
HAL Id: hal-01801793
https://hal.science/hal-01801793v1

Submitted on 11 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An association test to detect clustered disease-risk rare
variants

Elodie Persyn, Matilde Karakachoff, Solena Le Scouarnec, Camille Le Clézio,
Dominique Campion, Jean-Jacques Schott, Richard Redon, Lise Bellanger,

Christian Dina

To cite this version:
Elodie Persyn, Matilde Karakachoff, Solena Le Scouarnec, Camille Le Clézio, Dominique Campion,
et al.. An association test to detect clustered disease-risk rare variants. PLoS ONE, 2017, 12 (7),
pp.e0179364. �10.1371/journal.pone.0179364�. �hal-01801793�

https://hal.science/hal-01801793v1
https://hal.archives-ouvertes.fr


RESEARCH ARTICLE

DoEstRare: A statistical test to identify local

enrichments in rare genomic variants

associated with disease

Elodie Persyn1, Matilde Karakachoff1,2, Solena Le Scouarnec1, Camille Le Clézio3,
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Abstract

Next-generation sequencing technologies made it possible to assay the effect of rare vari-

ants on complex diseases. As an extension of the “common disease-common variant” para-

digm, rare variant studies are necessary to get a more complete insight into the genetic

architecture of human traits. Association studies of these rare variations show new chal-

lenges in terms of statistical analysis. Due to their low frequency, rare variants must be

tested by groups. This approach is then hindered by the fact that an unknown proportion of

the variants could be neutral. The risk level of a rare variation may be determined by its

impact but also by its position in the protein sequence. More generally, the molecular mech-

anisms underlying the disease architecture may involve specific protein domains or inter-

genic regulatory regions. While a large variety of methods are optimizing functionality

weights for each single marker, few evaluate variant position differences between cases

and controls. Here, we propose a test called DoEstRare, which aims to simultaneously

detect clusters of disease risk variants and global allele frequency differences in genomic

regions. This test estimates, for cases and controls, variant position densities in the genetic

region by a kernel method, weighted by a function of allele frequencies. We compared

DoEstRare with previously published strategies through simulation studies as well as re-

analysis of real datasets. Based on simulation under various scenarios, DoEstRare was the

sole to consistently show highest performance, in terms of type I error and power both when

variants were clustered or not. DoEstRare was also applied to Brugada syndrome and

early-onset Alzheimer’s disease data and provided complementary results to other existing

tests. DoEstRare, by integrating variant position information, gives new opportunities to

explain disease susceptibility. DoEstRare is implemented in a user-friendly R package.
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Introduction

Genome-wide association studies (GWASs) have identified numerous common haplotypes

associated with a wide variety of complex diseases [1]. However these common variants often

present low effects on disease susceptibility and do not explain the whole heritability [2]. Rare

variants with stronger effects may explain, among other factors, the missing heritability [3].

These variants are defined with a minor allele frequency (MAF) often arbitrarily set between

0.1% and 1%, depending on the disease prevalence.

The huge advances in genome sequencing are now enabling association studies on rare var-

iants. However single-marker tests (consisting in testing each variant individually) are not suit-

able in the context of low-frequency alleles, for which immoderately large sample sizes would

be required to obtain sufficient power to detect association signals. Many specific statistical

methods have thus been developed to test the association between complex diseases and

groups of rare variants [4–14]. For efficiency reasons, groups of rare variants often correspond

to gene coding sequences, which are biological units easy of interpretation.

One challenge is to deal with the heterogeneous nature of genetic variants. Indeed groups of

rare variants are likely to include a non-negligible proportion of neutral variants and causal vari-

ants with various effect sizes. Different strategies have been adopted to detect an association in the

presence of neutral variants, such as keeping only putative deleterious variants with an adaptive

method [7,14] or using continuous weights based on functional potential [6,8,11,12]. It is also rec-

ognized that all positions are not equal, corresponding to various protein domains (within a gene)

or putative functionality (genome). For instance, Robertson et al. (2003) found that pathogenic

mutations are localized in various domains of the FLNA gene, causing diverse congenital malfor-

mations [15]. Only a few tests take also into account genetic positions, in order to detect clusters

of disease-risk variants residing within specific domains of given proteins [16–21].

