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As an extension of a central limit theorem established by Svante Janson, we prove a Berry-Esseen inequality for a sum of independent and identically distributed random variables conditioned by a sum of independent and identically distributed integer-valued random variables.

Introduction

As pointed out by Svante Janson in his seminal work [START_REF] Janson | Moment convergence in conditional limit theorems[END_REF], in many random combinatorial problems, the interesting statistic is the sum of independent and identically distributed (i.i.d.) random variables conditioned on some exogenous integer-valued random variable. In general, the exogenous random variable is itself a sum of integer-valued random variables. Here, we are interested in the law of

N -1 (Y 1 + • • • + Y N ) conditioned on a specific value of X 1 + • • • + X N that is to say in the conditional distribution L N := L(N -1 (Y 1 + • • • + Y N ) | X 1 + • • • + X N = m),
where m and N are integers and the (X i , Y i ) for 1 i N are i.i.d. copies of a vector (X, Y ) of random variables with X integer-valued. In [START_REF] Janson | Moment convergence in conditional limit theorems[END_REF], Janson proves a general central limit theorem (with convergence of all moments) for this kind of conditional distribution under some reasonable assumptions and gives several applications in classical combinatorial problems: occupancy in urns, hashing with linear probing, random forests, branching processes, etc. Following this work, one natural question arises: is it possible to obtain a general Berry-Esseen inequality for these models?

The first Berry-Esseen inequality for a conditional model is given by Malcolm P. Quine and John Robinson in [START_REF] Quine | A Berry-Esseen bound for an occupancy problem[END_REF]. They study the particular case of the occupancy problem, i.e., the case when the random variable X is Poisson distributed and Y = ½ {X=0} . Up to our knowledge, it is the only result in that direction for this kind of conditional distribution. Our paper is organized as follows. In Section 2, we present the model and we state our main results (Theorems 3 and 5). In Section 3, we describe classical examples. The last section is dedicated to the proofs.

Conditional Berry-Esseen inequality

For all n 1, we consider a vector of random variables (X n , Y n ) such that X n is integer-valued and Y n realvalued. Let N n be a natural number such that N n → ∞ as n goes to infinity. Let (X n,i , Y n,i ) 1 i Nn be an i.i.d. sample distributed as (X n , Y n ) and define

S n,k := k i=1 X n,i and T n,k := k i=1 Y n,i ,
for k ∈ 1, N n . To lighten notation, define S n := S n,Nn and T n := T n,Nn . Let m n ∈ Z be such that P(S n = m n ) > 0. The purpose of the paper is to prove a Berry-Esseen inequality for the conditional distributions

L(U n ) := L(T n |S n = m n ).
Assumption 1. Suppose that there exist positive constants c 1 , c2 , c 2 , c 3 , c4 , c 4 , c 5 , c 6 , c 7 , and η 0 , such that:

(A1) γ n := 2πσ Xn N 1/2 n P(S n = m n ) c 1 ; (A2) c2 σ Xn := Var (X n ) 1/2 c 2 ; (A3) ρ Xn := E |X n -E[X n ]| 3 c 3 σ 3 Xn ; (A4) c4 σ Yn := Var (Y n ) 1/2 c 4 ; (A5) ρ Yn := E |Y n -E[Y n ]| 3 c 5 σ 3 Yn ; (A6) the correlations r n := Cov (X n , Y n ) σ -1 Xn σ -1 Yn satisfy |r n | c 6 < 1; (A7) for Y ′ n := Y n -E[Y n ] -Cov(X n , Y n )σ -2 Xn (X n -E[X n ]), for all s ∈ [-π, π],
and for all t ∈ [-η 0 , η 0 ],

E e i(sXn+tY ′ n ) 1 -c 7 σ 2 Xn s 2 + σ 2 Y ′ n t 2 .
Obviously, Assumption 1 is very close to the set of assumptions of the central limit theorem established in [START_REF] Janson | Moment convergence in conditional limit theorems[END_REF]Theorem 2.3]. In particular, (A1) is a consequence of

m n = N n E[X n ] + O σ Xn N 1/2 n
, (A3), and (A7) (see the proof of Theorem 2.3 in [START_REF] Janson | Moment convergence in conditional limit theorems[END_REF]). By [START_REF] Janson | Moment convergence in conditional limit theorems[END_REF]Lemma 4

.1.], σ 2 Xn 4E[|X -E[X]| 3 ]
, so c2 can be chosen as 1/(4c 3 ). (A6) is not very restricting and holds in the examples provided in Section 3. Following [START_REF] Janson | Moment convergence in conditional limit theorems[END_REF], we introduce Y ′ n in (A7) in order to work with a centered variable uncorrelated with X n . If (X, Y ′ ) is a vector of centered and uncorrelated random variables, then

