARBAN

Remark 1.1. It is important to notice at this point that the Gaussian Free Field
appears with a slightly unusual renormalisation (especially in SPDEs): we have
1

4π
|∇X|2 in the action instead of the more common 1

2
|∇X|2. This will only have

the effect of shifting things by a multiplicative constant
√

2π.

Let us introduce the relevant notations. Call νGFF0 the law of a Gaussian
Free Field on either S2 or T2 with vanishing mean and corresponding to the
Hamiltonian 1

4π
|∇X|2. There are several ways to build this process (see for

example [Ber, Ar17]). With our choice of renormalisation, X̄ ∼ νGFF0 has the
following simple spectral expansion:

X̄
(law)
=
∑
n≥0

an
√

2π
1√
λn
ψn(x)

where {an} are i.i.d N(0, 1) and {(λn, ψn)}n is an orthonormal basis of L2(S2)
or L2(T2) which diagonalizes the Laplacian. νGFF0 can be seen as a probability
measure on Sobolev spaces of negative index H−α for any α > 0. (Where H−α
stands for H−α(S2) in the case of the sphere and resp. for T2). We shall use the
following infinite measure on R×H−α:

dνGFF(c, X̄) := dλ(c)dνGFF0(X̄)

where λ is the Lebesgue measure on the real-line R.

Definition 1.2 (Un-normalized GFF on the sphere/torus). We define the un-
normalized Gaussian Free Field on the sphere/torus to be the distribution

X = c+ X̄

where (c, X̄) ∼ νGFF. Note that X should not be thought of as a proper random
variable as νGFF has infinite mass. Yet, we find this viewpoint useful (this is also
the point of view in [Kup16b]) as it is intimately related to the construction of the
so-called φ4

2 field. Indeed the latter field on the sphere S2/torus T2 corresponds
to the probability measure on H−α with the following explicit Radon-Nikodym
derivative w.r.t νGFF

dνφ4
2
(X) :=

1

Zλ
exp(−λ

∫
S2

:X4 : )dνGFF(X) .

With this convention we deviate slightly from the notations in [DK+16] which
uses instead the writing X̄ = c+X.

Inspired by LQFT, David, Kupiainen, Rhodes and Vargas rigorously construct
in [DK+16] the following grand canonical Liouville measure.

Theorem 1.3 (Grand canonical Liouville measure, [DK+16]).
Fix some real-parameter µ > 0, called the cosmological constant, some γ ≥ 0 and
some triple of distinct points 1 {x1, x2, x3} ⊆ S2. Fix also any choice of coupling
constants (α1, α2, α3) which satisfy the so-called Seiberg bounds

(1) (First Seiberg bounds) ∀i, αi < Q
(2) (Second Seiberg bounds)

∑3
i=1 αi > 2Q ,

1If one wants to study the correlation functions of Liouville-QFT, one should consider instead
n ≥ 3 punctures {xi}1≤i≤n and the analysis is the same. See [DK+16].
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where Q was defined above. Then, if γ < γc = 2, the following formal Radon-
Nikodym derivative defines a non-trivial probability measure P(xi,αi)

µ on H−α(S2)
for all α > 0:

dP(xi,αi)
µ

dνGFF

(X) :=
1

Z
(xi,αi)
µ

exp

(
3∑
i=1

αiX(xi)−
Q

2π

∫
S2

X(z)dz − µ
∫
S2

eγX(z)dz

)
It will be easier to work with this probability measure after the Cameron-Martin

shift

X(z) :=
∑
i

αiG(xi, z) + X̂ ,

where each G(xi, ·) denote the Green function for the Laplacian on the sphere
−∆G(z, ·) = 2π(δz − 1

4π
). (See (6.10) for an explicit formula on S2 as well as

[DK+16, RV16] for other expressions). This Girsanov transform has the effect
of removing the singular Dirac point masses at {xi} and leads to the following
formal Radon-Nikodym derivative:

Corollary 1.4 ([DK+16]).
Using the above Girsanov transform X(z) =

∑
i αiG(xi, z) + X̂, the Liouville

measure on the sphere now reads:

dP(xi,αi)
µ

dνGFF

(X̂) :=
1

Ẑ
(xi,αi)
µ

exp

(∑
i αi − 2Q

4π

∫
S2

X̂(z)dz − µ
∫
S2

e
∑
i γαiG(xi,z)eγX̂(z)dz

)
This construction theorem is proved in [DK+16]. (The case of n-tuples

(xi, αi)1≤i≤n with n ≥ 3 is also analysed there with the motivation of computing
correlation functions between eαiX(xi). See in particular the recent [Dozz] for the
rigorous derivation of the so-called DOZZ formula for the three point function).
To make sense of the above formal Radon-Nikodym derivative, ε-regularisations
of the field are introduced in [DK+16]. For each small ε > 0, they consider X̂ε(x)

to be 〈X̂, ηx,ε〉 where ηx,ε is the uniform measure on ∂Bε(x) where Bε(x) is the
ball of radius ε around x in S2 for the intrinsic round metric on S2. (which is of
constant curvature R = +2). With this choice of regularisation, some appropriate
renormalisation as ε→ 0 is needed: instead of the ill-defined eγX̂(z), it is the Wick

ordering : eγX̂ : := limε→0 e
γX̂ε− γ

2

2
E
[
X̂2
ε

]
which is used. See Remark 1.8 below.

We refer to [DK+16] for more details (keeping in mind as mentioned above that
the notations there are slightly different).

This grand-canonical probability measure has a very nice interpretation in
terms of planar maps and a precise embedding conjecture can be written down
in this grand canonical setting. See for example the enlightening discussions on
this topic in [RV16, DK+16, DRV16].

If one prefers instead to stick to planar maps of fixed size n (micro-canonical
ensemble), a unit-volume Liouville measure is also constructed in [DK+16] by
in some sense conditioning P(xi,αi)

µ to be of unit volume. This conditioning has the
effect of factorising out the cosmological constant µ > 0 and leads to an explicit
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Radon-Nikodym derivative which has the following form

dP (xi,αi)
µ,1

[
X̂
]

:=
1

Z
(xi,αi)
µ,1

[∫
S2

eγ(X̂(z)+
∑3
i=1 αiG(xi,z))dz

]−∑
i αi−2Q

γ

dνGFF(X̂) .

As we shall not use further this unit-volume Liouville measure, we refer to
[DK+16, RV16]. We now turn to the case of the torus which was settled in
[DRV16].

1.3. Liouville measure on the torus. We follow here [DRV16] which con-
structs the Liouville measure on T2. As explained earlier, the Liouville measure
on T2 will depend on the choice of a conformal structure which is parametrised
by τ ∈ H (in fact a sub-domain of H). One way to picture the different possible
choices of conformal structure is to work whatever τ ∈ H is, on the same space
T2 := C/(Z + i · Z) equipped with the flat Riemannian metric

ĝτ (x)dx2 = |dx1 + τdx2|2 ∀x = (x1, x2) ∈ T2

The following probability measure on H−α(T2) is built in [DRV16] (we state the
result after a similar Girsanov transform as on the sphere).

Theorem 1.5 ([DRV16]). Fix some τ ∈ H representing the choice of conformal
structure on T2. Fix also some real-parameter µ > 0 (the cosm. constant), some
γ ≥ 0, some point x1 ∈ T2 and some coupling constant α1 which satisfies the
Seiberg bounds on the torus, namely

0 < α1 < Q

Then, if γ < γc = 2, the following formal Radon-Nikodym derivative defines a
non-trivial probability measure on H−α(T2) for all α > 0:

dP(x1,α1)
τ,µ

dνGFF

(X̂) :=
1

Ẑ
(x1,α1)
τ,µ

exp

(
α1

λĝτ (T2)

∫
T2

X̂dλĝτ − µ
∫
T2

eγα1Gτ (x1,z)eγX̂(z)dλĝτ (z)

)
where Gτ (x1, ·) is the τ -Green function on T2 and dλĝτ (z) is the volume form
associated to ĝτ . (See Section 3 in [DRV16]). (N.B. if one is willing to get back to
the field X, an additional constant term Q

2
log Im(τ) must be added, see [DRV16]).

1.4. The SPDE under investigation.
Our goal in this work is to construct a stochastic evolution whose invariant
measure is given by the grand-canonical Liouville measures P(xi,αi)

µ and P(x1,α1)
τ,µ

introduced above in Theorems 1.3 and 1.5. We are inspired here by the following
two classical cases:

(1) Φ4
d model. On the d-dimensional torus Td, this corresponds to the

informally written measure

dνφ4
d
(X) :=

1

Zλ
exp(−λ

∫
Sd
X4(z)dz)dνGFF(X) .

This model has a long and rich history in the field of Constructive Field
Theory. It is already rather non-trivial to define it rigorously in dimen-
sion d = 2 ([Nel73]) and even much more involved in dimension d = 3.
Motivated by this celebrated model, Da Prato and Debussche studied in
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their very influential paper [dPD03] the following SPDE which is aimed
at preserving Φ4

d=2:

∂tΦ =
1

2
∆Φ + CΦ− Φ3 + ξ (Φ4

d)

where ξ is a space-time white noise, for example on R+ × T2 if we are
interested in the Φ4

2 model on the two-dimensional torus T2. In [Hai14a],
Hairer developped his theory of Regularity Structures which enabled him
to solve (as a function of ξ) many highly non-trivial SPDEs including
dynamical Φ4

3 in d = 3. See also [GP17, Kup16a] for other approaches
based respectively on para-products and Renormalization group analysis.

(2) Sine-Gordon model. On the d = 2 dimensional torus T2, Hairer and
Shen study in [HS16] the following SPDE

∂tu =
1

2
∆u+ sin(βu) + ξ (1.2)

which is naturally associated to the so-called Sine-Gordon model in Con-
structive Field Theory. It corresponds to the following measure informally
written as

dνφ4
d
(X) :=

1

Zλ
exp(−λ

∫
T2

cos(βX(z))dz)dνGFF(X) .

Using the Da Prato-Debussche framework, a local existence result for
the SPDE (1.2) is proved in [HS16] for the range β2 ∈ [0, 4π). Using
the regularity structures from [Hai14a], they manage to push the local
existence further to β2 ∈ [4π, 16

3
π). (The limiting value is conjectured to

be β2 = 8π above which the SPDE becomes super-critical). The paper
[HS16] will be a constant source of inspiration in this text due to the
important similarities between the Sine-Gordon SPDE (1.2) and the one
we shall focus on. Indeed we will replace the non-linearity eiβX by the
non-linearity eγX .

As in the two celebrated cases above, since the Liouville measure (Theorems 1.3
and 1.5) is also of Hamiltonian form, we are led to consider the following formal
SPDEs (For notational ease, we will drop the hat in X̂ from then on).

• On the torus T2

∂tX =
1

4π
∆X − 1

2
µγeα1γGτ (x1,·)eγX +

α1

2λĝτ (T2)
+ ξ (1.3)

• On the sphere S2

∂tX =
1

4π
∆S2X − 1

2
µγ
∏
i

eαiγG(xi,·)eγX +

∑
αi − 2Q

8π
+ ξ (1.4)

where ∆S2 is the Laplace-Beltrami operator on S2 and ξ is a space-time
Gaussian white noise on R+ × S2.

Remark 1.6. Note that prior to the use of a suitable Girsanov transform (see
Theorem 1.3), the corresponding SPDE, say on the sphere would be of the
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following form

∂tX =
1

4π
∆X − 1

2
µγeγX +

1

2

3∑
i=1

αiδxi(·)−
Q

4π
+ ξ

which is much more singular.

Note that the SPDEs (1.3) (1.4) have a very asymmetric nature : the term
−eγX(z) prevents the solution X(t, z) to reach high positive values while the global
positive drift term α1

2λĝτ
(resp. +

∑
αi−2Q
8π

) prevents the field from diverging to −∞.
This is by the way an interesting way of interpreting the second Seiberg bound
in Theorem 1.3. This asymmetry is very different from the case of dynamical
Φ4
d, where the vector field reads as follows: ∂tΦ = ∆Φ − Φ3 + CΦ + ξ and is

thus symmetric. These considerations would be crucial to handle global (in time)
existence results but are not essential for local existence results. Indeed as pointed
out in [Hai14a], the tools developped in this paper also provide a local existence
result for the SPDE ∂tΦ = ∆Φ+Φ3 + ξ which clearly has no chance to have global
solutions. Because of this and also because the main difficulty for us will be
to handle the exponential term eγX , we will focus in most of this work on the
following simplified SPDEs (resp. on T2 and S2)

∂tX =
1

4π
∆X − eγX + ξ (1.5)

This will have the advantage to make the proofs more readable. Another possible
motivation for this simplification is that the same analysis applies to the more
symmetric SPDE

∂tX =
1

4π
∆X − sinh(γX) + ξ , (1.6)

which corresponds to the so-called cosh-interaction in Quantum Field Theory.
We will get back to the original SPDEs (1.3), (1.4) which was motivated by
LQFT only in Section 5. See Theorem 1.12 below. Finally, as mentioned above,
yet another reason for this simplified equation is its close similarity with the
dynamical Sine-Gordon SPDE (1.2) studied in [HS16] 2

1.5. Intermittency and SPDEs. One interesting aspect of the above SPDE (1.5)
is that it presents new features which are due to the intermittent nature of the non-
linearity eγX . We refer for example to [KKX17] for a discussion of intermittency.
In the present context, one may give the following two informal definitions of
intermittency in the framework of the Besov spaces Cαs defined later in Subsection
2.2.

(1) Besov multi-fractality. Given a distribution f , for any space-time point
z = (t, x), one may define its local Besov regularity α(z) similarly as one
may define the local Hölder regularity of a continuous function. (Using
say the setup introduced in Subsection 2.2 and relying on lim infλ→0). A
distribution f will be Besov mono-fractal if that local regularity happens
to be the same in each space-time point z.

2Note the different choice of renormalisation for Sine-Gordon. See Remark 1.1
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(2) Besov intermittency. For random signals f , a related but different way to
detect intermittency (often used in the study of turbulence) is through the
behaviour of its moments. A time-space homogeneous random distribution
f will be intermittent if moments such as E

[
|〈f, 1B(z,λ)〉|p

]
behave like

λξ(p) when λ→ 0 for some non-linear spectrum p 7→ ξ(p).

To our knowledge, all SPDEs which have been studied so far are mono-fractal
for both of these definitions. Below are some examples.

(1) KPZ. The non-linearity (∂xh)2 is clearly a mono-fractal object. Indeed,
it is the “square of a white-noise”, i.e. not a well-defined distribution, but
its regularizations are mono-fractal. (The local regularity may deviate
from the average one only by log 1/ε factors).