We developed a new statistical test, named DoEstRare for “Density-oriented Estimation for

Rare variant positions”, to detect both global enrichment in rare alleles and localized clusters

of disease-risk rare variants (DRVs), by integrating position information. The DoEstRare sta-

tistic consists in comparing simultaneously the mutation position densities, estimated by ker-

nel method, and the overall average allele frequencies between cases and controls. To better

discriminate neutral from causal variants (deleterious or protective), we incorporated a weight

system in the computation of average allele frequencies. A similar approach was used in the

Kernel-Based Adaptive Cluster (KBAC) test [8], on multi-locus genotypes.

To assess the performance of DoEstRare, we compared its power and type I error to other

existing tests by analyzing simulated data. We conducted simulations, based on the backward

coalescent model implemented in the COSI program [22], under different scenarios varying

the position distribution of DRVs. We considered three main scenarios: in the first scenario

DRVs are uniformly distributed on the gene, in the second and third scenarios DRVs are

respectively clustered in one and two areas. We also varied the proportion of causal variants

which is linked to the window sizes of clustered areas. From these simulations we show that

our test is among the most powerful statistical tests and perform even better with the presence

of one cluster of DRVs.

We also applied association tests based on rare alleles on two real datasets to assess the con-

sistency between significance results and evaluate the properties of our test in real settings. The

studied pathologies were Brugada syndrome (BrS), with data from Le Scouarnec et al. (2015)

[23] and early-onset Alzheimer’s disease (EOAD), from Nicolas et al. (2015) [24]. Interestingly,

we show that DoEstRare provides slightly different significance results from other tests. DoEs-

tRare is indeed based on a different hypothesis and could be used to explore new research

insights, involving variant positions.

Density-based rare variant association test
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Results

Overview of DoEstRare

DoEstRare test aims to compare mutation position probability distributions on the region of

interest (e.g. a gene) between cases and controls. If the distributions of rare variant positions

are different in cases and controls, the gene is considered associated with the disease. This pat-

tern could be expected when a specific domain of the protein is involved in the pathogenicity

and causal mutations cluster in specific areas of the gene.

Simultaneously, we test a global burden hypothesis in DoEstRare to consider aggregated

counts of mutations across the gene. Cases and controls may present equal mutation position

distributions but different probabilities to present a rare mutation. This burden hypothesis

consists in comparing average allele frequencies across the gene.

The hypotheses of our test can be formulated as followed:

H0 : f A ¼ f U and pA ¼ pU

H1 : f A 6¼ f U or pA 6¼ pU

with fA and fU, the mutation position density functions in affected (A) and unaffected (U) indi-

viduals; pA and pU, the average allele frequencies. To illustrate these hypotheses, Gene 1 from

Fig 1 is not associated with the disease, as there is no difference in terms of position distribu-

tion and total mutation count. DoEstRare aims to identify situations like Gene 2 and Gene 3,

where the mutation position distribution or the mutation number differs between cases and

controls.

Further details about the construction of DoEstRare are described in the Methods section.

Fig 1. DoEstRare method illustration. The rare allele counts are represented on the gene in cases (red) and controls (black).

From these counts are computed the density of mutation positions on the gene (top), and this density multiplied by the mean

allele frequency (bottom), which is used by DoEstRare. A non-parametric method, the kernel density estimation using a

Gaussian kernel, was used to estimate the mutation position density. Three genes have been simulated. Gene 1 presents the

same mutation number (10) and the same mutation position distribution in cases and controls (no association with the disease).

Gene 2 presents the same mutation number (10) but different mutation position distributions (association). Finally Gene 3

presents the same mutation position distribution but different mutation numbers (10 in controls and 20 in cases) (association).

https://doi.org/10.1371/journal.pone.0179364.g001
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Performance of DoEstRare

We conducted simulations to assess the type I error and the power of DoEstRare and 14 other

association tests on rare variants, covering a large spectrum of existing strategies. The tests we

compared are summarized in the Table 1 with a categorization inspired by the review from

Lee et al. (2014) [25].

We simulated a 10kb gene with the backward coalescent model available in the COSI pro-

gram [22], for a population of 10,000 haplotypes. We repeated the simulations to obtain 10,000

replicates of this haplotype set. The median number of simulated variants is 202 (2.5% and

97.5% quantiles: [172; 235]). The median number of variants with a MAF between 0.001 and

0.01 is 30 (2.5% and 97.5% quantiles: [18; 46]). From the population, we simulated the pheno-

type in order to obtain 1,000 cases and 1,000 controls.