E e i(sX+tY ′ ) = 1 - 1 2 σ 2 X s 2 + σ 2 Y ′ t 2 + o(s 2 + t 2 ), so (A7) is reasonable if the vectors (X n , Y ′ n ) are identically distributed. Proposition 2. Assume that m n = N n E[X n ] + O σ Xn N 1/2 n , that (X n , Y n ) converges in distribution to (X, Y )
as n → ∞, and that, for every fixed r > 0,

lim sup n→∞ E [|X n | r ] < ∞ and lim sup n→∞ E [|Y n | r ] < ∞.
Suppose further that the distribution of X has span 1 and that Y is not almost surely equal to an affine function c + dX of X. Then, Assumption 1 is satisfied.

The proof is omitted since the proposition relies on Corollary 2.1 and Theorem 2.3 in [START_REF] Janson | Moment convergence in conditional limit theorems[END_REF].

Theorem 3. Under Assumption 1, τ 2 n := σ 2 Yn (1 -r 2 n
) > 0 and we have

sup x∈R P U n -N n E [Y n ] -r n σ Yn σ -1 Xn (m n -N n E [X n ]) N 1/2 n τ n x -Φ(x) C N 1/2 n , ( 1 
)
where Φ denotes the standard normal cumulative distribution function and C is a positive constant that only depends on c2 , c 2 , c 3 , c4 , c 4 , c 5 , c 6 , c 7 , η 0 , and c 1 .

Remark that the standardization of the variables U n involved in [START_REF] Chassaing | Phase transition for parking blocks, Brownian excursion and coalescence[END_REF] is not the natural one. The following theorem fixes this default of standardization. 

E [U n ] -N n E[Y n ] -r n σ Yn σ -1 Xn (m n -N n E[X n ]) d 1 (2) 
and

Var (U n ) -N n τ 2 n d 2 N 1/2 n . ( 3 
)
Theorem 5. Under Assumption 1, we have

sup x∈R P U n -E [U n ] Var (U n ) 1/2 x -Φ(x) C N 1/2 n , ( 4 
)
where C is a constant that only depends on c2 , c 2 , c 3 , c4 , c 4 , c 5 , c 6 , c 7 , η 0 , and c 1 .

Furthermore, as in [START_REF] Janson | Moment convergence in conditional limit theorems[END_REF], the results of Theorems 3 and 5 simplify considerably in the special case when the vector (X n , Y n ) does not depend on n, that is to say when we consider an i.i.d. sequence instead of a triangular array. This is a consequence of Proposition 2.

Classical examples

In this section, we describe the examples mentioned in [START_REF] Janson | Moment convergence in conditional limit theorems[END_REF] and [START_REF] Holst | Two conditional limit theorems with applications[END_REF]. Each of them satisfies the assumptions of Proposition 2, as shown in [START_REF] Janson | Moment convergence in conditional limit theorems[END_REF], leading to a Berry-Esseen inequality.

Occupancy problem

In the classical occupancy problem, m balls are thrown uniformly at random into N urns. The resulting numbers of balls (Z 1 , . . . , Z N ) have a multinomial distribution. It is well known that (Z 1 , . . . , Z N ) is also distributed as (X 1 , • • • , X N ) conditioned on { N i=1 X i = m}, where the random variables X i are i.i.d., with X i ∼ P(λ), for any arbitrary λ > 0. The classical occupancy problem studies the number of empty urns

U = N i=1 ½ {Zi=0} , which is distributed as N i=1 ½ {Xi=0} conditioned on { N i=1 X i = m}. Now, if m = m n → ∞ and N = N n → ∞ with m n /N n → λ ∈ (0, ∞), we can take X n ∼ P(λ n ) with λ n := m n /N n , Y n = ½ {Xn=0} ,
and apply Proposition 2 to obtain a Berry-Esseen inequality for

U n = Nn i=1 ½ {Zi=0} .
Remark. In [START_REF] Quine | A Berry-Esseen bound for an occupancy problem[END_REF], the authors prove a Berry-Esseen inequality for the occupancy problem in a more general setting: the probability of landing in each urn may be different. The tools they developed will be used in the sequel to prove our results.

Remark. Here, we need a result for triangular arrays, and not only for i.i.d. sequences. Indeed, if we took X n = X with X ∼ P(λ), we would only have

m n = N n (λ + o(1)) = N n E[X n ] + o(N n ).
But Proposition 2 requires

m n = N n E[X] + O(N 1/2 n )
, which is stronger. This remark goes for the following examples too.