(2) Φ4
2 and Φ4

3 are mono-fractal as well. Indeed, their local regularity in each
space-time point is the same as for the linear stochastic heat equation.
Another way to see the mono-fractal behaviour is that in some sense, the
pth moments of the non-linearity behave linearly in p.

(3) Sine-Gordon eiβΦ is mono-fractal too.
(4) Generalized KPZ. ([BHZ19]) Non-linearities such as g(u)(∂xu)2 are

mono-fractal.

Misleading sub-criticality. We will see in this work that the SPDE (1.5)
is intermittent for both definitions. See Proposition 3.9 which shows that pth
moments of the non-linearity are governed by a non-linear spectrum ξs(p). In fact
it can easily be shown (a classical fact in static Gaussian Multiplicative Chaos
theory) that pth moments cease to exist when p > 8/γ2. It is also a classical
fact that such GMC measures have a whole multi-fractal spectrum of regularities
(corresponding to the so-called thick points of the field). See Remark 3.12.

One consequence of this intermittent behaviour is that it makes it harder to
guess when the SPDE (1.5) becomes critical. Let us consider the following three
cases to illustrate what we mean.

a) In the case of KPZ (resp. Φ4
d), if we zoom around a fixed space-time

point using the change of variable ĥ := λ
d
2
−1h(λ2t, λx) (resp. Φ̂ :=

λ
d
2
−1Φ(λ2t, λx)) and let λ ↘ 0, then we obtain the same SPDE but

where the non-linearity has shrinked by λ1− d
2 (resp. λ4−d). This rescaling

argument explains why dc = 2 for KPZ and dc = 4 for Φ4
d.

b) In the case of Sine-Gordon ([HS16]), ∂tu = 1
2
∆u + sin(βu) + ξ, it is

natural to play with the same rescaling û := u(λ2t, λx). In this case, the
SPDE does not transform as simply as in the above two examples (the
non-linearity is not polynomial), yet it is easy to check that in law (and
assuming the solution locally looks like the solution of the SHE), the
non-linearity is shrinking by λ2−β

2

4π . This gives the correct prediction that
βc =

√
8π which corresponds to the Kosterlitz-Thouless phase transition.

c) In the case of our SPDE ∂tX = 1
4π

∆X − eγX + ξ, one can try the
same rescaling argument as for Sine-Gordon by zooming in with X̂ :=
X(λ2t, λx). This time, again in law and assuming the solution locally
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looks like the solution of the SHE (which will be the case), the non-
linearity is shrinking by λ2+ γ2

2 . At first sight, this suggests this SPDE
will be sub-critical for all parameters γ > 0! The solution to this paradox
is precisely the intermittent nature of the non-linearity. This zooming
argument is correct but is applied at a typical space-time point according
to Lebesgue measure. At those points, the non-linearity is indeed “smaller
and smaller” as γ increases. Instead, the rescaling argument should be
applied around atypical space-time points for Lebesgue which are more
meaningful for the non-linearity (i.e. around the appropriate choice of
thick points of the field X). It is therefore an interesting problem in this
intermittent case to detect at which value γ = γc the SPDE (1.5) will
stop being critical. (See Question 7.1 and the discussion before).

1.6. Main results.
Let us first settle some notations. Recall ξ denotes a space/time white noise on ei-
ther R×T2 or R×S2 (i.e. the Gaussian process with covariance E

[
ξ(s, x)ξ(t, y)

]
=

δ(s,x),(t,y)). We will need to regularise our singular distributions such as ξ by
working with some smoothened noise ξε. On the flat case R× T2, as in [HS16]
say, we fix some smooth and compactly supported function % : R × R2 → R+

integrating to 1. We then consider ξε := %ε ∗ ξ, with %ε(t, x) = ε−4%(ε−2t, ε−1x).
In the curved case of the sphere, see Subsection 6.1 for our precise setup. See
also [DK+16, RV16] for a slightly different smoothing on the sphere.

Theorem 1.7. Let 0 ≤ γ < γdPD := 2
√

2−
√

6 ≈ 0.38. Fix an initial condition
of the form u(0) = Φ(0) + w (where Φ is the log-correlated field induced by the
linear heat equation, see Subsection 2.1 and with w ∈ Ca(T2) for some a > 0).
Consider the solution Xε to{

∂tXε = 1
4π

∆Xε − C%ε
γ2

2 eγXε + ξε
Xε(0, ·) = Φε(0) + w

There is a way to tune the constant C% (depending only on γ and the mollifier %)
as well as an a.s. positive time T > 0 such that Xε converges in probability in the
space C−1

s ([0, T ]× T2) to a limiting distributional process X which is independent
of the mollifier %. (See Subsection 2.2 for the definition of Besov spaces Cαs ).

Remark 1.8. Note that the non-linearity eγX has been renormalized in order to
have a limiting solution for the SPDE. The appropriate way of renormalizing
here (as for dynamical Φ4

2 for example) is the so-called Wick ordering. For the
linear heat equation, i.e. the Gaussian process Φ introduced in subsection 2.1,
this corresponds to

: eγΦε : := e−
γ2

2
E
[

Φε(0)2
]
eγΦε ∼ε→0 C%ε

γ2

2 eγΦε (1.7)

where the asymptotics as ε→ 0 is given by Proposition 3.1 and where the constant
C% is set to be equal to e−

γ2

2
Ĉ% (the latter constant Ĉ% is defined in Proposition

3.1). This explains the above renormalisation as ε→ 0.

Theorem 1.9 (* Assuming a spherical Schauder estimate, see Remark 6.9 *).
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Let 0 ≤ γ < γdPD = 2
√

2 −
√

6. Fix an initial condition of the form u(0) =
Φ(0) + w (with w ∈ Ca(S2) for some a > 0). Consider the solution Xε to{

∂tXε = 1
4π

∆Xε − C%ε
γ2

2 eγXε + ξε

Xε(0, ·) = Φε(0) + w

There is a way to tune the constant C% (depending only on γ and the mollifier %)
as well as an a.s. positive time T > 0 such that Xε converges in probability in the
space C−1

s ([0, T ]× S2) to a limiting distributional process X which is independent
of the mollifier %. (See Subsection 6.1 for the definition of these spaces in the
case of the sphere).

Remark 1.10. As in [HS16, Section 2.] or [HL15a], one could certainly strengthen
our hypothesis on the initial condition X(0, ·) but we decided to limit ourself to
the simplest setting as in [dPD03]. Note that our hypothesis is very meaningful
as the Liouville measure introduced in Theorem 1.3 is absolutely continuous w.r.t
Φ(0) and is of the above form so that our hypothesis allows us to start from
equilibrium.

As mentioned above, these results describe the Da Prato-Debussche phase
and do not rely on the recent breakthrough theories for SPDEs, i.e. regularity
structures, paraproducts or renormalisation techniques. Interestingly, using the
fact that the distribution valued process : eγΦ : is not a generic highly oscillatory
distribution but rather a (singular) positive measure, we manage to push the Da
Prato-Debussche limit further by exploiting the positivity. We only obtain this
way a strong solution to the SPDE in this regime (measurable w.r.t the input ξ)
and do not control the convergence of Xε → X in this case.

Theorem 1.11. When γdPD ≤ γ < γpos = 2
√

2− 2 ≈ 0.83, we can still define a
strong solution of the SPDE 1.5 through a fixed point problem determined by the
driving noise ξ. We do not have access to convergence Xε → X with our method
in this regime.

This will be proved in Section 4. It can be argued that this threshold γpos

corresponds to the critical parameter βc =
√

8π for Sine-Gordon. See the
discussion in Section 7. (It seems in particular that regularity structures used at
arbitrary large order should not push local existence of solutions for values of γ
larger than γpos).

Finally, we will get back to the original SPDEs 1.3, 1.4 which was motivated by
LQFT in Section 5. We will see that the αi-logarithmic singularities which arise
near the punctures {xi} do have a significant impact on the underlying regularity.
In particular, if the coupling constants (αi) are chosen too large (yet satisfying
the Seiberg bound αi < Q), then the regularity drops too low in order to settle
a fixed point argument. Because of this, the Da Prato threshold γdPD and the
above γpos threshold need to be adapted accordingly. We will prove the following
result below. See also Corollary 5.8 for an explicit computation of these modified
thresholds in the most relevant case (for LQG and embedding of planar maps) of
αi := γ.
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Theorem 1.12. Let γ < 2 and {(αi, xi)}i be punctures whose coupling constants
αi satisfy the Seiberg bounds. The main results above for the simplified SPDE (1.5)
(i.e. Theorem 1.7, 1.9 and Theorem 1.11) also hold for the Liouville SPDEs (1.3),
(1.4): {

∂tX = 1
4π

∆X − 1
2
µγeα1γGτ (x1,·)eγX + α1

2λĝτ (T2)
+ ξ

X(0, ·) = Φ(0) + w .

except the thresholds γdPD and γpos in these theorems have to be modified as
follows. Let us first introduce some notations. On the sphere S2, if {(xi, αi)i}
are the coupling parameters at the punctures (which satisfy Seiberg bounds), let
α̂ := maxi αi. On the torus, let α̂ := α1. Then, the following holds.

(1) If γ is chosen small enough so that

R(α̂, γ) :=
[
(
γ

2
√

2
− α̂γ) ∧ 0

]
+
γ2

2
− 2
√

2γ > −1 ,

then local existence as well as convergence as ε→ 0 hold as in Theorem
1.7.

(2) If R(α̂, γ) > −2, then we obtain with our methods only the local existence
as in Theorem 1.11.

Acknowledgments. I wish to thank the three anonymous referees for many
helpful comments which helped improving the paper. I wish to thank Nathanael
Berestycki, Charles-Edouard Bréhier, Louis Dupaigne, Francesco Fanelli, Ivan
Gentil, Martin Hairer, Dragos Iftimie, Antti Kupiainen, Claudio Landim, Rémi
Rhodes, Hao Shen, Fabio Toninelli, Nikolay Tzvetkov, Vincent Vargas, Julien
Vovelle for inspiring discussions or important comments on the manuscript and
Jean-Christophe Mourrat for very stimulating discussions at several stages of this
work. The author is partially supported by the ANR grant Liouville ANR-15-
CE40-0013 and the ERC grant 676999-LiKo.

2. The case of the torus T2

In this section, we will restrict ourselves to the case of the two-dimensional
torus T2.

2.1. Da Prato-Debussche approach. It is known since the breakthrough paper
[dPD03] (see also the recent surveys on the topic [CW17, Hai14b, Hai15]) that in
order to give a meaning (after suitable renormlisation) to such SPDEs, it is very
convenient to make a first-order expansion around the solution of the linearised
equation ∂tΦ = 1

4π
∆Φ + ξ (the stochastic heat equation) as follows:

X(t, x) := Φ(t, x) + v(t, x) .

Note that higher order such expansions are at the root of the theory of Regularity
structures in [Hai14a]. By a simple time-change, one may as well consider the
following SPDE which has the advantage to be related to the standard heat kernel.

∂tΦ =
1

2
∆Φ +

√
2πξ

By Duhamel’s principle, the solution of this heat-equation is given by Φ =√
2πK̃ ∗ ξ where K̃ is the heat-kernel on the torus. As explained for example in
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[HS16], it turns out to be more convenient to expand at first order around an
approximate solution of the heat-equation given by

Φ :=
√

2πK ∗ ξ (2.1)

where K is a compactly supported (in space-time) kernel which coincides with
the heat-kernel pT2

t (x, y) in the neighbourhood of t = 0. This technical step will
be even more important once on the sphere S2 in Section 6 as it will avoid us
dealing with subtle cut-locus issues. See Proposition 6.7 and below. With this
definition of Φ, one easily check (see [HS16]) the existence of a smooth correction
R(t, z) such that

∂tΦ =
1

2
∆Φ +R +

√
2πξ

Following [dPD03], if one formally plugs X = Φ + v into our simplified SPDE
∂tX = 1

2
∆X − eγX +

√
2πξ, we end up with the equation{
∂tv = 1

2
∆v − eγΦeγv −R

v(t = 0, x) = X(t = 0, x)− Φ(t = 0, x)
(2.2)

As in [dPD03] and works since then, we will solve this SPDE via a fixed point
argument in an appropriate Banach space.

2.2. Space-time Besov spaces. Let us briefly introduce the functional frame-
work we shall use. We follow very closely here [HS16, CW17, Hai14b] to which
we refer for a more detailed exposition. Space-time points will be denoted by
z = (t, x) and we will use throughout the following parabolic space-time distance
on R× Rd.

‖z‖s := ‖(t, x)‖s = |t|1/2 + ‖x‖2 (2.3)

This distance induces a parabolic distance on R× Td. (See Subsection 6.1 below
for the case of the sphere.)

Let us introduce some notation. For any integer m ≥ 1, let Bm be the space
of smooth test functions f : R× Td → R which are supported on the unit ball
around (0, 0) for the parabolic distance ‖ · ‖s and satisfy

‖f‖Cm := sup
β,|β|s≤m

sup
z∈R×Td

|Dβf(z)| ≤ 1 .

Following [Hai14a, CW17, Hai14b], we introduce the following space-time
Besov spaces of negative regularity.

Definition 2.1. For any α < 0, let Cαs be the space of distributions η on R× Td
s.t. for any T > 0,

‖η‖Cαs (T ) := sup
z∈[−T,T ]×Td

sup
f∈Bm

sup
λ∈(0,1]

∣∣∣∣〈η, Sλz f〉λα

∣∣∣∣ <∞ (2.4)

where m := d−αe and if z = (t, x),

Sλz f(s, y) := λ−d−2f(λ−2(s− t), λ−1(y − x))

These spaces correspond to the more standard notation Bα
∞,∞ with the additional

fact that we are in space/time here.
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For positive regularity β ∈ (0, 1), we will use the following classical definition
of Cβs .

Definition 2.2. For any positive regularity β ∈ (0, 1), let Cβs be the space of
functions f on R× T2, such that

‖f‖Cβs := ‖f‖∞ + sup
0<‖z−z′‖s≤1

|f(z)− f(z′)|
‖z − z′‖βs

<∞

There are several other equivalent ways to define Cβs . See for example Remark
2.16 in [FM17]. See [CW17, Hai14b] for equivalent definitions more in the spirit
of (2.4).

Finally, for any fixed t > 0 and α ∈ (−∞, 0) ∪ (0, 1), let Cαs (Λt) be the Besov
space introduced in Definitions 2.1, 2.2 on Λt := [0, t]× T2.

2.3. Multiplying distributions. The above functional setup is very convenient
to multiply distributions which do not have pointwise values. The key result of
this flavour is the following Theorem.