Type I error analysis. We assessed type I errors for each test under comparison by simu-

lating under the null hypothesis of no association between the gene and the disease status.

Type I error results are based on 10,000 replicates and the Fig 2 shows that all tests have correct

type I error rates in terms of inflation of p-values [see S1A Table for type I error values]. More-

over some tests such as CAST and SKAT seem to be conservative. It has already been observed

by Wu et al. (2011) that SKAT could be conservative with small sample sizes at low α levels

[11].

Power analysis. For the power analysis, we simulated a disease-associated gene under

three main scenarios, varying the causal variant positions (Fig 3). In a first scenario, the causal

variants are uniformly distributed on the gene. In the second and third scenarios, they are clus-

tered in one or two specific areas of the gene. We also varied the proportion of causal variants

between 5%, 10%, 15% and 20%.

Focusing on scenario 1 results (Fig 4), in which DRVs are not clustered, an obvious obser-

vation is a power decrease with higher proportions of neutral variants [see S1B Table]. Never-

theless, in the context of no cluster of DRVs, some statistical tests seem to be more sensitive to

the neutral variant inclusion than others. As it was observed with the comparison made by

Table 1. Rare variant association tests under comparison.

Positions Category Description of the strategy Methods

No Burden tests Computation of a genetic score per individual corresponding to a binary variable. CAST[4]

Computation of a genetic score per individual corresponding to a weighted sum of

genotypes.

WSS[6], VT[7], aSum[9]

Variance-component

tests

Test the variance of genetic effects. C-alpha[10], SKAT[11],

SKAT-O[12]

P-value combination

tests

Combination of p-values from single-marker tests. ADA[14]

Multi-genotype pattern Analysis of multi-locus genotypes. KBAC[8]

Yes Sliding-window tests A statistic is computed by genetic sliding window. BOMP[18]

Kernel matrix tests A kernel matrix is used in the statistic to take into account physical distance between

variants.

CLUSTER[20], KERNEL[19],

PODKAT[21]

Test on inter-marker

distances

Physical distances between rare variants are computed. Weighted distance

distribution functions are compared between cases and controls.

DBM[16]

Rare variant density

test

Comparison of rare variant position distributions and average allele frequencies on the

gene, between cases and controls.

DoEstRare

Abbreviations: ADA, adaptive combination of P-values for rare variant association testing; aSum, data-adaptive sum test; BOMP, burden or mutation

position; CAST, cohort allelic sum test; CLUSTER, test from Lin (2014); DBM, distance-based measure; KBAC, kernel-based adaptive cluster; KERNEL,

test from Schaid et al. (2013); PODKAT, position-dependent kernel association test; SKAT, sequence kernel association test; VT, variable threshold; WSS,

weighted sum statistic.

https://doi.org/10.1371/journal.pone.0179364.t001
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Basu and Pan (2011) [26], burden tests suffer from an important loss of power in a context of

many non-causal variants, compared to variance-component tests. KBAC is also less noise-

sensitive than burden tests, confirming that its statistic succeeds in better dissociating causal

signals from noise. However ADA, which selects adaptively variants, is far less powerful than

other tests in this context.

Regarding tests incorporating position information (“position tests”), DBM and CLUSTER

tests perform badly with any proportion of DRVs. KERNEL and PODKAT tests are a bit more

powerful than DBM and CLUSTER in this context of randomly distributed DRVs.

Fig 2. Type I error results at nominal level α = 5% based on 10,000 replicates. The red line corresponds to α = 5% and blue lines correspond to 95%

confidence interval. Confidence interval is computed assuming that the number of false positives follows a binomial distribution with parameters 10,000 and

0.05.

https://doi.org/10.1371/journal.pone.0179364.g002

Fig 3. Simulation scenarios varying the DRV distribution. Each box represents a SNV on the gene. Blue

boxes: non-causal variants. Red boxes: DRVs.

https://doi.org/10.1371/journal.pone.0179364.g003
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Fig 4. Power results at nominal level α = 5% based on 1,000 replicates. P5, P10, P15 and P20 correspond to 5%, 10%, 15% and

20% of DRVs in the gene. DRVs: disease-risk variants.

https://doi.org/10.1371/journal.pone.0179364.g004
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Finally BOMP and DoEstRare test perform well with any proportion of DRVs, compared to

the other tests, with DoEstRare slightly better than BOMP, especially with low proportions of

DRVs. DoEstRare is among the most powerful tests with variance-component tests and KBAC.