Bose-Einstein statistics

This example is borrowed from [START_REF] Holst | Two conditional limit theorems with applications[END_REF] (see also [START_REF] Feller | An introduction to probability theory and its applications[END_REF]). Consider N urns and put m indistinguishable balls in the urns in such a way that each distinguishable outcome has the same probability 1/ m+N -1 m . Let Z k be the number of balls in the kth urn. It is well known that (Z 1 , . . . , Z N ) is distributed as (X 1 , . . . , X N ) conditioned on { N i=1 X i = m}, where the random variables X i are i.i.d., with X i ∼ G(p), for any arbitrary p ∈ (0, 1). If 

m = n, N = N n → ∞ with N n /n → p, take X n ∼ G(p n ) with p n = N n /n

Branching processes

Consider a Galton-Watson process, beginning with one individual, where the number of children of an individual is given by a random variable X having finite moments. Assume further that E[X] = 1. We number the individuals as they appear. Let X i be the number of children of the ith individual and S k := k i=1 X i . It is well known (see [START_REF] Janson | Moment convergence in conditional limit theorems[END_REF]Example 3.4] and the references therein) that the total progeny

S N + 1 is N 1 if and only if ∀k ∈ {0, . . . , N -1} S k k and S N = N -1. ( 5 
)
This type of conditioning is different from the one studied in the present paper, but by [18, Corollary 2] and [8, Example 3.4], if we ignore the cyclical order of X 1 , . . . , X N , it is proven that X 1 , . . . , X N have the same distribution conditioned on (5) as conditioned on {S N = N -1}. Applying Proposition 2 with N = n and m = n-1, we obtain a Berry-Esseen inequality for any sequence of variables U n distributed as

T n = n i=1 f (X i ) conditioned on {S n = n-1}. For instance, if f (x) = ½ {x=3} , U n
is the number of individuals with three children given that the total progeny is n.

Random forests

Consider a uniformly distributed random labeled rooted forest with m vertices and N roots with N < m. Without loss of generality, we may assume that the vertices are 1, . . . , m and, by symmetry, that the roots are the first N vertices. Following [START_REF] Janson | Moment convergence in conditional limit theorems[END_REF], this model can be realized as follows. The sizes of the N trees in the forest are distributed as (X 1 , . . . , X N ) conditioned on { N i=1 X i = m}, where the random variables X i are i.i.d. and Borel distributed for any arbitrary parameter µ ∈ (0, 1), i.e.

P(X

i = l) = e -µl (µl) l-1 l!
(see, e.g., [START_REF] Flajolet | On the analysis of linear probing hashing[END_REF] or [START_REF] Janson | Asymptotic distribution for the cost of linear probing hashing[END_REF] for more details). Then, the ith tree is drawn uniformly among the trees of size X i .

Proposition 2 provides a Berry-Esseen inequality for any sequence of variables of the type

U n = Nn i=1 f (Z i )
where N n → ∞ and Z 1 , ..., Z Nn are the sizes of the trees in the forest. For instance, if f (x) = ½ {x=K} , U n is the number of trees of size K in the forest (see, e.g., [START_REF] Kolchin | Random mappings[END_REF][START_REF] Pavlov | Limit theorems for the number of trees of a given size in a random forest[END_REF][START_REF] Pavlov | Random forests[END_REF]).

Hashing with linear probing

Hashing with linear probing is a classical model in theoretical computer science that appeared in the 60's. It has been studied from a mathematical point of view firstly in [START_REF] Knuth | Computer science and its relation to mathematics[END_REF]. For more details on the model, we refer to [START_REF] Flajolet | On the analysis of linear probing hashing[END_REF][START_REF] Janson | Asymptotic distribution for the cost of linear probing hashing[END_REF][START_REF] Marckert | Parking with density[END_REF][START_REF] Chassaing | Phase transition for parking blocks, Brownian excursion and coalescence[END_REF][START_REF] Chassaing | Hachage, arbres, chemins & graphes[END_REF][START_REF] Janson | Individual displacements for linear probing hashing with different insertion policies[END_REF]. The model describes the following experiment. One throws n balls sequentially into m urns at random with m > n; the urns are arranged in a circle and numbered clockwise. A ball that lands in an occupied urn is moved to the next empty urn, always moving clockwise. The length of the move is called the displacement of the ball and we are interested in the sum of all displacements which is a random variable denoted d m,n . After throwing all balls, there are N := m -n empty urns. These divide the occupied urns into blocks of consecutive urns. We consider that the empty urn following a block belongs to this block. Following [START_REF] Knuth | Linear probing and graphs[END_REF][START_REF] Flajolet | On the analysis of linear probing hashing[END_REF], Janson [START_REF] Janson | Asymptotic distribution for the cost of linear probing hashing[END_REF] proves that the lengths of the blocks and the sums of displacements inside each block are distributed as (X 1 , Y 1 ), ..., (X N , Y N ) conditioned on { N i=1 X i = m}, where the random vectors (X i , Y i ) are i.i.d. copies of a vector (X, Y ) of random variables: X being Borel distributed with any arbitrary parameter µ ∈ (0, 1) and Y given {X = l} being distributed as d l,l-1 . In particular, d m,n is distributed as

N i=1 Y i conditioned on { N i=1 X i = m}. If m = m n → ∞ and N = N n = m n -n → ∞ with n/m n → µ ∈ (0, 1)
, we take X n following Borel distribution with parameter µ n := n/m n to get a Berry-Esseen inequality for d mn,n , by Proposition 2.