Theorem 2.3 (Thm 2.52 in [BCD11] or Prop 4.11 in [Hai14a]). Suppose α+β > 0,
then there exists a bilinear form B(·, ·) : Cαs × Cβs → Cα∧βs satisfying

i) B(f, g) coincides with the classical product when f, g are smooth.
ii) There exists C > 0 s.t. for any f ∈ Cαs , g ∈ Cβs ,

‖B(f, g)‖Cα∧βs
≤ C‖f‖Cαs ‖g‖Cβs

N.B. The criterion α + β > 0 is optimal: such a bilinear map does not exist if
α + β ≤ 0.

This result shows that one can at least start Picard’s iteration scheme if our
rough object eγΦ is of high enough regularity.

2.4. Parabolic Schauder’s estimate. The point of a parabolic Schauder’s
estimate is to quantify the fact that the solution v(t, x) to a linear heat-equation{

∂tv = 1
2
∆v + f

v(t = 0, x) = v0(x)
(2.5)

is “two units more regular” than the driving space-time function f . There are
many ways to quantify this phenomenon. We will measure this gain of regularity
using the above space-time Besov spaces Cαs . It will be convenient to decompose
Duhamel’s principle into two operators K and P . Recall that the solution to the
heat equation (2.5) is given by

v(s, x) =

∫ s

0

e
u
2

∆f(s− u, x)du+ e
s
2

∆v0

which motivates the introduction of the operators K and P as follows.

Definition 2.4. For any fixed t > 0 and any f ∈ C∞s (Λt), let K = K(t) be the
operator

K(f)(s, x) :=

∫ s

0

e
u
2

∆f(s− u, x)du .
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Definition 2.5. For any v0 a continuous function in C(Td), let P (v0) be the
space-time function

P (v0) : (s, x) 7→ e
s
2

∆v0 .

The solution (s, x) 7→ v(s, x) to the heat-equation (2.3) can thus be written
v = K(f) + P (v0)

We will rely on the following parabolic Schauder estimate.

Proposition 2.6 (Parabolic Schauder estimate). For any α < 0 and any small
κ > 0 s.t. α + 2− κ ∈ (0, 1), there exists C > 0 such that for any 0 < t < 1,

‖K(f)‖Cα+2−κ
s (Λt)

≤ Ctκ/2‖f‖Cαs (Λt)

We did not find a proper reference for this estimate which is implicitly used in
several works such as [HS16] or [CW17]. (The proof based on Littlewood-Paley
in the version 1 of this paper had a mistake and it appears that Littlewood-Paley
techniques are not convenient to handle the parabolic case). The best place in
the literature is Section 14.3 on Schauder estimates in the book [FH14] in which
essentially contains a proof of this estimate.

We shall also need the following simple Lemma

Lemma 2.7. Let α < 0 and κ > 0 s.t. α + 2 − κ ∈ (0, 1). There exists C > 0
s.t. for any initial condition v0 in Cα+2−κ(T2)

‖P (v0)‖Cα+2−κ
s (Λ1) ≤ C‖v0‖Cα+2−κ(Λ1)

Proof: It follows from the fact that the heat kernel induces a contraction on
Hölder spaces. Indeed, taking β := α + 2− κ ∈ (0, 1),

|Pt(f)(x)− Pt(f)(y)| = |E
[
f(x+ Zt)− f(y + Zt)

]
|

≤ ‖f‖β‖x− y‖β ,
(where (Zt)t≥0 is a Brownian motion on R2 and one thinks of f as the periodic
extension of v0 to R2). To prove the Lemma it is sufficient to extend this inequality
to space/time points in Λ1 × Td = [0, 1]× Td.

|Pt(f)(x)− Ps(f)(y)| = |E
[
f(x+ Zs + Zt−s)− f(y + Zs)

]
|

≤ ‖f‖βE
[
‖x− y + Zt−s‖β

]
≤ ‖f‖βE

[
‖x− y + Zt−s‖2

]β/2 (by Jensen)

= ‖f‖β(‖x− y‖2 + |t− s|)β/2

2

As explained in Remark 1.8, the non-linearity eγX needs to be renormalized.
Let us assume for the moment that we are able to construct an object : eγΦ :
which satisfies

i) : eγΦ : belongs a.s. to Cαs .
ii) It is the a.s. limit in Cαs of its regularisations : eγΦε :

(This will be proved in Theorem 3.10). We shall now explain how to set-up a
fixed point argument sufficiently stable in its arguments so that it will provide a
solution to (2.2) (where eγΦ which is ill-defined is replaced by : eγΦ : ) which will
be the limit of ε-regularisations.
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2.5. Settling the fixed point argument. In what follows we fix α < 0 and
κ > 0 s.t. β := α + 2− κ ∈ (0, 1). We also assume that α + β > 0 in order to be
able to use the multiplication theorem.

Recall we wish to solve (2.2). Again by Duhamel’s principle and using the
operators defined in Definitions 2.4 and 2.5, we are looking for a fixed point of
the map F : Cα+2−κ

s → Cα+2−κ
s defined by

F : u 7→
(

(s, x) 7→ K(− : eγΦ : eγu −R)(s, x) + P (v0)(s, x)
)

(2.6)

It will be important to keep track of the fixed parameters (inputs) which define
this map F . Namely we introduce the following map.

Definition 2.8. For any fixed choices of t > 0, Θ ∈ Cαs , v0 ∈ Cα+2−κ(T2) and
R ∈ C∞s , consider the following map on Cα+2−κ

s (Λt):

Ft,Θ,v0,R : u 7→
(

(s, x) ∈ Λt 7→ K(−Θeγu −R)(s, x) + P (v0)(s, x)
)

(2.7)

N.B. By the multiplication theorem 2.3, this map is well defined if we suppose
2α + 2 − κ > 0. This is in some sense the barrier from Da Prato-Debussche
approach that the non-linearity needs to live at least in C−1+δ

s .

The key fact is that this map is a contraction on a suitably chosen subset of
the Banach space Cα+2−κ

s (Λt) if t is chosen sufficiently small. More precisely we
have:

Proposition 2.9. For any M > 0, there exists t = t(M) > 0 and r = r(M) > 0
so that for any choice of (Θ, R, v0) satisfying

‖Θ‖Cαs (Λt=1) ∨ ‖R‖Cα+2−κ
s

∨ ‖v0‖Cα+2−κ < M (2.8)

Then, the map Ft,Θ,v0,R is at least 1/2-contracting from the ball BCα+2−κ
s (Λt)

(0, r) ⊆
Cα+2−κ
s (Λt) to itself. This shows the existence of a unique fixed point vt,Θ,v0,R ∈
Cα+2−κ
s (Λt) for the map Ft,Θ,v0,R. Furthermore, the map

(Θ, v0, R) 7→ vt(M),Θ,v0,R ∈ Cα+2−κ
s (Λt(M))

is continuous on the open set defined by the constraint (2.8).

Proof. (Sketch) We need to first check that for well chosen t = t(M), r = r(M),
the map F preserves the ball of radius r in Cα+2−κ

s (Λt). For this note that

‖K(−Θeγu −R) + P (v0)‖Cα+2−κ
s

≤ Ctκ/2‖Θeγu‖Cαs + Ctκ/2‖R‖Cαs + ‖P (v0)‖Cα+2−κ
s

≤ Ctκ/2‖Θ‖Cαs ‖e
γu‖Cα+2−κ

s
+ Ctκ/2‖R‖Cα+2−κ

s
+ C‖v0‖Cα+2−κ

where we used Proposition 2.6 as well as Lemma 2.7. We now need an estimate
on ‖eγu‖Cα+2−κ

s
which is given to us by Lemma 2.10 below. By first choosing r

sufficiently large and then t ≤ 1 sufficiently small we conclude that F preserves
the ball of radius r.

For the contraction property, when computing ‖F (u)− F (u′)‖Cα+2−κ
s

, the term
coming from the initial condition v0 as well as the term R cancel out. We end up
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with controlling

‖K(Θeγu)−K(Θeγu
′
)‖Cα+2−κ

s

≤ Ctκ/2‖Θ(eγu − eγu′)‖Cαs
≤ Ctκ/2‖Θ‖Cαs ‖e

γu − eγu′‖Cα+2−κ
s

≤ Ctκ/2‖Θ‖Cαs Cr γ‖u− u
′‖Cα+2−κ

s
) ,

again by Lemma 2.10 below. By possibly choosing t = t(M) even smaller than in
the first step, we get the 1/2-contraction property.

Finally, to prove the continuity statement, note that for any u in the ball of
radius r of Cα+2−κ

s (Λt) and any (Θ, v0, R), (Θ′, v′0, R
′), one has

‖Ft,Θ,v0,R(u)− Ft,Θ′,v′0,R′(u)‖Cα+2−κ
s

≤ Ctκ/2‖(Θ−Θ′)(eγu)‖Cαs + Ctκ/2‖R−R′‖Cαs + ‖P (v0 − v′0)‖Cα+2−κ
s

≤ Ctκ/2‖(Θ−Θ′)‖Cαs ‖e
γu‖C2+α−κ

s
+ Ctκ/2‖R−R′‖Cα+2−κ

s
+ C‖(v0 − v′0)‖Cα+2−κ

s
,

again by Proposition 2.6 and Lemma 2.7. Now to show that both fixed points
are close, it is enough to start Picard’s iteration scheme for Ft,Θ′,v′0,R′ from the
fixed point of the other Ft,Θ,v0,R and use the fact that it is 1/2-contractive.

To conclude the proof of the proposition, we are thus left with the following
simple Lemma which is often implicit in the literature (for other non-linearities
such a u3 for the dynamical Φ4

d model for example).

Lemma 2.10. Fix some regularity β ∈ (0, 1). For any r > 0, there is C = Cr > 0
s.t. for any u, v ∈ BCβs (0, r), one has

‖eu − ev‖Cβs ≤ C‖u− v‖Cβs
The proof is an elementary computation. Let us first deal with the ‖ · ‖∞

contribution in the definition of ‖ · ‖Cβs (recall Definition 2.2). For this part,
note that x 7→ ex is c-lipschitz on [−r, r] for some c = cr. In particular, for any
space-time point z, |eu(z)− ev(z)| ≤ c|u(z)− v(z)|. For the second part, one has
for any z 6= z′,

|(ev − eu)(z)− (ev − eu)(z′)|
‖z − z′‖βs

=
|eu(z)[ev−u(z)− 1]− eu(z′)[ev−u(z′)− 1]|

‖z − z′‖βs

=
|eu(z)[ev−u(z)− 1]− eu(z)[1 +O(‖u‖Cβs ‖z − z

′‖βs )][ev−u(z′)− 1]|
‖z − z′‖βs

≤ |e
u(z)[ev−u(z)− ev−u(z′)]|

‖z − z′‖βs
+O(‖u‖Cβs )eu(z)|ev−u(z′)− 1]|

≤ Ce‖u‖∞‖v − u‖Cβs +O(‖u‖Cβs )C e‖u‖∞‖v − u‖∞ ,

where we relied several times on the fact that exponential is C-Lipschitz on
[−r, r]. Also, from the first to second line, we used that |eu(z′)−u(z) − e0| ≤
Cr |u(z)− u(z′)| ≤ C‖u‖Cβs ‖z

′ − z‖βs . 2
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2.6. Proof of Theorem 1.7. Let us briefly summarise: we wish to prove a
local existence result for the simplified SPDE 1.5. After a time-change and
the Da Prato-Debussche change of variable X = Φ + v (where Φ := K ∗ ξ, K a
compactly supported version of the heat kernel), we are left with solving (2.2).
By Proposition 2.9, it is enough to show that for any γ < γdPD = 2

√
2 −
√

6,
there exists a regularity α > −1 s.t. the positive measure Θ := : eγΦ : belongs a.s.
to Cαs . Indeed given this regularity α > −1, there exists κ > 0 small enough such
that β := α+ 2−κ ∈ (0, 1) and α+β > 0. As u(0) in Theorem 1.7 is assumed to
be Φ(0) + w, with w ∈ Ca(T2), we have R := ∂tΦ− 1

2
∆Φ−

√
2πξ (R is smooth,

see [HS16]), v0 = w and Θ = : eγΦ : which satisfy the assumptions of Proposition
2.9 for a large enough M > 0. This gives a fixed point solution to (2.2) as well
as (1.5) on the interval [0, t(M)]. Therefore in order to prove the existence of
local solution to (1.3), it only remains to show the following Proposition, whose
proof is postponed to the next Section.

Proposition 2.11. Let us fix γ < γ̂c = 2
√

2. The positive measure Θ := : eγΦ :

a.s. belongs to Cαs for any α < ᾱ(γ) := γ2

2
− 2
√

2γ. In particular for any
γ < γdPD = 2

√
2−
√

6, there exists α > −1 s.t. Θ a.s. belongs to Cαs .
Now, we wish to prove the convergence in probability of Xε(t, x) to X(t, x) in
Cαs as stated in Theorem 1.7. Recall that Xε is solution to the SPDE (1.3) which
is driven by the regularized noise ξε := %ε ∗ ξ. As in the continuous setting, it is
natural to introduce the process Φε := K ∗ ξε where the kernel K is the same as
the one defining Φ in (2.1). As such, Φε is a solution of the linear heat equation
up to a smooth correction term Rε:

∂tΦε =
1

2
∆Φε +Rε + ξε

It can easily be shown that Rε converges in probability to R in say C1
s . See [HS16].

By the same Da Prato-Debussche change of variable, we are trying to find a
solution vε to the system{

∂tvε = 1
2
∆vε − C%ε

γ2

2 eγΦεeγvε −Rε

vε(t = 0, x) = Xε(t = 0, x)− Φε(t = 0, x) = w(x)
(2.9)

We are thus exactly in the setting of Proposition 2.9. In particular, as we
already know that Rε → R, the continuity of the fixed point in the parameters
Θ, v0, R provided by this Proposition implies that it is enough for us to show the
following result (whose proof is also postponed to Section 3, see Theorem 3.10).

Proposition 2.12. For any γ < γL2 = 2 and for any t > 0, we have that Θε :=

C%ε
γ2

2 eγΦε converges in probability to Θ = : eγX : in Cαs (Λt) for any α < γ2

2
−2
√

2γ
(see Remark 1.8 for the choice of C%). Furthermore the limit Θ = : eγX : does not
depend on the mollifier %.