Focusing on scenarios 2 and 3, in which DRVs are clustered respectively in one and two

areas, the tests that do not incorporate gene positions display obviously the same power as in

scenario 1 [see S1C and S1D Table]. Tests incorporating position information such as CLUS-

TER, KERNEL and PODKAT and DoEstRare show a power increase in scenario 2, i.e. with

one cluster of DRVs, for some proportions of DRVs [see S1A Fig for power comparison

between scenarios]. However we can observe a power decrease with two small clusters com-

pared to one large cluster. In these scenarios with clustered DRVs, variance-component tests

and KBAC are still more powerful than a majority of position tests. Finally DoEstRare is the

most powerful test in every simulated scenario from main scenarios 2 and 3.

Application of DoEstRare to real data

We also applied our newly developed test and other association tests on rare variants to real

data in order to study the significance similarities across the analyzed genes. We performed

association tests on two pathologies, BrS and EOAD, in order to evaluate the stability of the

comparison. Due to the number of tests under comparison, we used a multidimensional

approach as Jeanmougin et al. (2010) [27]. We analyzed the significance similarities using a

Principal Component Analysis (PCA) [28] on -log10(p-values) data.

BrS data. We applied 15 statistical tests (DoEstRare and 14 other tests) to BrS data.

Sequence data for 163 candidate genes were available for 167 cases and 167 controls. Rare vari-

ants are defined as showing an MAF below 1%, and residing in coding DNA sequences (CDS)

regions +/- 10 bp. We excluded from the PCA, all genes with missing p-values in at least one

test. The reason of missing p-values is often due to the low number of variants in the gene. For

some statistical tests such as DoEstRare and KERNEL, missing p-values are also due to the

absence of rare mutations in cases or controls. We also excluded the DBM test, which returned

more missing p-values than other tests. The PCA was performed on the remaining 58 genes

(36% of the 163 genes in the targeted sequencing design) for the remaining 14 rare variant

association tests. These genes represent a total of 1,462 rare variants, with a median of 15 rare

variants per gene (min: 5; max: 441). In order to exhaustively compare BrS PCA results with

EOAD PCA results, we set extra statistical tests (ADA, aSum, BOMP, CLUSTER, VT), which

were performed only on BrS, as illustrative variables.

The cumulative inertia explained by the first three axes of the PCA is about 88.31% of the

total inertia. From the BrS correlation circle (Fig 5), all statistical tests are positively correlated

to the first PC (56.53% of inertia). The second PC (22.72%) opposes C-alpha, SKAT and KER-

NEL tests (ADA and CLUSTER illustrative tests) on one side, and WSS and KBAC tests (aSum

and VT illustrative tests) on the other side. A third PC which explains only 9.05% of the inertia

opposes DoEstRare to CAST.

EOAD data. We applied DoEstRare and 8 rare variant association tests to the EOAD

dataset, which contain whole exome sequences from 431 cases and 555 controls. Rare variants

are still defined with an MAF inferior to 1% and a location in CDS regions. As for the previous

analysis on BrS, we removed from the PCA, genes presenting a missing p-value for at least one

test. We analyzed 17,409 autosomal protein-coding genes with 9 statistical tests. These genes

represent a total of 273,390 rare variants, corresponding to a median number of variants per

gene of 11 (min: 2; max: 901).

The first three axes explain 86.72% of the total inertia (Fig 5). As for BrS data, all statistical

tests are positively correlated with the first PC (54.89% of inertia). The second PC (19.96%)

Density-based rare variant association test
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opposes mainly C-alpha and KERNEL tests to WSS and KBAC tests. Finally the third PC

(11.86%) opposes DoEstRare to CAST and PODKAT tests.

These axes summarize significance differences between the association tests. Focusing on

DoEstRare, two association signals stand out by their significance: KRTAP5-5 (transcript:

ENST00000399676, p = 3.8e-07) and CELA-3B (transcript: ENST00000337107, p = 8e-06).