Proofs

Remind that U n is distributed as T n conditioned on {S n = m n }. Following the procedure of [START_REF] Janson | Moment convergence in conditional limit theorems[END_REF], we consider the projection

Y ′ n = Y n -E[Y n ] -Cov(X n , Y n )σ -2 Xn (X n -E[X n ]). Then E[Y ′ n ] = 0 and Cov(X n , Y ′ n ) = E[X n Y ′ n ] = 0.
Besides, (A7) and (A6) are verified by Y ′ n . By (A6), 

σ 2 Y ′ n = σ 2 Yn (1 -r 2 n ) ∈ [c 2 4 (1 -c 2 6 ), c 2 4 ], so ( 
Y ′ n 3 Y n -E[Y n ] 3 + |r n | σ Xn σ Yn σ -2 Xn X n -E[X n ] 3 ρ 1/3 Yn + σ Yn σ -1 Xn ρ 1/3 Xn σ Yn (c 1/3 3 + c 1/3 5 ) σ Y ′ n (1 -c 2 6 ) -1/2 (c 1/3 3 + c 1/3 5 ).
Hence, Y ′ n satisfies (A5). Consequently, all conditions hold for the vector (X n , Y ′ n ) too. Finally,

T ′ n := Nn i=1 Y ′ n,i = T n -N n E[Y n ] -Cov(X n , Y n )σ -2 Xn (S n -N n E[X n ]). So, conditioned on {S n = m n }, we have T ′ n = T n -N n E[Y n ]-r n σ Yn σ -1 Xn (m n -N n E[X n ]
). Hence the conclusions in Theorems 3 and 5 for (X n , Y n ) and (X n , Y ′ n ) are the same. Thus, it suffices to prove the theorems for (X n , Y ′ n ). In other words, we will henceforth assume that

E [Y n ] = E [X n Y n ] = 0, r n = 0 and τ 2 n = σ 2 Yn . Moreover, the constants c ′ 4 , c′ 4 , c ′ 5 , c ′ 6
, and c ′ 7 for (X, Y ′ ) are linked to that of (X, Y ) by the following relations:

c ′ 4 = c 4 , c′ 4 = c4 (1 -c 2 6 ) 1/2 , c ′ 5 = (1 -c 2 6 ) -3/2 (c 1/3 3 + c 1/3 5 ) 3 , c ′ 6 = 0, and c ′ 7 = c 7 .
In the proofs, we omit the primes.

The proofs of Theorems 3 and 5 intensively rely on the use of Fourier transforms through the functions ϕ n and ψ n defined by

ϕ n (s, t) := E [exp {is (X n -E [X n ]) + itY n }] and ψ n (t) := 2πP(S n = m n )E [exp {itU n }] . ( 6 
)
The controls of these functions (respectively the controls of their derivatives) needed in the proofs are postponed to Subection 4.4 in Lemmas 6 and 7 (resp. in Lemma 8). In particular, ( 16), ( 17), [START_REF] Wendel | Left-continuous random walk and the Lagrange expansion[END_REF], and (19) will be used several times in the sequel.

Proof of Theorem 3

We follow the classical proof of Berry-Esseen theorem (see e.g. [START_REF] Feller | An introduction to probability theory and its applications[END_REF]) combined with the procedure in [START_REF] Quine | A Berry-Esseen bound for an occupancy problem[END_REF]. As shown in [START_REF] Loève | Probability theory. Foundations. Random sequences[END_REF] (page 285) or [START_REF] Feller | An introduction to probability theory and its applications[END_REF], the left hand side of ( 1) is dominated by

2 π ησY n N 1/2 n 0 ψ n (uσ -1 Yn N -1/2 n ) 2πP(S n = m n ) -e -u 2 /2 du u + 24σ -1 Yn N -1/2 n ηπ √ 2π ,
where η > 0 is arbitrary. We choose to define