Remark 2.13. This result is interesting in its own for GMC measures as it provides
a convergence in probability which holds under a stronger topology (Besov spaces)
than convergence results proved for GMC measures so far ([Ka85, DS11, Ber17]).
See Theorem 3.10 and the discussion which follows for a more precise convergence
statement.
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Remark 2.14. The value of γL2 = 2 may look strange at first sight here. Indeed in
d = 2, the L2-threshold happens at γ =

√
2, but in our present space-time setting,

the L2-threshold (the value of γ at which L2-moments cease to exist) happens at
a later threshold γL2 = 2. This is consistent with the moment computations in
Lemma 3.4.

3. Regularity estimates and convergence of ε-regularizations on
the torus

In this Section, we wish to prove Propositions 2.11 and 2.12. As we shall see
below, a significant part of the analytical work has been done already in [HS16].
(See for example Proposition 3.1 below).

3.1. Method of proof. The main ingredient to establish the regularity of the
positive measure Θ := : eγX : is an analysis of its moments. This is now classical
in Gaussian multiplicative chaos and goes back to Kahane [Ka85], see also
[RV14]. To obtain the regularity of : eγX : , one usually proceeds in three steps.

(1) First one shows that the measure : eγX : when integrated, say, against a
ball of radius one has Lq moments until a certain threshold. Recall the
threshold is qc = 2d

γ2 = 4
γ2 for Multiplicative chaos in d = 2 dimensions.

(See [RV14]). This will be the content of Lemma 3.4 below. As we shall
see below, in our present space-time setting, the threshold will be instead
qc = 8/γ2(= 2(d+ 2)/γ2).

(2) From the fact that the measure : eγX : has global Lq moments, one extracts
quantitative Lq estimates on the measure of small balls of radius r. In
dimension d = 2, this corresponds to the result (see [RV14]),

E
[
Mγ(B(x, r)q)

]
� rξ(q)

where ξ(q) = (2 + γ2

2
)q − γ2

2
q2. It is sometimes called the multifractal

spectrum of the measure Mγ. The classical proof of this estimates
combines two elegant ingredients: Kahane convexity inequality as well
as an appropriate notion of invariance: log-∗-invariance (see [RV14]).
As we shall see below, we will not be able to rely on this exact scale-
invariance as we are not aware of the existence of log-∗-invariant kernels
in space-time R× R2.

(3) Finally, it is not hard from the knowledge of the multi-fractal spectrum
q 7→ ξ(q) to deduce the regularity of : eγX : by a Kolmogorov argument.
This is done in the multiplicative Chaos setting for example in [GRV16]
(see v2 on Arxiv) and is reminiscent of the more general Theorem 1.1 in
[FM17]. See Theorem 3.10.

Examples of positive-definite kernels which are log-∗-invariant are known on
each euclidean Rd, d ≥ 1. If the dimension d ∈ {1, 2, 3}, then, see [RV14], one
can take

K(x) := log+

1

‖x‖2

(If d = 3, it is not known whether it is of σ-positive type in the sense of Kahane
or not). If d ≥ 4, this kernel is no-longer positive definite. Yet, as argued in
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[RV14], the following kernel

K(x) :=

∫
Sd−1⊆Rd

log+

1

|〈x, s〉|
σSd−1(ds)

gives an example of log-∗-kernel in Rd. This nice extension does not apply to
our parabolic setting where space and time scale differently. We are not aware of
any log-∗-invariant kernel in the parabolic setting and will then have to proceed
(slightly) differently.

3.2. Estimates on the log-correlated field Φ,Φε.
Let us first introduce some notations. Recall Φ is an (approximate) solution

to the linear heat equation defined as K ∗ ξ (see (2.1)). Let us now define our
(approximate) solution to the linear heat equation driven by ξε := %ε ∗ ξ. We
define Φε to be the Gaussian Field

Φε := K ∗ ξε (3.1)

As in [HS16], it can be seen that the correction term to the heat equation
Rε := ∂tΦε − 1

2
∆Φε − ξε is a smooth function which converges as ε → 0 to a

smooth limiting function R. By the associativity of convolution, this Gaussian
process can also be written as Kε ∗ ξ where one introduces the kernel Kε := K ∗%ε.
Finally, its covariance kernel Qε(t, x) := E

[
Φε(0, 0)Φε(t, x)

]
is given by (see

[HS16])

Qε = Kε ∗ T (Kε)

= Q ∗ (%ε ∗ T %ε) Q = K ∗ T K ,

where T f(t, x) := f(−t,−x).
We first collect very detailed estimates on the covariance structure of Φ,Φε

which were obtained in [HS16]. These key estimates are summarised in the
following Proposition.

Proposition 3.1 (Section 3. in [HS16]). The covariance kernels Q and Qε
statisfy the following properties on T2.

(1) There exists a constant Ĉ% which only depends on the smoothing function
% such that

Qε(0)(= Qε(0, 0, 0)) = log
1

ε
+ Ĉ% +O(ε2) (3.2)

(2) There exist c, C which are %-dependent s.t. for any ε ∈ (0, 1] and any
z, ‖z‖s ≤ 1,

− log(‖z‖s + ε) + c ≤ Qε(z) ≤ − log(‖z‖s + ε) + C (3.3)

(3)

Q(z) ∼ − log(‖z‖s) (3.4)

(4)

|Qε(z)−Q(z)| ≤ C

(
ε

‖z‖s
∧ (1 + log

ε

‖z‖s
)

)
(3.5)

N.B. Item (2) follows from the estimate (3.7) in [HS16].
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3.3. Moments computation. In this subsection (as in Section 3 in [HS16]),
instead of using Θε := C%ε

γ2

2 eγΦε it will be more convenient to rely on the exact
Wick ordering

Θε := : eγΦε : := eγΦε− γ
2

2
Qε(0) .

and Θ will denote its limit (yet to be proved) in the regularity spaces Cαs de-
fined in Subsection 2.2. One can then easily get back to the original choice of
renormalization in Theorem 1.7 thanks to the above estimate (3.2).

Proposition 3.2.
(1) For any 0 ≤ γ < γ̂c = 2

√
2, and any (real number) q < 8

γ2 , then as ε→ 0,

E
[
|〈fλz ,Θε〉|q

]
. λ−

γ2

2
q(q−1) , (3.6)

uniformly over all test functions f bounded by 1 and supported in the unit
ball (for ‖ · ‖s), all λ ∈ (0, 1] and all space-time points z.

(2) Furthermore if γ < 2, for κ = κ(γ) sufficiently small, one has

E
[
|〈fλz ,Θε −Θε̄〉|2

]
. (ε ∨ ε̄)2κλ−2κ−γ2

, (3.7)

uniformly in the same f, λ, z.

Remark 3.3. See Appendix A for a different proof of this result in the special
case of integer moments q ∈ N < 8

γ2 . The proof in appendix A is much closer to
the analysis in [HS16] of the polynomial moments for Sine-Gordon.

Proof.
Second moment estimate. The proof of the estimate (2) is exactly the same
one as the proof of the estimate (3.12) in [HS16]. Indeed, the latter paper
analyses the complex valued distribution Ψε := : eiβΦε : = eiβΦε+

β2

2
Qε(0) instead of

our positive measure Θε. The second moment which is analyzed in [HS16] is

E
[
|〈ϕλx,Ψε −Ψε̄〉|2

]
=

∫∫
ϕλx(y)ϕλx(y + z)E

[
[Ψε −Ψε̄](y)[Ψε −Ψε̄](y + z)

]
dydz

It turns out it matches exactly the second moment we need. Indeed,

E
[
Ψε(y)Ψε̄(y + z)

]
= exp(

β2

2
(Qε(0) +Qε̄(0)))E

[
eiβΦε(y)−iβΦε̄(y+z)

]
= exp(

β2

2
(Qε(0) +Qε̄(0))) exp(−β2/2Var

[
Φε(y)− Φε̄(y + z)

]
)

= E
[
Θε(y)Θε̄(y + z)

]
.

qth moments. Now for the moment estimate (1), this a different story. Indeed for
Sine-Gordon (see Theorem 3.2. in [HS16]), one has instead E

[
|〈fλz ,Ψε〉|q

]
. λ−

β2q
4π .

In particular the moments behave linearly in q which is a sign ofmonofractality.
Here, we have a non-linear spectrum which is the signature of intermittency.

Let us first show that
∫

[−T,T ]×T2 Θε has Lq moments uniformly in ε > 0 for all
q < 8/γ2. (see Lemma 3.4 below). In order to avoid dealing with the periodic
boundary issues inherent to T2, it will be enough (by using the Lq-triangle
inequality) to stick to a sub-domain D := [0, 1]× [0, 1]2 ⊆ [0, 1]× T2 and to show
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that
∫
D

Θε has uniform Lq moments uniformly in ε > 0. (On the sphere this step
will be even more needed to avoid spherical boundary conditions and to reduce
curvature effects). Namely, we start by proving

Lemma 3.4. For any γ < γ̂c = 2
√

2 and any q < 8/γ2,

sup
ε>0

E
[
(

∫
D=[0,1]×[0,1]2

Θε)
q
]
<∞

These types of moment estimates go back to [Ka85, BM02] and we will follow
very closely here the proof in [BM03, Appendix D]. The main technical tool is
the following convexity inequality from Kahane.

Lemma 3.5 (Kahane convexity inequality, [Ka85], see also [RV14]). Let (Xi)1≤i≤n
and (Yi)1≤i≤n two centred Gaussian vectors which satisfy for any i, j,

E
[
XiXj

]
≤ E

[
YiYj

]
.

Then, for any combinations of nonnegative weights (pi)1≤i≤n and any convex
function F : R+ → R,

E
[
F (

n∑
i=1

pie
Xi− 1

2
E
[
X2
i

]
)
]
≤ E

[
F (

n∑
i=1

pie
Yi− 1

2
E
[
Y 2
i

]
)
]
.

The property extends immediately to smooth centred Gaussian processes, say in
our case {Xε(z)}z∈R×T2, {Yε(z)}z∈R×T2. If for any z, z′, one has

E
[
Xε(z)Xε(z

′)
]
≤ E

[
Yε(z)Yε(z

′)
]
.

Then, for any finite measure µ on R× T2:

E
[
F (

∫
eγXε(z)−

γ2

2
E
[
Xε(z)2

]
dµ(z))

]
≤ E

[
F (

∫
eγYε(z)−

γ2

2
E
[
Yε(z)2

]
dµ(z))

]
.

Let us fix some δ > 0. Divide D = [0, 1]× [0, 1]2 into 8 sets of tiles Q1, . . . ,Q8

where the tiles are translates of the parabolic tile Q0 := [0, δ2]× [0, δ]2. The sets
Q1, . . . ,Q8 are chosen so that tiles in each Qi are at ‖·‖s-distance at least δ. To be
more explicit, one may choose Q1 :=

⋃
0≤i,j≤bδ−1/2c,0≤k≤bδ−2/2c(2kδ

2, 2iδ, 2jδ) +Q0

and then define Qm,m ≥ 2 as translates of Q1 in order to cover [0, 1] × [0, 1]2.
We have for each q ≥ 1,

E
[
(

∫
[0,1]×T2

Θε)
q
]1/q
≤

8∑
i=1

E
[
(

∫
Qi

Θε)
q
]1/q

.

Let us now focus on one of the Qi, say Q1. We wish to use Kahane’s convexity
inequality to introduce some independence as well as scaling into the analysis. As
discussed at the beginning of this subsection, we do not have explicit log-*-scale
invariant kernels at our disposal (such as log+ on R2 in this parabolic setting),
we will thus introduce the following fields:

Definition 3.6. Fix δ ∈ (0, 1] and ε > 0. Let Q0 be the parabolic tile [0, δ2]×[0, δ]2.
Let Zδε be the centred Gaussian field on Q0 defined by

(Zδε(z))z∈Q0 := (Φε(
1

δ
· z))z∈Q0
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where λ · (t, x) := (λ2t, λx) and Φε is the Gaussian field defined earlier in (3.1) by
K ∗ ξε. (We have chosen the subscript δε here because the process Zδε corresponds
to a field which is regularised at scale δε.)

Assign for each tile Q in Q1, an iid copy ZQ
δε ∼ Zδε and consider the field

ZQ1
δε (z) :=

∑
Q∈Q1

1z∈Q Z
Q
δε(z)

From the properties listed in Proposition 3.1, one obtains the following estimate.

Lemma 3.7. There exists some finite K > 0 s.t. for any (z, z′) ∈ Q1, δ ∈ (0, 1]
and ε > 0,

E
[
Φδε(z)Φδε(z

′)
]
≤ E

[
ZQ1
δε (z)ZQ1

δε (z′)
]

+ log
1

δ
+K . (3.8)

Proof. Let us first deal with the case where z, z′ belong to the same δ-tile Q in
Q1. Using the above definition of ZQ

δε and the estimate (3.3), one has for any
(z, z′) ∈ Q

E
[
ZQ1
δε (z)ZQ1

δε (z′)
]

= E
[
Φε(

1

δ
· z)Φε(

1

δ
· z′)

]
≥ log

1

‖1
δ
· (z − z′)‖s + ε

+ c

≥ log
1

‖z − z′‖s + δε
+ log δ + c

≥ E
[
Φδε(z)Φδε(z

′)
]

+ log δ + c− C

Now, if z, z′ are in Q1 but do not belong to the same tile Q, we have by inde-
pendance of ZQ1

δε on different tiles that E
[
ZQ1
δε (z)ZQ1

δε (z′)
]

= 0. Furthermore, by
construction of Q1, we must have ‖z− z′‖s > δ which implies E

[
Φδε(z)Φδε(z

′)
]
≤

log 1
δ

+K for some constant K > 0. 2

Proof of Lemma 3.4 continued. Let Ωlog 1
δ

+K be a global normal r.v. of vari-
ance log 1

δ
+ K independent of Zδε. Introduce now the Gaussian field on Q1,

Yδε(z) := ZQ1
δε (z)+Ωlog 1

δ
+K so that one has for any z, z′ ∈ Q1, E

[
Φδε(z)Φδε(z

′)
]
≤

E
[
Yδε(z)Yδε(z

′)
]
. One may now use the above Kahane convexity inequality for

q ≥ 1:

E
[
(

∫
Q1

Θδε)
q
]

= E
[
(

∫
Q1

eγΦδε(z)− γ
2

2
Qδε(0))q

]
≤ Cδ

γ2

2
(q−q2)E

[
(

∫
Q1

eγZ
Q1
δε (z)− γ

2

2
Qε(0))q

]
, (3.9)

where the term δ
γ2

2
q follows from the fact that by (3.2)Qδε(0) = log 1

δ
+log 1

ε
±O(1)

while δ−
γ2

2
q2 corresponds to the expectation of E

[
e
γqΩ

log 1
δ

+K
]
. Now, following

almost verbatim the appendix D in [BM03] (to which we refer) and using the
same notations, let n ≥ 2 ∈ N, s.t. n− 1 < q ≤ n, we use the sub-additivity of
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x 7→ xq/n as follows,