KRTAP5-5 is in the list of the 10 most significant association signals with only the tests SKAT

(p = 3.8e-05) and SKAT-O (p = 6.4e-05). This gene is certainly a false positive gene as rare

mutations in cases are clustered in a 3 bp region within a repetitive element and are carried by

a few individuals. The second most associated gene, CELA3B, is far less significant for all the

other tests, the minimum p-value obtained with SKAT (p = 2.6e-04). In this gene, rare variants

Fig 5. PCA correlation circle for BrS data (left) and EOAD data (right). PCA on -log10(p-value) is generated from the

application of 9 association tests. BrS data includes 58 candidate genes. EOAD data includes 17409 autosomal protein coding

genes. Illustrative variables are represented with blue dashed arrows.

https://doi.org/10.1371/journal.pone.0179364.g005
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present a different position distribution between cases and controls, and tend to cluster in a

small genetic region in cases. On the contrary, the gene NIPAL4 (transcript:

ENST00000311946) with a high significance with most of the tests (CAST, WSS, SKAT-O,

KBAC, PODKAT), is not well identified by DoEstRare (p = 1.13e-03). We can observe in this

gene, a clear difference in the number of rare mutations between cases and controls, but not a

clear difference of position distributions.

The significance levels of these three genes are shown in Manhattan plots [S2A–S2I Fig].

The localization of rare variants in cases and controls are represented in S3A–S3C Fig.

Computation times

Computation times of the different statistical tests that are used in this paper are indicated in

the Table 2. These times are based on the analysis a 10kb gene, simulated under the null

hypothesis, and including 30 variants for 1000 cases and 1000 controls. For the standard per-

mutation and bootstrap procedures, we did respectively 500 permutations or resampling.

We note big differences in computation times between statistical tests. Of course these val-

ues depend highly on the implementation we used [see S1 Text for implementation details].

The most used statistical tests are CAST, SKAT and SKAT-O, as they are fast-running without

a permutation or bootstrap procedure. DoEstRare computation time is quite high with a stan-

dard permutation procedure. This time can be greatly reduced with the adaptive permutation

procedure we implemented and should be used in practice. The density estimation can be fur-

thermore optimized in terms of computation time.

Discussion

Here we propose a new association test for rare variants, called DoEstRare, to identify clusters

of DRVs in genes. The DoEstRare strategy combines a “position test” and a burden test, so that

Table 2. User CPU times for the different methods.

Test Permutations/Bootstrap Average time per gene (sec) Total time (1000 genes)

CAST No 0.013 0h 0min 13sec

WSS Yes 26.221 7h 17min 1sec

VT Yes 111.678 31h 1min 18sec

aSum Yes 10.582 2h 56min 22sec

CALPHA Yes 3.598 0h 59min 58sec

SKAT No 0.091 0h 1min 31sec

SKAT Yes (bootstrap) 1.326 0h 22min 6sec

SKAT-O No 1.051 0h 17min 31sec

SKATO Yes (bootstrap) 160.124 44h 28min 44sec

KBAC Yes 0.187 0h 3min 7sec

ADA Yes 25.318 7h 1min 58sec

DBM Yes 7.933 2h 12min 13sec

CLUSTER Yes 27.095 7h 31min 35sec

KERNEL Yes 6.450 1h 47min 30sec

PODKAT No 0.108 0h 1min 48sec

PODKAT Yes (bootstrap) 1.459 0h 24min 19sec

BOMP Yes 4.757 1h 19min 17sec

DoEstRare Yes (standard) 22.617 6h 16min 57sec

DoEstRare Yes (adaptive) 12.916 3h 35min 16sec

https://doi.org/10.1371/journal.pone.0179364.t002
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it is still adapted to cases with randomly distributed DRVs. We also used, in the burden com-

ponent, a weighting system to better discriminate risk variants from neutral variants.

First, we compared type I errors and powers, by conducting simulations under several

genetic scenarios. These simulations scenarios were designed to assess statistical power in

the context of high proportions of neutral variants. Simulations showed that DoEstRare is

systematically the most powerful, alone or in conjunction with others for every scenario we

simulated. DoEstRare performs well with or without clusters of DRVs. We also noticed by sim-

ulating scenarios varying proportion of DRVs, that DoEstRare is less noise-sensitive than bur-

den tests.