η := min 2 9 (c 4 c 5 ) -1 , η 0 > 0. (7) 
From ( 16) of Lemma 6 and a Taylor's expansion,

u -1 ψ n (uσ -1 Yn N -1/2 n ) 2πP(S n = m n ) -e -u 2 /2 = u -1 e -u 2 /2 e u 2 /2 ψ n (uσ -1 Yn N -1/2 n ) 2πP(S n = m n ) -1 e -u 2 /2 sup 0 θ u ∂ ∂t e t 2 /2 ψ n (tσ -1 Yn N -1/2 n ) 2πP(S n = m n ) t=θ γ -1 n e -u 2 /2 sup 0 θ u πσX n N 1/2 n -πσX n N 1/2 n ∂ ∂t e t 2 /2 ϕ Nn n s σ Xn N 1/2 n , t σ Yn N 1/2 n t=θ ds .
By (A1), γ n c 1 . Now we split the integration domain of s into

A 1 := s : |s| < εσ Xn N 1/2 n and A 2 := s : εσ Xn N 1/2 n |s| πσ Xn N 1/2 n ,
where

ε := min 2 9 (c 2 c 3 ) -1 , π (8) 
and decompose

u -1 ψ n (uσ -1 Yn N -1/2 n ) 2πP(S n = m n ) -e -u 2 /2 sup 0 θ u [I 1 (n, u, θ) + I 2 (n, u, θ)] ,
where 

I 1 (n, u, θ) = γ -1 n A1 e -(u 2 +s 2 )/2 ∂ ∂t e (t 2 +s 2 )/2 ϕ Nn n s σ Xn N 1/2 n , t σ Yn N 1/2 n t=θ ds, (9) 
I 2 (n, u, θ) = γ -1 n e -u 2 /2 A2 ∂ ∂t e t /
ησY n N 1/2 n 0 sup 0 θ u I 1 (n, u, θ)du C 1 N 1/2 n , ( 11 
)
and

ησY n N 1/2 n 0 sup 0 θ u I 2 (n, u, θ)du C 2 N 1/2 n . ( 12 
)
So,

sup x∈R P U n N 1/2 n σ Yn x -Φ(x) C N 1/2 n with C := max C 1 + C 2 + 24 c 4 π √ 2π min 2 9 c 4 c 5 , η 0 -1 , 12 3/2 c 3 , 12 3/2 c 5 , √ 2 .

Proof of Proposition 4

Proof of [START_REF] Chassaing | Hachage, arbres, chemins & graphes[END_REF] We adapt the proof given in [START_REF] Janson | Moment convergence in conditional limit theorems[END_REF]. Using the definition (6) of Ψ n , and differentiating under the integral sign of ( 16) of Lemma 6, we naturally have

|E [U n ]| = -iψ ′ n (0) 2πP(S n = m n ) γ -1 n N n πσX n N 1/2 n -πσX n N 1/2 n ∂ϕ n ∂t s σ Xn N 1/2 n , 0 • ϕ Nn-1 n s σ Xn N 1/2 n , 0 ds.
Using (19) of Lemma 8 with t = 0, (A2), (A3), and (A5), we deduce

∂ϕ n ∂t s σ Xn N 1/2 n , 0 s 2 2 ρ 1/3 Yn ρ 2/3 Xn σ 2 Xn N n c 2/3 3 c 4 c 1/3 5 2N n s 2 .
Then using ( 17) of Lemma 7 (with l = 1 and t = 0) and for N n 3,

πσX n N 1/2 n -πσX n N 1/2 n ∂ϕ n ∂t s σ Xn N 1/2 n , 0 • ϕ Nn-1 n s σ Xn N 1/2 n , 0 ds c 2/3 3 c 4 c 1/3 5 2N n +∞ -∞
s 2 e -2c7s 2 /3 ds.

So, (2) holds with

d 1 := 2 -1 c 2/3 3 c 4 c 1/3 5 c -1 1 +∞ -∞
s 2 e -2c7s 2 /3 ds.

Proof of (3) Since τ 2 n = σ 2 Yn and E [U n ] is bounded, it suffices to show that the quantity E U 2 n -N n σ 2 Yn is bounded by some d ′ 2 N 1/2 n
to prove [START_REF] Feller | An introduction to probability theory and its applications[END_REF]. Proceeding as done previously,

E U 2 n = -ψ ′′ n (0) 2πP(S n = m n ) = -γ -1 n N n (N n -1) πσX n N 1/2 n -πσX n N 1/2 n e -isvn ∂ϕ n ∂t s σ Xn N 1/2 n , 0 2 ϕ Nn-2 n s σ Xn N 1/2 n , 0 ds (13) -γ -1 n N n πσX n N 1/2 n -πσX n N 1/2 n e -isvn ∂ 2 ϕ n ∂t 2 s σ Xn N 1/2 n , 0 ϕ Nn-1 n s σ Xn N 1/2 n , 0 ds ( 14 
)
where

v n := (m n -N n E [X n ])/(σ Xn N 1/2 n ). ( 15 
)
First, by (19) of Lemma 8 with t = 0 and by ( 17) of Lemma 7 (with l = 2 and t = 0), one has, for N n 3,

πσX n N 1/2 n -πσX n N 1/2 n ∂ϕ n ∂t s σ Xn N 1/2 n , 0 2 ϕ Nn-2 n s σ Xn N 1/2 n , 0 ds c 4/3 3 c 2 4 c 2/3 5 4N 2 n +∞ -∞
s 4 e -c7s 2 /3 ds.