E
[
(

∫
Q1

eγZ
Q1
δε (z)− γ

2

2
Qε(0))q

]
= E

[
(
∑
Q∈Q1

∫
Q

eγZ
Q
δε(z)−

γ2

2
Qε(0))q

]
≤ E

[(∑
Q∈Q1

(

∫
Q

eγZ
Q
δε(z)−

γ2

2
Qε(0))

q
n

)n]
(3.10)

By expanding the n-th power, we deal separately with the diagonal and non-
diagonal term. Let us start with the latter one. An important feature of our field
ZQ1
δε is that it is made of iid copies ZQ

δε for each Q ∈ Q1. Using this independance,
each non-diagonal term is of the form

∏M
j=1 E

[
(
∫
Qj
eγZ

Q
δε(z)−

γ2

2
Qε(0))

qsj
n

]
where M

is the number of parabolic δ-tiles in Q1, i.e. M is of order 1
δ4 and {sj} are integers

in {0, . . . , n−1} which sum up to n. Using the fact that n−1 < q ≤ n, sj ≤ n−1
and

∑
j sj = n, each of these non-diagonal terms are bounded by

M∏
j=1

E
[
(

∫
Qj

eγZ
Qj
δε (z)− γ

2

2
Qε(0))

qsj
n

]
≤

M∏
j=1

E
[
(

∫
Qj

eγZ
Qj
δε (z)− γ

2

2
Qε(0))n−1

] qsj
n(n−1)

= E
[
(

∫
Q0

eγZδε(z)−
γ2

2
Qε(0))n−1

] q
n−1

Now, by the definition of Zδε which is nothing but a rescaling onQ0 = [0, δ2]×[0, δ]2

of Φε on D = [0, 1]× [0, 1]2, we have by change of variable that

E
[
(

∫
Q0

eγZδε(z)−
γ2

2
Qε(0)dz)n−1

] q
n−1

= δ4q E
[
(

∫
D

Θε(z)dz)n−1
] q
n−1

As there are at most Mn = O(δ−4n) such non-diagonal terms in (3.10), they
contribute at most

Cδ
γ2

2
(q−q2)δ4(q−n) E

[
(

∫
D

Θε(z)dz)n−1
] q
n−1

(3.11)

to the upper bound (3.9). Now, the M = O( 1
δ4 ) diagonal terms in (3.10) all have

the same expression

E
[
(

∫
Q0

eγZδε(z)−
γ2

2
Qε(0)dz)q

]
= δ4q E

[
(

∫
D

Θε(z)dz)q
]

Combining into (3.10) these O( 1
δ4 ) diagonal terms with the contribution of the

non-diagonal ones (3.11), we obtain

E
[
(

∫
D

Θδε)
q
]

≤ C̃δ
γ2

2
(q−q2)+4q−4E

[
(

∫
D

Θε(z)dz)q
]

+ C̃δ
γ2

2
(q−q2)δ4(q−n) E

[
(

∫
D

Θε(z)dz)n−1
] q
n−1

From now on, we conclude the proof of Lemma 3.4 in two steps.
(1) First one assumes that we have for granted that supε>0 E

[
(
∫
D

Θε)
n−1
]
<∞.

Note that if 1 < q < 8/γ2, the exponent γ2

2
(q − q2) + 4q − 4 > 0 which

means that one can choose δ small enough so that C̃δ
γ2

2
(q−q2)+4q < 1.
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For particular choices of regularisations for which ε→ (
∫
D

Θε)
q is a sub-

martingale we conclude immediately. If we are not in the case of an
exact sub-martingale, we can still conclude easily by noticing that for
δ small enough, E

[
(
∫
D

Θδε)
q
]
≤ 1

2
E
[
(
∫
D

Θε)
q
]

+ K for a large enough
constant K (where we used the above assumption). This implies that
supk≥0 E

[
(
∫
D

Θδkε)
q
]
<∞ and it is straightforward for example by varying

the iteration parameter δ to deduce Lemma 3.4.
(2) It thus remains to show our assumption that supε>0 E

[
(
∫
D

Θε)
n−1
]
<∞.

This can be easily achieved by running this proof inductively on n: if
q ∈ (1, 2], then n − 1 = 1 and the assumption is obvious. In particular
item (1) propagates the assumption to n− 1 = q = 2 and one can keep
iterating for q ∈ (2, 3] and so on. (See Appendix D in [BM03]).

2

Remark 3.8. Note that Kahane convexity inequality is not even needed in [BM03,
Apendix D], but it seems less clear how to avoid it here due to the lack of known
exact ∗-scale invariance kernel in our parabolic setting.

To conclude the proof of Proposition 3.2, it is enough to prove the following
so-called multifractal spectrum which describes the qth moments of small balls.

Proposition 3.9. Let us fix γ < γ̂c = 2
√

2. For any 0 ≤ q < 8
γ2 , there exists

C <∞ s.t. for any r ≤ 1 and any z ∈ R× T2,

sup
ε>0

E
[
(

∫
Bs(z,r)

Θε)
q
]
≤ Crξs(q)

where Bs(z, r) is the r-ball around z for the parabolic distance ‖ · ‖s and ξs(q) =
γ2

2
(q − q2) + 4q.

Proof. Clearly Bs(z, r) is included in a translate of a tile Q0 := [0, δ2] × [0, δ]2

used in the previous proof with δ = 2r. Now if q ≥ 1, the Lq moment of
∫
Q0

Θδε

has been bounded from above in the previous proof (this corresponds to each
of the "diagonal terms") by C̃δξs(q) × E

[
(
∫
D

Θε(z)dz)q
]
. Using Lemma 3.4, this

implies readily that supε<r E
[
(
∫
Bs(z,r)

Θε)
q
]
≤ O(1)rξs(q). It remains to handle

regularisations ε which are coarser than the radius r. The idea in such a case is to
use the fact that the field Φε is smooth within Bs(z, r). One can then dominate
the field simply by supu∈Bs(z,r) Φε(u). To make the analysis quantitative one may
write Φε(u) = Φε(z) + Yε(u) and use the fact that the Gaussian process Yε(u)
does not fluctuate much within Bs(z, r). One can then rely on standard Gaussian
concentration bounds, which lead us to an upper bound O(1)ε

γ2

2
(q−q2)r4q. This

gives us a better bound than our desired upper bound when 0 ≤ q < 8/γ2 and
thus concludes the proof. We refer to [DK+16] and in particular to the end of the
proof of Lemma 3.3, where the details of such a Gaussian domination are given
in a very similar setting. The case q ∈ [0, 1) can be done in the same fashion
except x 7→ xq is now concave and one has to use the estimate (3.3) the other
way around to conclude via Kesten’s convexity inequality. 2
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3.4. Convergence of ε-regularizations. From the estimates given in Proposi-
tion 3.2, we deduce the following convergence result (which is a detailed version
of Proposition 2.12).

Theorem 3.10. For any 0 ≤ γ < 2, there exists a stationary random positive
measure Θ which is independent of the mollifier % and which satisfies for any
q ∈ [0, 8

γ2 ) and any fixed κ > 0,

E
[
|〈fλz ,Θ−Θε〉|q

]
. εκλ−

γ2

2
q(q−1) , (3.12)

uniformly over all test functions f bounded by 1 and supported in the unit ball
(for ‖ · ‖s), all λ ∈ (0, 1], and locally uniformly over space-time points z.

It follows that Θε converges in probability to Θ in the space Cαs for any α <
γ2

2
− 2
√

2γ.

Remark 3.11. As mentioned above, it gives a different proof (inspired by [HS16])
of convergence of these measures as ε→ 0 independently of mollifiers. Also the
topology is slightly stronger than in works on Gaussian Multiplicative Chaos so
far. On the other hand, as a drawback, it only works below the L2 threshold as
the proof is based on the estimate (3.7).

Proof of Theorem 3.10.
The first part of the Theorem is proved exactly as the L.H.S of (3.3) in Theorem

3.2 in [HS16]. The fact it implies the convergence in Cαs for all α < γ2

2
− 2
√

2γ
would follow the same lines as the proof of Theorem 2.1 in [HS16] (namely a
characterization of Cαs in terms of wavelet coefficients and a Kolmogorov continuity
argument, see Sections 3 and 10 in [Hai14a]) if the moment bound (3.12), (3.6)
would hold for all integer q and would be linear in q. A refined version of the link
with wavelets is provided by Theorem 1.1. in [FM17]. It states that a family of
linear forms on C∞c (Rd), {ηm}m≥1 is tight in Cα(Rd) for every α < β − d

q
if for

every wavelet ψ in a suitably chosen finite collection Ψ,

sup
x∈Rd

λ−dE
[
|〈ηm, ψ(λ−1(· − x)〉|q

]1/q ≤ Cλβ .

See [FM17] for wavelet notations as well as a more detailed statement. It is
straightforward to extend their statement to the parabolic setting (as in [Hai14a,
Sections 3,10]). Their statement reads as follows in this parabolic setting: a family
{ηm}m≥1 of linear transforms on C∞c (R× T2) is tight in Cαs for every α < β − 4

q

if for every ψ in a (suitably chosen) finite collection Ψ,

sup
z∈R×T2

E
[
|〈ηm, ψλz 〉|q

]1/q ≤ Cλβ ,

where f 7→ fλz is the parabolic rescaling of f defined earlier. Using the esti-
mate (3.6), this implies a tightness result in Cαs , for all α < −

γ2

2
(q − 1)− 4

q
as far

as q < 8/γ2. It is not hard by proceeding as in Sections 3 and 10 in [Hai14a] to
upgrade their tightness statement to a convergence statement by relying on (3.12).
Now optimizing in q ∈ [0, 8/γ2) gives q̂ = 2

√
2

γ
and leads to a convergence in Cαs

for all α < γ2

2
−2
√

2γ which is sharp. (See Remark 3.12 below for the explanation
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why this is sharp). This ends the proof of Theorem 3.10 which implies Proposition
2.12. 2

Remark 3.12. It is not hard to see that the convergence cannot hold in spaces of
higher regularity than the threshold γ2

2
− 2
√

2γ. This can be proved for example
by analysing the structure of space-time thick points of the log-correlated field
Φ in space/time.

Sketch of proof of Proposition 2.11.
The point of Proposition 2.11 is to go beyond the L2 threshold. The techniques of
[Ka85, Sha16, Ber17] all apply easily to our present setting and we shall not give
more details here. Let us stress though that as opposed to the above Theorem
3.10, we do not claim a convergence in Besov spaces Cαs here as the crucial L2

estimate (3.7) is no longer valid. The techniques of [Ka85, Sha16, Ber17] only
imply a convergence result under the weak topology. The following more precise
statement than Proposition 2.11 follows from these techniques.

Proposition 3.13. For all γ < 2
√

2, the positive measure Θε converges weakly
a.s. to a non-degenerate positive measure Θ. The limiting measure Θ does not
depend on the mollifier % and a.s. belongs to Cαs for all α < γ2

2
− 2
√

2γ (note that
we do not claim nor need the convergence in this space when γ ≥ 2).

4. Beyond Da Prato-Debussche by exploiting the positivity

In this Section we prove Theorem 1.11 which extends the local existence result
(but not the convergence result) to higher values of γ than the Da Prato-Debussche
threshold γdPD := 2

√
2−
√

6 by exploiting the positivity of the measure Θ = : eγΦ : .
The main step where one can rely on the positivity is when one needs to define a
product between rough objects. Indeed, as stated in [Hai14b], Young’s Theorem
2.3 yields a sharp criterion for when, in the absence of any other structural
knowledge, one can multiply a function and distribution of prescribed regularity.
In our present situation, we do have additional structural knowledge as we are
multiplying functions with positive measures rather than general distributions.
Let us then strengthen Theorem 2.3 as follows in this particular case (for clarity,
we write a statement as close as possible to Theorem 2.3).

Proposition 4.1. Suppose only β > 0 and α < 0 (as opposed to α + β > 0 in
Theorem 2.3), then there exists a bilinear form B(·, ·) : (Cαs ∩M+([0, T ]× T2))×
Cβs → Cαs satisfying 3

i) B(f(x)dx, g) coincides with the classical product when f, g are smooth.
ii) There exists C > 0 s.t. for any µ ∈ Cαs ∩M+([0, T ]× T2), g ∈ Cβs ,

‖B(µ, g)‖Cαs ≤ C‖µ‖Cαs ‖g‖Cβs
N.B. Note that we do not claim a continuous extension in the first argument here
(the continuity in the second argument is clear from (ii)). In particular we do
not have a control of the form ‖B(µ, g)−B(µ̃, g)‖Cαs ≤ C‖µ− µ̃‖Cαs ‖g‖Cβs . This
is the reason why we do not obtain a convergence result as ε↘ 0.

3M+(T ) denotes here the space of positive measures on T and we view positive measures as
distributions acting on smooth functions.
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Proof. First, the extension is nothing but the fact that as [0, T ]× T2 is compact,
positive measures form the dual of continuous functions on [0, T ]× T2 and can
then be tested against any test function in Cβs as far as β > 0 which we assumed. It
clearly corresponds to the classical product when µ(dx) = f(x)dx and f and g are
smooth. Now the second item follows easily by noticing that with m = d−αe ≥ 1,
one has (see Subsection 2.2 for notations),

sup
z∈[0,T ]×T2

sup
η∈Bm,λ∈(0,1]

|
∫
B(z,λ)

ηλx(u)g(u)µ(du)|
λα

≤ C‖g‖∞ sup
z

sup
λ>0

∫
B(z,λ)

µ(du)

λα+4

≤ C‖g‖∞‖µ‖Cαs
where we used the positivity in the first inequality. 2

Proof of Theorem 1.11. It is enough here to follow almost verbatim the proof in
Subsection 2.5 which settles the fixed point argument. The only difference here is
that the map defined in Definition 2.8,

Ft,Θ,v0,R : u 7→
(

(s, x) ∈ Λt 7→ K(−Θeγu −R)(s, x) + P (v0)(s, x)
)

is now considered with an input Θ ∈ Cαs ∩M+([0, T ]× T2) (instead of just Cαs ).
By the above multiplication proposition 4.1 together with Schauder’s estimate 2.6
and Lemma 2.10, this map is now well defined from Cα+2−κ

s (Λt) to itself if we only
suppose α+ 2− κ > 0 when Θ ∈ Cαs ∩M+ (as opposed to the previous condition
2α+ 2− κ > 0). Note that to prove the existence of a fixed-point for this map,
only the continuity in the second argument of the Bilinear form from Proposition
4.1 is used. This is the reason for the second threshold γpos = 2

√
2− 2 > γdPD in

Theorem 1.11 where the optimal regularity bound γ2

2
− 2
√

2γ reaches −2. 2

5. Handling the punctures

To conclude our proof of Theorem 1.7 (see also Corollary 5.8 below), we need
to explain how one can extend the analysis we just carried out for the simplified
SPDE (1.5) to the SPDE we are interested in on the Torus T2, namely (1.3). Let
us directly rewrite this SPDE after a Da Prato-Debussche change of variable as
well as a time-change replacing 1

4π
by 1

2
in front of ∆:{

∂tv = 1
2
∆v − πµγeα1γGτ (x1,·) : eγΦ : eγv −R + α1π

λĝτ (T2)

v(0, ·) = w

The exact same strategy as for the simplified SPDE can be used. Only two places
need some more attention:

(1) One needs to show that for all γ < γ̂c = 2
√

2, and all α1 < Q, the measure

eα1γGτ (x1,·) : eγΦ :

still belongs a.s. to Cαs , for sufficiently small regularity α, similarly (but
with different bounds) as in Proposition 2.11. See Proposition 5.7 below.

(2) If γ < 2, we also need to show that eα1γGτ (x1,·) : eγΦε : converges in
probability to eα1γGτ (x1,·) : eγΦ : in the above Cαs (Λt) spaces (similarly as
in Proposition 2.12).
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Let us only discuss the first technical issue (the second one being of similar
difficulty).

5.1. q moments near the time-line singularity.
In space-time (z = (t, x) ∈ R× T2),the log-singularity G(x1, x) ∼ log 1

‖x−x1‖2
induces a singularity in dist(z,Rx1)−α1γ = ‖x− x1‖−α1γ

2 (where Rx1 denotes the
time-line {(t, x1) ∈ R×T2, t ∈ R}). A first step in our analysis of the regularity
of the weighted measure

dist(z,Rx1)−αiγ : eγΦ(z) : dz

is to obtain qth moments on the measure of r-balls in space-time which lie ON
the singular time-line Rx1 .

Proposition 5.1. Let us fix γ < γ̂c = 2
√

2 and α1 < Q. Define

ξR(q) :=
γ2

2
(q − q2) + (4− α1γ)q .

If sup1≤q<8/γ2{ξR(q) − 2} > 0 (N.B. for some values of γ this imposes a more
restrictive condition on α1 than the Seiberg bound α1 < Q), then for any

q < q∗(γ, α1) :=
8

γ2
∧ sup{q : ξR(q)− 2 = 0}

there exists C <∞ s.t. for any r ≤ 1 and any space-time point z on the time-line
Rx1,

sup
ε>0

E
[
(

∫
Bs(z,r)

dist(z,Rx1)−αiγΘε)
q
]
≤ CrξR(q)

where Bs(z, r) is the r-ball around z for the parabolic distance ‖ · ‖s.

Proof. We will only sketch the main steps as the strategy is very similar to the
proof of Proposition 3.9 except the situation is less homogeneous due to the
presence of the time-line Rx1 .

First one needs to prove a global integrability lemma analogous to Lemma 3.4.

Lemma 5.2. For any γ < γ̂c = 2
√

2 and any (α1, q) which satisfy the same
assumptions as in Proposition 5.1,

sup
ε>0

E
[
(

∫
D=[0,1]×[−1/2,1/2]2

dist(z,Rx1)−αiγΘε)
q
]
<∞ ,

where D represents here a square which surrounds the time-line Rx1 (see Figure
1).

Proof. As in Lemma 3.4, we argue using scaling arguments around the time-
line Rx1 . Instead of using a 1 + 2-dimensional grid of time-spaces translates of
[0, δ2]×[0, δ], we only use a time-one-dimensional set of translates of [0, δ2]×[− δ

2
, δ

2
]

as in Figure 1. We may use the triangle inequality to control the qth moments on
parts A and B in Figure 1 which we already know have finite qth moments. The
δ−2 boxes along Rx1 are split as in Lemma 3.4 into two alternating sets Q1 and
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(t, x1)t

δ2
δ

BA

δ2

Figure 1.

Q2 in order to use Kahane convexity inequality. We thus end-up for any ε, δ > 0,
with

E
[
(

∫
[0,1]×[−1/2,1/2]2

dist(z,Rx1)−αiγΘδε)
q
]
≤ CE

[
(

∫
Q1

dist(z,Rx1)−αiγΘδε)
q
]

+K ,

where K is the uniform upper bound in ε which comes from the parts A and
B in Figure 1. As in Lemma 3.4, one works inductively on the integer n s.t.
n − 1 < q ≤ n which allows us to avoid dealing with the non-diag terms in
E
[(∑

Q∈Q1
(
∫
Q
eγZ

Q
δε(z)−

γ2

2
Qε(0))

q
n

)n]
(giving a larger value K above). Only the

diagonal-terms remain. There are δ−2 such terms (as opposed to δ−4 terms in
the homogeneous case). Overall, we find

E
[
(

∫
[0,1]×[−1/2,1/2]2

dist(z,Rx1)−αiγΘδε)
q
]

≤ Cδ4q−2δ
γ2

2
(q−q2)δ−αiγqE

[
(

∫
[0,1]×[−1/2,1/2]2

dist(z,Rx1)−αiγΘε)
q
]

+K ,

In order to conclude as in Lemma 3.4, the crucial point is to have ξR(q)− 2 > 0
which follows from our set of assumptions. 2

Now we deduce Proposition 5.1 out of Lemma 5.2 by scaling arguments (and
Kahane inequality) exactly as we did in Proposition 3.9. 2

5.2. Handling r-balls which intersect the time-line. Let r ∈ (0, 1]. We
wish to understand what is the order of magnitude of the largest mass (under the
weighted measure eα1γG(x1,x)Θ(dz)) among the O(r−2) ‖ ·‖s r-balls which intersect
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the time-line Rx1 . For each of these squares and q satisfying the conditions of
Proposition 5.1,

P
[∫

Bs(z,r)

dist(z,Rx1)−αiγdΘ ≥ rβ
]
≤ r−βqrξR(q) .

As there are r−2 squares, one is looking for the largest possible exponent β =
β(α1, γ) > 0 s.t.

sup
0<q< 8

γ2 ∧sup{q:ξR(q)−2=0}
{ξR(q)− βq − 2} > 0

By a straightforward computation, it gives us that β needs be smaller than

β̄(α1, γ) :=
γ2

2
− (α1 + 2)γ + 4

(Note that since ξR(q)− 2 ≥ ξR(q)− βq − 2, we have that if β̄(α1, γ) > 0, then
necessarily sup{q : ξR(q)− 2} > 0). We conclude from the above estimates the
following regularity property on the time-line Rx1 .

Lemma 5.3. If γ < γ̂c = 2
√

2 and α1 are such that β̄(α1, γ) > 0, then for any
β < β̄(α1, γ), one has a.s.

sup
z=(t,x)∈Rx1 ,r>0

∫
Bs(z,r)

dist(z,Rx1)−αiγdΘ

rβ
<∞ .

Remark 5.4. As in the homogeneous case, this estimate is in fact optimal and
shows that the measure µ(dz) := dist(z,Rx1)

−αiγΘ(dz) does not belong a.s. to
the regularity spaces Cαs if α ≥ β̄(α1, γ)− 4 = γ2

2
− (α1 + 2)γ.

Remark 5.5. Let us make an important remark here: if one chooses to push α1

all the way to its Seiberg bound α1 = Q = 2
γ

+ γ
2
, then the regularity of the

weighted measure µ(dz) := dist(z,Rx1)−αiγΘ(dz) drops below −2− 2γ < −2. As
such the regularity is too small to apply our previous techniques (Section 2 as
well as Section 4 which relies on the positivity). This is why we have less optimal
conditions for example in Corollary 5.8. Note that weighted Besov norms in
non-compact settings such as the one used in [MW17] are likely to give slightly
better thresholds here.

It remains to control the following r-balls:

5.3. Controlling the r-balls away from the time-line. Clearly, the condition
will only consist in the simpler one q < 8/γ2 here as opposed to the balls
intersecting the time-line in Lemma 5.1. We shall prove the following result.

Lemma 5.6. For any γ < γ̂c = 2
√

2 and any α1, there exists C = C(ω) < ∞
a.s. such that for any r ∈ (0, 1] and any r-ball Q (for the ‖ · ‖s-metric) at distance
δ ≥ r from the time-line, we have∫

Br

dist(z,Rx1)−α1γdΘ ≤ Cδβ̃−α1γrβ ,

for any exponents satisfying β̃ < γ

2
√

2
and β < β̄ = γ2

2
− 2
√

2γ + 4.
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Proof. Let us consider a grid of r-squares whose distance from Rx1 is in [δ, 2δ],
with δ ≥ r. For each such r-square Q, one has for any q < 8/γ2,

P
[
Θ(Q) ≥ rβδβ̃

]
≤ r−βqδ−β̃qrξs(q)

Now, as there are δr−4 such squares in this grid, we get the following by union-
bound:

P
[
∃Q at dist. in [δ, 2δ] s.t. Θ(Q) ≥ rβδβ̃

]
≤ O(1)δr−4r−βqδ−β̃qrξs(q)

When δ is fixed, we know what is the best possible exponent β: it must be
less than β̄ = γ2

2
− 2
√

2γ + 4. Also, the optimal exponent in the bulk to run
Kolmogorov’s argument (see for example [GRV16] version 2) is q = q̂ = 2

√
2

γ
. Let

us then choose any β < β̄ and q = q̂. Plugging these in the last displayed upper
bound gives us

δ1−β̃q̂rε = δ1−β̃ 2
√

2
γ rε

As such we see that we are free to take any β̃ < γ

2
√

2
and Lemma 5.6 is proved.

(N.B. the proof is sub-optimal here and better exponents could be obtained by
tuning q̂ both as a function of γ and also δ, r). 2

5.4. Effects of the punctures on the regularity. Combining Lemmas 5.3
and 5.6, we thus obtain the following result.

Proposition 5.7. If γ < 2
√

2 and α1 < Q are such that β̄(α1, γ) > 0, then the
measure eα1γGτ (x1,·) : eγΦ : a.s. belongs to Cαs , for any

α <
[
(
γ

2
√

2
− α1γ) ∧ 0

]
+
γ2

2
− 2
√

2γ .

Proof. The proof is straightforward once one notices that the worse regularity is
given by Lemma 5.6 as it is always the case that

[
( γ

2
√

2
−α1γ)∧ 0

]
+ γ2

2
− 2
√

2γ ≤
γ2

2
− (α1 + 2)γ. 2

Exactly as in Section 2, such a regularity result easily implies our Theorem
1.12. (The regularity thresholds in each case being −1 and −2). For the sake of
simplicity, we will state a result below in the most important case of coupling
constant α1 := γ, which corresponds to the conformal embedding of planar maps
of γ-universality class.

Corollary 5.8. For any γ < 2, fix the coupling constant α1 to be α1(γ) = γ. We
have the following two regimes.

(1) If γ < γ1 = −7
4

√
2 + 1

4

√
130 ≈ 0.376 (thus slightly smaller than γdPD ≈

0.378 for the simplified SPDE), then a local existence as well as a conver-
gence result (as ε→ 0) holds for the Liouville SPDE (1.3)

(2) If γ1 ≤ γ < 1
2

√
2 ≈ 0.707, only a strong solution to the SPDE (1.3) holds

similarly as in Theorem 1.11.
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6. Dynamical liouville on the sphere S2

In this section we explain how to adapt the proof of Theorem 1.7 to the case
of the sphere (i.e. Theorem 1.9). We shall only focus on the simplified SPDEs on
the sphere: 

∂tX = 1
4π

∆X − eγX + ξ

or
∂tX = 1

4π
∆X − sinh(γX) + ξ ,

(6.1)

where ∆ denotes the Laplace-Beltrami Laplacian on S2. Indeed, the extension to
the actual Liouville SPDE (1.4) can be done exactly as for the torus in Section
5 (the fact there are 3 punctures ore more does not add any difficulty, only the
largest coupling constant αi matters in the estimates). As in the flat case, a key
ingredient of the analysis will be a careful study of the linear heat equation on
the sphere,

∂tΦ =
1

2
∆(S2)Φ +

√
2π ξ .

We will face the following three main technical difficulties due to the fact we are
on the curved space S2 instead of the flat Euclidean setting R2:

(1) A first (small) issue is that we need to precise what we mean by the
convolution K ∗ ξ (if K is the Heat kernel operator on the sphere) as we
are not on the Euclidean space. Similarly, we also need to be careful with
associativity rules such as K ∗ (ρε ∗ ξ) = K ∗ ξε = Kε ∗ ξ that are used all
over the place in the study of singular SPDEs driven by space-time white
noise. We will introduce precisely what will be our setup in subsection 6.1

(2) The main issue will be that there is no explicit expression known for
the heat kernel pS2

t (x, y) on the two-sphere. We will therefore need some
precise estimates to compare pS2

t (x, y) with pR2

t (x, y) in order to extract
the needed sharp estimates on the correlation structure of the solution Φ
to the linear heat-equation ∂tΦ = 1

2
∆S2Φ + ξ. See subsection 6.2.

(3) Finally, we will explain briefly in Subsection 6.3 how to adapt the analysis
of the qth moments of : eγΦ : to the case of the sphere.

6.1. Setup/notations on the sphere S2. First, the notations used in Subsec-
tion 2.2 to introduce Besov spaces in the flat case have an obvious counter-part
on the curved space/time R× S2. Let us just precise what shall be our parabolic
metric (we won’t have a norm anymore). For any z = (t, x) ∈ R× S2, let

‖z‖s = ‖(t, x)‖s := |t|1/2 + dS2(0, x)

and
ds(z, z

′) = ‖z − z′‖s := |t− t′|1/2 + dS2(x, x′)

There is a slight abuse of notation here as z − z′ is no longer in R× S2.

We now define what will be our kernel K = KS2 . As in Subsection 2.1 (and
following [HS16]), it is more convenient here to consider a compactly supported
(in space-time) kernel which coincides with the heat-kernel pS2

t (x, y) in the neigh-
bourhood of t = 0. As S2 is already compact, at first sight it seems one should not
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further restrict the support of K in space. Yet, because of the singular behaviour
of the heat-kernel at the cut-locus of the sphere, it will in fact be convenient from
now on to restrict our compact support to the north hemisphere. Here is a precise
definition of our kernel K.