Finally, by (A1), the term ( 13) is bounded by

d ′′ 2 := c 4/3 3 c 2 4 c 2/3 5 4c 1 +∞ -∞
s 4 e -c7s 2 /3 ds.

Second, we study the term [START_REF] Marckert | Parking with density[END_REF]. We want to show that

∆ n := γ -1 n πσX n N 1/2 n -πσX n N 1/2 n e -isvn ∂ 2 ϕ n ∂t 2 s σ Xn N 1/2 n , 0 ϕ Nn-1 n s σ Xn N 1/2 n , 0 ds + σ 2 Yn is bounded by some d ′′′ 2 /N 1/2
n . By [START_REF] Pavlov | Random forests[END_REF] with t = 0,

πσX n N 1/2 n -πσX n N 1/2 n e -isvn ϕ Nn n s σ Xn N 1/2 n , 0 ds = 2πP(S n = m n )σ Xn N 1/2 n = γ n , so ∆ n = γ -1 n πσX n N 1/2 n -πσX n N 1/2 n e -isvn ∂ 2 ϕ n ∂t 2 s σ Xn N 1/2 n , 0 + σ 2 Yn ϕ n s σ Xn N 1/2 n , 0 ϕ Nn-1 n s σ Xn N 1/2 n , 0 ds = γ -1 n πσX n N 1/2 n -πσX n N 1/2 n e -isvn E Y n 2 f (s) • ϕ Nn-1 n s σ Xn N 1/2 n , 0 ds where f (s) = -e isσ -1 Xn N -1/2 n (Xn-E[Xn]) -E e isσ -1 Xn N -1/2 n (Xn-E[Xn])
.

Applying Taylor's theorem yields

|f (s)| |s| sup u -i X n -E[X n ] σ Xn N 1/2 n e iuσ -1 Xn N -1/2 n (Xn-E[Xn]) +E i X n -E[X n ] σ Xn N 1/2 n e iuσ -1 Xn N -1/2 n (Xn-E[Xn]) |s| N 1/2 n X n -E[X n ] σ Xn + E X n -E[X n ] σ Xn .
Thus, using Hölder's inequality,

E[Y n 2 f (s)] |s| N 1/2 n E Y n 2 X n -E[X n ] σ Xn + E X n -E[X n ] σ Xn σ 2 Yn |s| N 1/2 n ρ 2/3 Yn σ 2 Yn ρ 1/3 Xn σ Xn + 1 |s| c 2 4 N 1/2 n c 2/3 5 c 1/3 3 + 1
where the last inequality is obtained using (A2), (A3), (A4), and (A5). Now, by (A1) and the upper bound in [START_REF] Quine | A Berry-Esseen bound for an occupancy problem[END_REF] (with l = 1 and t = 0), we get, for N n 3,

|∆ n | c 2 4 c 1 N 1/2 n c 2/3 5 c 1/3 3 + 1 +∞ -∞ |s| e -s 2 c7(Nn-1)/Nn ds d ′′′ 2 N 1/2 n , with d ′′′ 2 := c 2 4 c -1 1 (c 2/3 5 c 1/3 3 + 1) +∞ -∞
|s| e -2s 2 c7/3 ds.

Finally, Var(U n ) -N n σ 2 Yn (d 2 1 + d ′′ 2 + d ′′′ 2 )N 1/2 n =: d 2 N 1/2 n .
Then the proof of (3) is complete.

Proof of Theorem 5

Write

P U n -E[U n ] Var (U n ) 1/2 x -Φ(x) P U n N 1/2 n σ Yn a n x + b n -Φ(a n x + b n ) + |Φ(a n x + b n ) -Φ(x)|
where

a n := Var(U n ) 1/2 N 1/2 n σ Yn and b n := E[U n ] N 1/2 n σ Yn .
The previous estimates of E[U n ] and Var(U n ) yield,

|a n -1| a 2 n -1 d 2 c-2 4 N -1/2 n and |b n | d 1 c-1 4 N -1/2 n . Then for N 1/2 n 2c -2 4 d 2 ,
a n 1/2 and applying Taylor's theorem to Φ, one gets

|Φ(a n x + b n ) -Φ(x)| |(a n -1)x + b n | sup t e -t 2 /2 √ 2π N -1/2 n √ 2π max(d 2 c-2 4 , d 1 c-1 4 )(|x| + 1)e -(|x|/2-d1c -1
the supremum being over t between x and a n x + b n . The last function in x being bounded, we can define

C ′ := 1 √ 2π max(d 2 c-2 4 , d 1 c-1 4 ) sup x∈R (|x| + 1)e -(|x|/2-d1c -1 4 ) 2 /2 .
Finally, we apply (1) and ( 4) holds with C := C + max(C ′ , 2c -2 4 d 2 ).