Definition 6.1. Let K : (0,∞) × S2 × S2 → R+ be a smooth kernel with the
following properties:

• Kt(x, y) coincides with the heat-kernel pS2

t (x, y) when t ≤ 1 and dS2(x, y) ≤
π
3
.

• The support of K is included in {t < 2} ∩ {dS2(x, y) < π
2
}.

We also extend K to negative times by defining it to be 0 on ((−∞, 0]× S2× S2) \
({0} ×∆), where ∆ is the diagonal of S2 × S2. We then view K as smooth kernel
on R× S2 × S2 \ ({0} ×∆).
K induces the following convolution type of operator. For any smooth function

f : R× S2 → R, consider

Kf(t, x) :=

∫ ∞
0

∫
S2

Ks(x, y)f(t− s, y)dsdy (6.2)

=

∫
R

∫
S2

Ks(x, y)f(t− s, y)dsdy (6.3)

where dy is the (non-normalized) Lebesgue measure on S2.

We also introduce the following ε-smoothing of functions defined on the sphere.

Definition 6.2 (ε-regularization on S2). Fix some smooth and compactly sup-
ported function % : R×R2 → R+ which integrates to 1 and which is radially sym-
metric in space. (With a slight abuse of notation, we will write %(t, reiθ) = %(t, r)).
For any space-time distribution Z on R× S2, define for any ε > 0,

Zε(x) = %ε ∗ Z(t, x) :=

∫
R×S2

Z(s, y)
1

V%(ε)
%(
t− s
ε2

,
distS2(x, y)

ε
)dsdy ,

where V%(ε) :=
∫
R×S2 %(

s
ε2
,

distS2 (1,y)

ε
)dsdy. Note that V%(ε) ∼ ε4 as ε → 0. See

[DK+16, RV16] for a slightly different smoothing.

We may now define our (approximate) solution to the linear heat equation
driven by ξε := %ε ∗ ξ. We define Φε to be the Gaussian Field

Φε := K ∗ ξε
As in [HS16], it can be seen that the correction term to the heat equation
Rε := ∂tΦε − 1

2
∆Φε − ξε is a smooth function which converges as ε → 0 to a

smooth limiting function R.
We will use the following useful and straightforward property of the above

ε-smoothing (on R× R2, this is just the associativity of convolution).

Lemma 6.3. For any smooth function with compact support f : R× S2 → R,
K ∗ fε = K ∗ (%ε ∗ f) = Kε ∗ f (6.4)

where

Kε(t, 0, x) = (%ε ∗K)(t, 0, x) =

∫
R×S2

K(s, 0, y)
1

V%(ε)
%(
t− s
ε2

,
distS2(x, y)

ε
)dsdy
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The proof is immediate.
Let us now introduce the covariance kernel of the Gaussian field {Φε} on which

we will need to have precise asymptotics.

Definition 6.4. Let Qε be the covariance kernel

Qε(t, x, y) := E
[
Φε(0, x)Φε(t, y)

]
It is straightforward to check that it is given by the following formula

Qε(t, x, y) =

∫
R

∫
S2

Kε(u, x, w)Kε(u− t, y, w)dudw .

If z = (t, x) is a space-time point in R× S2, we will call Qε(z) := Qε(t, 0, reiθ) if
r, θ are the polar coordinates of x ∈ S2 viewed from the North-Pole. Qε can be
written,

Qε = Kε ∗ T (Kε)

= Q ∗ (%ε ∗ T %ε) Q = K ∗ T K ,

where T f(t, x) := f(−t,−x) and where the convolutions used here have the
obvious meaning from (6.2) on the sphere.

6.2. Estimates on the log-correlated field induced by the heat equation
on the sphere.

As in Section 3, we need to have a very precise control on the covariance kernel
Qε of the approximate solution Φε to the heat-equation on S2. We will prove the
following estimates which are an exact analog of the above Proposition 3.1 in the
case of the sphere.

Proposition 6.5. The covariance kernels Q and Qε satisfy the following proper-
ties on S2.

(1) There exists a constant Ĉ% which only depends on the smoothing function
% such that

Qε(0)(= Qε(0, 0, 0)) = log
1

ε
+ Ĉ% +O(ε2 log

1

ε
) (6.5)

N.B. We obtain an error term O(ε2 log 1
ε
) on S2 instead of O(ε2) on T2.

(2) There exists c, C which are %-dependent s.t. for any ε ∈ (0, 1] and any
z, ‖z‖s ≤ 1,

− log(‖z‖s + ε) + c ≤ Qε(z) ≤ − log(‖z‖s + ε) + C (6.6)

(3)

Q(z) ∼ − log(‖z‖s) (6.7)

(4)

|Qε(z)−Q(z)| ≤ C

(
ε

‖z‖s
∧ (1 + log

ε

‖z‖s
)

)
(6.8)

Proof. These properties are already proved for the heat-equation on the Torus T2

in [HS16]. (See Proposition 3.1 in section 3). We shall explain here how to adapt
the proof to the case of the heat-equation on the sphere S2. The main technical
difficulty to handle is the absence of explicit heat kernel pS2

t as well as the lack of



36 CHRISTOPHE GARBAN

exact scaling arguments. We refer the reader to the Section 3 in [HS16] for the
details of the proofs on the flat torus and will follow the same strategy/notations
for the sphere S2 below. In the setting of the sphere, we still have the equality
(in distributional sense)

∂tK −
1

2
∆K = δ +R ,

where ∆ is the Laplace-Beltrami Laplacian on S2 and R is a smooth compactly
supported function whose definition may change from line to line (as in [HS16]).
We thus obtain in the same fashion as in [HS16] (noticing that Q(z) = Q(−z)
for space-time points z) that

∆Q(z) = K(z) +K(−z) +R ,

where in this setting if z = (t, reiθ) (in polar coordinates from North pole, say),
then K(−z) := K(−t, reiθ+iπ) = K(−t, reiθ).

As in Lemma 3.8. in [HS16], we thus end up with the following useful expression
of Q:

Q(t, x) = (K̂(t, ·) ∗GS2)(x) +R

:= Q̂(t, x) +R(t, x) (6.9)

where K̂(z) := K(z)+K(−z) and GS2(x) is theGreen function on the sphere,
i.e. the function GS2 on S2 × S2 defined (modulo an additive constant) for all
x ∈ S2 by

−∆S2GS2(x, ·) = 2π(δx −
1

4π
) .

On the sphere, GS2 takes the following simple explicit form

GS2(x, y) = log[
1

2 sin( r
2
)
] , (6.10)

where r = dS2(x, y). This can be easily checked using the following expression of
the Laplace-Beltrami operator on S2 in the normal coordinate system from the
north pole (see (6.12)):

∆S2f(r, θ) =
1

sin(r)

∂

∂r
(sin r

∂f

∂r
) +

1

sin(r)2

∂2f

∂θ2
(6.11)

We need to analyze

(pS
2

(|t|, ·) ∗GS2)(x) =

∫
S2

pS
2

|t|(0, y)GS2(x, y)dy(=

∫
S2

pS
2

|t|(x, y)GS2(0, y)dy)

As the Green function is explicit but the heat kernel is not, we will prefer the
first expression.

(pS
2

(|t|, ·) ∗GS2)(x) =

∫
S2

pS
2

|t|(0, y) log[
1

2
sin−1(

d(x, y)

2
)]dy

This expression is very convenient as it makes its ∂x analysis much more amenable
than if we had to analyze ∂xpS

2

t (x, y) without having explicit expressions on the
later one.

Let us first prove items (1) and the same estimate (3.4) as on the torus. Our
strategy will be to compare our covariance kernel Q with the corresponding kernel
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on the plane/torus. Indeed it is shown in [HS16], using scaling arguments (that
are not allowed in our present curved setting) that the latter kernel is very regular
besides a log 1

‖z‖s singularity (see Lemma 3.9 in [HS16] for a precise statement).
We shall use the following parametrization of the unit sphere S2 (the so called

normal coordinate system): 
z = cos(r)

x = sin(r) cos(θ)

y = sin(r) sin(θ)

(6.12)

and will denote by (r, θ) or reiθ the point at distance r from the North pole with
angle θ. Depending on the context, reiθ will either denote a point in S2 with the
above parametrisation or the usual point in R2 in polar coordinates. We will need
the following “distortion” Lemma between the polar coordinates on the sphere
and the polar coordinates on the plane.

Lemma 6.6. There exists a constant C > 0 s.t. for any x = reiθ, y = r′eiθ
′ ∈ S2,

(1− Cr2)(1− Cr′2)‖reiθ − r′eiθ′‖R2 ≤ dS2(x, y) ≤ ‖reiθ − r′eiθ′‖R2 ,

where on the L.h.s and R.h.s, ‖ · ‖R2 denotes the Euclidean metric on the plane.

Proof: For any smooth path σ ⊆ R2 joining σ(0) = a to σ(t = 1) = b, the
Euclidean length is given in polar coordinates on R2 by

LR2(a, b) =

∫ 1

0

√
r2
t + r2θ2

t dt

while the Spherical length is given by

LS2(a, b) =

∫ 1

0

√
r2
t + sin(r)2θ2

t dt

For paths σ that remain at distance r0 from the North pole, this readily implies
that

(1−O(r2
0))LR2(a, b) ≤ LS2(a, b) ≤ LR2(a, b)

This implies if r ∧ r′ ≤ π/3 (so that geodesics will remain in the ball of radius
r ∧ r′) that

(1−O((r ∧ r′)2))dR2(reiθ, r′eiθ
′
) ≤ dS2(x, y) ≤ dR2(reiθ, r′eiθ

′
)

We conclude the proof by using 1− C(r ∧ r′)2 ≥ (1− Cr2)(1− Cr′2). 2

Recall that the kernel K(t, x) is defined as χ(t, x)pS
2

t (x) where χ(t, x) is a
smooth compactly supported function (and whose support in space is included in
{reiθ ∈ S2, r < π/3}).

As mentioned earlier, there does not exist nice explicit expressions of the heat
kernel pS2

t . Nevertheless, in order to prove Lemma 6.5, we will need some rather
precise analytical estimates on this heat kernel. We will use the following result
from [Nag10] which builds on earlier works such as [El88, ET82, Nd91]
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Proposition 6.7 ([Nag10]). For any r ≤ π
3
,

pS
2

t (r) = pR
2

t (r)et/8
(√ r

sin(r)
+O∞(t)

)
+O∞(e−1/t)

= pR
2

t (r)
(√ r

sin(r)
+O∞(t)

)
+O∞(e−1/t) .

where O∞(t) is a function of (t, r) which is C∞ in r and whose kth derivatives
in r are O(t), uniformly in r ≤ π

3
and where O∞(e−1/t) is a function, whose l

times derivative is uniformly bounded (on {r ≤ π
3
}) by some O(e−εl/t) function

for some εl > 0.

Note that it is important for this analytical estimate to hold to be away from
the cut-locus M ⊆ S2 × S2. Since the log-singularity is integrable in d = 2, we
have (recall the definition of Q̂ from (6.9))

Q̂(t, x) =

∫
S2

χ(t, y)pS
2

|t|(0, y) log[
1

2
sin−1(

d(x, y)

2
)]VolS2(dy)

=

∫ π/3

0

∫ 2π

0

χ(t, reiθ)pS
2

|t|(r) log[
1

2
sin−1(

d(x, y)

2
)] sin(r)drdθ

Proof of the lower bound in (6.7).

This bound is easier, as dS2(x, y) ≤ ‖x−y‖2 which implies log[1/2 sin−1(dS2(x, y)/2)] ≥
log[1/2 sin−1(‖x−y‖2/2)]. Furthermore, it turns out that for any t > 0 and r ≥ 0,
we have

pS
2

t (r) ≥ pR
2

t (r) .

This is a consequence of the parabolic Harnack inequality in curved spaces. See
for example [Bau]. If one does not want to rely on this inequality, one can use
instead the above Proposition 6.7 and proceed as for the upper bound below. We
get

Q̂(t, x) ≥
∫ π/3

0

∫ 2π

0

χ(t, reiθ)pR
2

|t| (r) log[
1

2 sin(‖x− reiθ‖2/2)
] sin(r)drdθ

≥
∫ π/3

0

∫ 2π

0

χ(t, reiθ)pR
2

|t| (r) log
1

‖x− reiθ‖2

(r −O(r3))drdθ

The integral corresponding to integrating rdr is exactly the kernel in the flat
torus T2 which is analyzed by scaling arguments in Lemma 3.9 in [HS16]. It
remains to justify that the remaining term corresponding to integrating O(r3)dr
is negligible. It is not hard to check that uniformly in x = r′eiθ

′ with r′ ≤ π/3,
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one has∫ π/3

0

∫ 2π

0

χ(t, reiθ)pR
2

|t| (r) log
2

‖x− reiθ‖2

r3drdθ ≤ O(1)

∫ π/3

0

pR
2

|t| (r) log
1

r
r3dr

≤ O(1)

∫ π/3

0

1

2πt
e−r

2/(2t) log
1

r
r3dr

≤ O(1)|t| log 1/|t|

≤ O(1)‖z‖2
s log

1

‖z‖s
(6.13)

Such an estimate on the deviation from QT2 together with Lemma 3.9 in [HS16]
implies a lower bound for (6.7). As in [HS16], it easily transfers to the regularised
kernel Qε and leads to a lower bound for (6.6).

Proof of the upper bound in (6.7).

We now look for an upper bound on Q close to QT2 . We start by using Lemma
6.6 which gives us

Q̂(t, x) =

∫ π/3

0

∫ 2π

0

χ(t, reiθ)pS
2

|t|(r) log[
1

2 sin(d(x, y)/2)
] sin(r)drdθ

≤
∫ π/3

0

∫ 2π

0

χ(t, reiθ)pS
2

|t|(r)(log[
1

d(x, y)
] + log[1 +O(d(x, y)2)]) sin(r)drdθ

≤
∫ π/3

0

∫ 2π

0

χ(t, reiθ)pS
2

|t|(r)[log
1

‖x− reiθ‖2

+ C(r2 + r′2)]rdrdθ

where we used in the last inequality Lemma 6.6, log(1/(1− x)) ≤ Cx, d(x, y)2 ≤
r2 + r′2 and sin(r) ≤ r. Since pS2

|t|(·) integrates to 1 on S2 and since x = r′eiθ
′ , the

integral corresponding to the term r′2 is bounded by O(‖z‖2
s) while the integral

corresponding to r2, as for the lower bound in (6.13), is bounded by |t| ≤ ‖z‖2
s .

As such, up to a ‖z‖2
s correction term, it remains to bound from above,∫ π/3

0

∫ 2π

0

χ(t, reiθ)pS
2

|t|(r) log
1

‖x− reiθ‖2

.