Technical results

Recall that

v n = (m n -N n E [X n ])/(σ Xn N 1/2 n ) and γ n = 2πP(S n = m n )σ Xn N 1/2 n . Moreover, ϕ n (s, t) = E [exp {is (X n -E [X n ]) + itY n }] and ψ n (t) = 2πP(S n = m n )E [exp {itU n }] .
Lemma 6. One has

ψ n (t) = 1 σ Xn N 1/2 n πσX n N 1/2 n -πσX n N 1/2 n e -isvn ϕ Nn n s σ Xn N 1/2 n , t ds (16) Proof. Indeed, since π -π
e is(Sn-mn) ds = 2π½ {Sn=mn} , we have .

ψ n (t) = 2πP(S n = m n )E [exp {itU n }] = 2πE exp {itT n } ½ {Sn=mn} = π -π E [exp {is (S n -m n ) + itT n }] ds = π -π e -is(mn-NnE[Xn]) ϕ Nn n (s,
We conclude to (18) using

|f (s, t) -f (0, 0)| |s| sup θ,θ ′ ∈[0,1] ∂f ∂s (θs, θ ′ t) + |t| sup θ,θ ′ ∈[0,1] ∂f ∂t (θs, θ ′ t)
and to (19) using

|f (s, t) -f (0, 0)| |s| ∂f ∂s (0, 0) + |t| ∂f ∂t (0, 0) + s 2 2 sup θ,θ ′ ∈[0,1] ∂ 2 f ∂ 2 s (θs, θ ′ t) + |st| sup θ,θ ′ ∈[0,1] ∂ 2 f ∂t∂s (θs, θ ′ t) + t 2 2 sup θ,θ ′ ∈[0,1] ∂ 2 f ∂ 2 t (θs, θ ′ t) .
The partial derivatives of f are estimated by mixed moments of X n and Y n and then bounded above by Hölder's inequality.

The following lemma is a result due to Remark. We make explicit the constant C 4 appearing at the end of the proof of Lemma 2 in [START_REF] Quine | A Berry-Esseen bound for an occupancy problem[END_REF]. For all v and s in R 2 as defined in [START_REF] Quine | A Berry-Esseen bound for an occupancy problem[END_REF], one has

(|v| + 2 |s|) (|v| + |s| + 1) 3 (ℓ 1,n + ℓ 2,n ) e -(v 2 +s 2 )/24 108 • √ 6 • e -1/2 161. By (A2) and (A3), l 1,n c 3 N -1/2 n c 2 c 3 σ -1 Xn N -1/2 n , which implies that σ Xn N 1/2 n c 2 c 3 l -1 1,n . Similarly, l 2,n c 5 N -1/2 n c 4 c 5 σ -1 Yn N -1/2 n ,
and σ Yn N 1/2 n c 4 c 5 l -1 2,n . Now we are able to establish (11). Lemma 10. There exists a positive constant C 1 , only depending on c 3 , c 5 , c 1 such that, for N n 12 3 max(c 2 3 , c 2 5 ),

ησY n N 1/2 n 0 sup 0 θ u I 1 (n, u, θ)du C 1 N 1/2 n .
Proof. The definitions of η in [START_REF] Janson | Asymptotic distribution for the cost of linear probing hashing[END_REF] and ε in (8) imply that, for s ∈ A 1 and u and θ as in the integral in the statement above, one has

|s| < εσ Xn N 1/2 n 2 9 l -1 1,n and |θ| |u| ησ Yn N 1/2 n 2 9 l -1 2,n ,
which ensures that (s, θ) ∈ R as specified in Lemma 9. Moreover, for N n 12 3 max(c 2 3 , c 2 5 ), l 1,n 12 -3/2 and l 2,n 12 -3/2 . Now using Lemma 9 in (9) and by (A1), we get (|s| + |u| + 1) 3 e -(s 2 +u 2 )/24 dsdu.

Remark. Actually, Lemma 10 is valid as soon as N n max(c 2 3 , c 2 5 ): the constants in the proof of Lemma 2 in [START_REF] Quine | A Berry-Esseen bound for an occupancy problem[END_REF] . The result follows, writing

C ′ 2 e -C ′′ 2 Nn = C ′ 2 (C ′′ 2 ) -1/2 N 1/2 n (C 3 N n ) 1/2 e -C3Nn C ′ 2 (C ′′ 2 ) -1/2 N 1/2 n (1/2) 1/2 e -1/2 =: C 2 N 1/2 n
, since x 1/2 e -x is maximum in 1/2.