We shall use for this the estimate form Proposition 6.7 which gives us

pS
2

t (r) = pR
2

t (r)
(√ r

sin(r)
+O∞(t)

)
+O∞(e−1/t)

≤ pR
2

t (r)(1 + Cr2 + C ′t) +O(e1/t)

Using the same earlier computation (6.13) and the fact that |t| ≤ ‖z‖2
s , we obtain

together with our previous lower bound that

Q(t, x) = Q̂(t, x) +R(t, x)

=

∫ π/3

0

∫ 2π

0

χ(t, reiθ)pR
2

|t| (r) log
2

‖x− reiθ‖2

rdrdθ +O(‖z‖2
s log

1

‖z‖s
) +R(z)

= Q̂T2(z) +R(z) +O(‖z‖2
s log

1

‖z‖s
) ,
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if, say, one chooses the same approximation of identity χ(t, x) on T2 and S2.
Using Lemma 3.1 from [HS16], we readily obtain the estimate (6.5) with an error
in O(ε2 log 1

ε
) (as opposed to O(ε2) in [HS16]).

To finish the proof of Lemma 6.5, it only remains to establish the estimate (6.8)
which, as pointed out in Lemma 3.7. in [HS16], follows easily from the Lemma
stated below. 2

Lemma 6.8. By denoting space-time points z = (t, x) = (t, reiθ) in the normal
coord. syst. (6.12), we have

|∂rQ(z)| ≤ C/‖z‖s and |∂tQ(z)| ≤ C/‖z‖2
s (6.14)

which can be more concisely written as |∂iQ(z)| ≤ C/‖z‖sis .

We shall use the expression (recall (6.9))

Q̂(t, x) =

∫
S2

χ(t, y)pS
2

|t|(0, y) log[
1

2
sin−1(

d(x, y)

2
)]VolS2(dy)

It is clear one can differentiate under the integral sign here, which gives us the
bound

|∂rQ(t, x)| ≤ C

∫
S2

χ(t, y)pS
2

|t|(0, y)
1

d(x, y)
VolS2(dy) + |∂rR(z)|

From the properties of the heat kernel pS2

t we readily get that it is bounded by

O(1)
1√

t+ d(0, x)
= O(1)

1

‖z = (t, x)‖1
s

.

Now for the ∂t derivative, instead of differentiating under the integral sign the
spherical heat kernel pS2

t (0, r) (which would require unecessary detailed estimates),
we use instead the identity

∂tQ(z) =
1

2
∆Q+ (smooth. corr.)R̃(z) .

The same analysis as the above one (using, say, the expression of ∆S2f from (6.11))
shows that |∆Q(z)| ≤ O(1) 1

‖z‖2s
which concludes our proof. 2

6.3. Multi-fractal spectrum of eγΦ on the sphere. Let us now briefly outline
why the same moment bounds as in Proposition 3.2 extend to the curved case
of R× S2. (In particular, we get Proposition 2.12 on the sphere). As in Section
3, the main step is to obtain a uniform control of qth-moments on macroscopic
domains. For example the fact that for any γ < γ̂c = 2

√
2 and any q < 8/γ2 (this

is the direct analog of Lemma 3.4),

sup
ε>0

E
[
(

∫
D=[0,1]×S2

Θε)
q
]
<∞ .

The proof of this estimate follows the same lines as on the flat case (Kahane
convexity inequality obviously holds in this setting as well). The only difference is
that one cannot rely on an exact scaling argument as in Lemma 3.7. To overcome
this lack of exact scale invariance, one may rely on a suitably chosen δ-grid
covering [0, 1]× S2. As in the flat-case, the δ-parabolic tiles will be [0, δ2]-long
in time. To handle the curved nature of the space-variable, one may rely for
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example on a particularly isotropic δ-grid for the sphere, known as the spherical
geodesic grid. This gives a mostly-isotropic tiling of S2 made of O(δ−2) geodesic
δ-hexagons and only 12 δ-pentagons at macroscopic distance from each other
(forming a icosahedron). Now, as δ → 0, each geodesic δ-hexagon is very well
approximated by an euclidean δ-hexagon (with similar quantitative distortion
bounds as in Lemma 6.6). One can then compare the covariance of the field Φδε(z)
on R× S2 with the flat case as in Lemma 3.7 up to an additive error of log 1

1−Cδ2

which follows from (the analog of) Lemma 6.6. Then, this allows via Kahane
convexity inequality to compare the qth moments in these geodesic δ-hexagons
with the qth moments in the flat case. Taking δ → 0 with careful uses of the
triangular inequality for Lq, the proves the desired estimate.

N.B. In fact as we have a lot of margin as δ → 0, instead of using the above
spherical geodesic partition grid, one may as well rely on sufficiently many
translates of unions of δ-circles which altogether cover S2 (the point is that we do
not need a partition of S2, some overlap is fine). This way, it is enough to apply
directly Lemma 6.6.

These were the main differences between T2 and S2, the rest of the proof of
Theorem 1.9 proceeds exactly as in Sections 2 and 3 modulo the existence of a
spherical Schauder estimate, which is the subject of the next remark.

Remark 6.9. As pointed to us by Nikolay Tzvetkov, a parabolic Schauder estimate
such as Proposition 2.6 should extend to the case of the sphere using the works
[BGT04, ORT19]. For example the later paper constructs Besov spaces on
manifolds without boundary and Proposition 2.5. from [ORT19] shows that these
Besov spaces are locally as in the flat Euclidean case (in quantitative terms).
This should imply the desired parabolic regularity estimate (Proposition 2.6) in
the case of the sphere S2.

7. Comparison with Sine-Gordon and use of regularity structures

To conclude the paper, let us make a comparison with the Sine-Gordon
SPDE (1.2) and in particular the use of regularity structures in [HS16]. See
also the more recent work [CHS18] which pushed the analysis all the way to
β2 = 8π.

• We started by analyzing the “Da Prato-Debussche” phase γ < γdPD =
2
√

2−
√

6 which corresponds to the regime β2 < 4π in Sine-Gordon. (This
corresponds to Section 3 in [HS16]).
• In [HS16], in order to push the existence of local solutions of (1.2) to higher
values of β (namely β2 < 16

3
π), second-order processes are analysed and

used within the framework of regularity structures from [Hai14a]. These
second-order processes correspond to re-centred versions of Ψε(K ∗Ψε) =
: eiβΦε : (K∗ : eiβΦε : ) (see sections 4,5 in [HS16]). It seems very likely that
a similar (tedious) analysis analogous to sections 4,5 in [HS16] (plus the
fact one is lacking of arbitrary high moments here) should be doable in
the Liouville case for an appropriate re-centred version of the second order
processes Θε(K ∗Θε). If so and once plugged into the regularity structures
machinery, this would push the local existence for (1.5) (in a stronger
sense than in Theorem 1.11) for all γ < γ(2), where γ(2) is the smallest
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solution to 4 + 3(γ
2

2
− 2
√

2γ) = 0. This threshold γ(2) would be the analog
of β(2) :=

√
16π/3 in [HS16].

• For Sine-Gordon, in order to push the local existence to higher values of β,
higher-order processes would need to be analyzed. The suitable analysis
of kth-order processes should in principle enable to define the Sine-Gordon
SPDE all the way to β(k), largest solution of

2k − (k + 1)
β2

4π
= 0 .

We see here that β(k) indeed converges to βc =
√

8π as the order k →∞.
In the Liouville case, one could then expect to define local solutions
for (1.5) all the way to γ(k), smallest solution to

2k + (k + 1)(
γ2

2
− 2
√

2γ) = 0 .

As the regularity function γ2

2
− 2
√

2γ reaches regularity −2 precisely at
γpos = 2

√
2 − 2, this means that γ(k) →k→∞ γpos. Interestingly, this

means that in our Theorem 1.11 (where we used the positivity of the non-
linearity), we obtained the same threshold as what an arbitrary high-order
regularity structure analysis would potentially give (with the drawback as
mentioned earlier that we do not have a convergence result Xε → X in
Theorem 1.11, while such a stability result would follow from regularity
structures).

Question 7.1. It is then an interesting problem to know whether γpos is the
critical value above which the Liouville SPDE (1.5) would become super-critical,
or whether local existence can be pushed yet to higher values of γ by some other
means. See also the discussion on intermittency and misleading subcriticality in
Subsection 1.5.

Appendix A. Regularity estimates on Multiplicative chaos by
direct moment computations

We give here a different proof for the (integer) polynomial moments of Gaussian
multiplicative chaos which is not based on Kahane’s convexity inequality. It is
only a particular case of our Proposition 3.2 but it has the advantage of being
less technical and more importantly, it highlights the similarities/differences with
Sine-Gordon ([HS16]). See also the appendix A in [HQ18] which deals with more
general kernels. (In particular our case satisfies their assumption (A.2) and is
thus covered by their results).

Proposition A.1 (Analog of Theorem 3.2 in [HS16]). For any γ ∈ [0, 2), any
integer 1 ≤ N < Nc(γ) = 8

γ2 and any κ > 0 sufficiently small, one has

E
[
〈φλx,Θε〉N

]
. λ−

γ2

2
N(N−1) (A.1)

E
[
|〈φλx,Θε −Θε̄〉|2

]
. (ε ∧ ε̄)2κλ−2κ−γ2

, (A.2)
uniformly over all test functions φ supported in the unit ball and bounded by 1, all
λ ∈ (0, 1], and locally uniformly over space-time points x ∈ R×T2 or x ∈ R× S2.
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Proof. The second estimate follows almost verbatim from [HS16, Equation (3.12)].
Let us then focus on the first estimate.

Since the distribution Θε ≥ 0 is not oscillatory, it makes the dependence on
the test functions φ much easier to handle: for any test function φ:

E
[
〈φλx,Θε〉N

]
≤ ‖φ‖∞λ−4NE

[
(

∫
Λ(x,λ)

Θε(x)dx)N
]

≤ λ−4N

∫
Λ(x,λ)N

∏
1≤i<j≤N

exp(γ2Qε(zi − zj))dz

Using Lemma 3.1, this gives us the bound

E
[
〈φλx,Θε〉N

]
≤ O(1)λ−4N

∫
Λ(x,λ)N

1∏
1≤i<j≤N(‖zi − zj‖s + ε)γ2 dz

Remark A.2. Note here that as opposed to the Coulomb-gas like case in the proof
of Theorem 3.2 in [HS16], there is no vanishing numerator here which produces
important cancellations. This absence of cancellations is due to a real-valued γ
instead of iβ and is the reason for the intermittent behaviour.

Now by making the following parabolic change of variable

z = (z0, z1, z2) = λ · w := (λ2w0, λw1, λw2)

we have that ‖λ · w‖s = λ‖w‖s and we obtain the following upper bound:

E
[
〈φλx,Θε〉N

]
≤ λ−

γ2

2
N(N−1)

∫
ΛN0

∏
1≤i<j≤N

1

(‖wi − wj‖s + ε
λ
)γ2 dw ,

where Λ0 denotes the parabolic ball Λ(0, 1) of radius 1. It remains to argue that
this integral behaves well when γ2 < 4 uniformly in ε > 0. This will follow readily
from Lemma A.3 below (which deals at once the uniformity in ε, λ).

Lemma A.3. For all 0 ≤ γ < 2 and all integer 1 ≤ N < Nc(γ) = 8
γ2

4, there is
a constant Cγ,N <∞, such that∫

ΛN0

∏
1≤i<j≤N

1

‖wi − wj‖γ
2

s

< Cγ,N .

Proof. Let us first prove this Lemma for the unit ball Λ0 for the parabolic distance
‖ · ‖s on R×R2, we will briefly discuss below how it adapts on S2. We proceed by
induction on the integer N ≥ 1. It is straightforward to check that the estimate
holds when N = 1 < 8

γ2 . Suppose now 2 ≤ N < 8
γ2 and assume the Lemma holds

for N − 1.
Let us introduce the following quantity which will have nice scaling properties:

for each 0 < ε < L, define

Iε,L,N :=

∫
w2,...,wN∈(Rd+1)N−1

infi 6=j ‖wi−wj‖s≥ε
supi(‖wi‖s)≤L

∏
1≤i<j≤N

1

‖wi − wj‖γ
2

s

dw2 . . . dwN ,

where w1 denotes here the origin.

4In the spatial case, the corresponding threshold on the exponent is 4
γ2
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Let us analyze the behaviour of Iε,L,N as ε↘ 0. For this, note that

I ε
2
,L,N = I ε

2
,L

2
,N +

∫
w2,...,wN∈(Rd+1)N−1

infi 6=j ‖wi−wj‖s≥ε/2
supi(‖wi‖s)∈(L/2,L]

∏
1≤i<j≤N

1

‖wi − wj‖γ
2

s

dw2 . . . dwN (A.3)

The first term on the R.H.S is equal by scaling to (1/2)4(N−1)2γ
2(N2 )Iε,L,N . By our

assmption on N, γ, we can find δ > 0 so that independently of ε, L,

I ε
2
,L

2
,N ≤ (1− δ)Iε,L,N .

This contraction type of bound will allow us to conclude. For the second term
on the R.H.S of (A.3), notice that after a possible reordering of points, one can
find k ∈ {1, . . . , N − 1} s.t. the cloud of points {w1 = 0, . . . , wk} is at distance
at least L/(2N) from the cloud of points {wk+1, . . . , wN}. The first cloud of
points contributes at most I ε

2
,L,k while the second contributes at most I ε

2
,2L,N−k.

Both of these bounds are easily seen to be uniformly bounded from above by our
recursion hypothesis. Now, the interaction between the two clouds is less than
(2N/L)γ

2k(N−k) and the combinatorial term coming from the reordering it at most
N !. Recollecting, we find a constant M = Mγ,L,N <∞ such that for all ε < L,

I ε
2
,L,N ≤ (1− δ)Iε,L,N +Mγ,L,N

which shows that lim supε→0 Iε,L,N <∞. By writing
∫

ΛN0

∏
1≤i<j≤N

1

(‖wi−wj‖s+ ε
λ

)γ2 dw

as an integral over w1 of N − 1-dimensional integrals and using a similar decom-
position as above, we conclude the proof of the Lemma. For the case of R× R2,
it is enough to use a cut-off L large enough (for example L = 1). In the case of
the sphere S2, the scaling argument does not have the same Jacobian everywhere.
In that case it is of interest to use a cut-off L = L(γ,N) sufficiently small so that
one has I ε

2
,L

2
,N ≤ (1− δ)Iε,L,N by approximate scaling. Then to get back to the

integral in the Lemma, one can decompose as in (A.3). 2
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