Proposition 4 .

 4 Under (A1), (A3), (A4), (A5), and (A7), there exist two positive constants d 1 and d 2 depending only on c 3 , c 4 , c 5 , c 7 , and c 1 such that, for N n 3,

  to obtain a Berry-Esseen inequality for any sequence of variables of the type U n = Nn i=1 f (Z i ).

  A4) is satisfied by Y ′ n . Finally, by Minkowski inequality, (A3) and (A5), and the fact that |r n | 1,

ησY n N 1 I 1 2 (

 112 (n, u, θ)du γ -1 n C 4 (l 1,n + l 2,n ) ησY n N 1/2 n 0 A1 (|s| + |u| + 1) 3 e -(s 2 +u 2 )/24 dsdu N -1/2 n c -1 1 C 4 (c 3 + c 5 ) R |s| + |u| + 1) 3 e -(s 2 +u 2 )/24 dsduand the result follows withC 1 := c -1 1 C 4 (c 3 + c 5 ) R 2

ησY n N 1 2 Xn 2 /2c 7 min 2 9 (c 2 c 3 )

 12293 2u)e -min(1,c7)u 2 /2-s 2 c7/2 dsdu e -Nnc7ε 2 σ -1 , π 2

  Lemmas 10 and 11 state that there exists positive constants C 1 and C 2 , only depending on c2 , c 2 , c 3 , c 5 , c 7 , and c 1 , such that, for N n max(12 3 c 2 3 , 12 3 c 2 5 , 2),

	2 ϕ Nn n	s σ Xn N	1/2 n	,	t σ Yn N	n 1/2	t=θ	ds.	(10)

  t)ds, which leads to[START_REF] Pavlov | Random forests[END_REF] after the change of variable s ′ = sσ Xn N Proof. The proof is a mere consequence of the inequality 1 + x e x that holds for any x ∈ R.

														1/2 n .
	Now we give controls on the function ϕ n and its partial derivatives (see Lemmas 7 and 8).
	Lemma 7. Under (A7), for any integer l 0, |s| πσ Xn N	1/2 n , and |t| η 0 σ Yn N	1/2 n , one gets
		ϕ Nn-l n	s σ Xn N	1/2 n	,	t σ Yn N	n 1/2	e -(s 2 +t 2 )•c7•(Nn-l)/Nn .	(17)
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	Proof. We apply Taylor's theorem to the function defined by
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  Quine and Robinson ([17, Lemma 2]).

	Lemma 9. Define	l 1,n := ρ Xn σ -3 Xn N -1/2 n	and		l 2,n := ρ Yn σ -3 Yn N -1/2 n	.
	If l 1,n 12 -3/2 and l 2,n 12 -3/2 , then, for all			
			(s, t) ∈ R := (s, t) : |s| <	2 9	l -1 1,n , |t| <	2 9	l -1 2,n ,
	we have									
	∂ ∂t	e (s 2 +t 2 )/2 ϕ Nn n	s σ Xn N	1/2 n	,	t σ Yn N	1/2 n	C 4 (|s| + |t| + 1) 3 (l 1,n + l 2,n ) exp	11 24	s 2 + t 2 ,
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  can be improved. Now we are able to prove[START_REF] Kolchin | Random mappings[END_REF]. There exists a positive constant C 2 , only depending on c 1 , c2 , c 2 , c 3 , and c 7 such that, for N n 2, We use the controls[START_REF] Quine | A Berry-Esseen bound for an occupancy problem[END_REF] with t = θ and l = 1, (18), and |ϕ n | 1 to get (|s| + 2 |θ|)e θ 2 /2-(s 2 +θ 2 )•c7(Nn-1)/Nn , for s ∈ A 2 and u and θ as in the integral in the statement of the Lemma. Finally, using[START_REF] Knuth | Computer science and its relation to mathematics[END_REF], we get that, for N n 2,

	Lemma 11. ησY n N 1/2 n 0	sup 0 θ u	I 2 (n, u, θ)du	C 2 N n 1/2	.
	Proof. ∂ ∂t	e t 2 /2 ϕ Nn n	s σ Xn N	1/2 n	,	t σ Yn N	1/2 n	t=θ	
	= e θ 2 /2 ϕ Nn-1 n	s σ Xn N	1/2 n	,	θ σ Yn N	1/2 n	• θϕ n	s σ Xn N	1/2 n	,	θ σ Yn N	1/2 n
											+	N σ Yn 1/2 n	∂ϕ n ∂t	s σ Xn N	1/2 n	,	θ σ Yn N	1/2 n

) 2 /2