In our power analysis, we also compared different strategies for testing rare variant associa-

tion with a disease. We confirm that variance-component tests (C-alpha, SKAT, SKAT-O) and

KBAC are better adapted to noise than burden tests and are powerful in every simulated sce-

nario. There is no common benchmark in the literature for simulation designs to compare effi-

ciently our results. However, Moutsianas et al. (2015) [29] compared different rare variant

association tests and found that SKAT-O and KBAC have the highest mean power, across sim-

ulated scenarios varying sample sizes, effect locus sizes and neutral variant proportions, which

is in accordance with our results. In our scenarios, SKAT-O, SKAT and C-alpha tests behave

the same way because we simulated scenarios with high proportions of neutral variants. Com-

pared to DoEstRare, these tests are still as powerful in most scenarios.

Most of the existing tests incorporating position information, except PODKAT and BOMP,

are less powerful than variance-component tests and KBAC, in every scenario. KERNEL,

DBM and PODKAT are more powerful in the presence of a cluster of DRVs, confirming the

use of position information in their statistic. We also noted some power differences between

scenarios with one and two clusters of DRVS. Indeed some tests are significantly less powerful

in the scenario with two clusters. This observation may be related to cluster sizes being smaller

in this scenario, for the same proportion of DRVs.

Simulation results depend on many factors due to the complexity of a group of rare vari-

ants. In our simulated scenarios we varied the proportion of causal variants in the gene and

also the number of clusters of DRVs. Currently, there is still poor knowledge about the under-

lying biological mechanisms, likely to differ greatly between diseases. That is why it is hard to

assess the realism of these two parameters. We used constant ORs for disease risk variant

effects while it is unlikely that all causal variants in a gene have the same effect. Some authors

suppose very rare variants to present stronger effects and set the regression coefficients of the

logistic model as a decreasing function of the MAF [11,12]. Moreover, every simulated gene is

a 10kb region while the real genetic structure is more complicated with very heterogeneous

gene sizes and variant numbers.

We could assess the power of our statistical test DoEstRare and usual tests, with the analysis

of simulated data. However, to test their behavior on biological datasets, we have applied up to

14 association tests, in addition to DoEstRare, on rare variants to BrS and EOAD data and

investigated the significance similarities between the results from the different tests. This com-

parison may help in choosing the best test combination when designing a rare variants project

and in interpreting differential test results. Both BrS and EOAD PCA representations under-

lined the same tendencies. All statistical tests are correlated with the first principal component,

which means that significance results provided by different tests show globally the same ten-

dency. The second source of inertia in significance results is due to some statistical tests giving

partially different results. This may be related to the underlying genetic structure behind the

disease. The main significance differences, according to the second principal component, are

between the group including C-alpha and KERNEL, and the group including WSS and KBAC.

The third component, which explains a low part of the inertia, opposes DoEstRare to CAST.
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Finally SKAT-O seems to be a good compromise as it provides similar results than other tests.

We could observe some differences in the correlation structure when analyzing BrS data and

EOAD data. For instance, the correlation of PODKAT and SKAT significance results with the

other tests differs between BrS and EOAD datasets. One explanation is that correlation struc-

ture between statistical results may depend on the studied pathology, as statistical tests assume

different biological models. Interestingly, although we observe some correlations between

association tests based on similar hypotheses, we do not observe a clear categorization. This

issue should be further investigated with the study of other diseases.

With the application of rare variant association tests to real data, we highlighted several

practical issues. In this article, we considered analyzing all rare variants without prior func-

tional information. Criteria to incorporate only the most potential disease-risk rare variants in

the analysis are not well defined in the literature, as the genetic architecture is specific of the

studied disease. It is possible to take into account only those variants that have been previously

functionally annotated [25,30,31], for example with sequence ontology terms describing their

impact on the coded protein, in the context of gene analysis. Regarding the tests that incorpo-

rate position information, the delineation of the analyzed region is even more important as

positions are relative to the bounds. It should be added that using tests to detect clusters of

DRVs is irrelevant when the analyzed gene contains very few variants. The observed number

of rare variants per gene depends greatly on the sample population size of the study. Indeed by

screening more individuals in a study, it is more probable to identify very rare mutations. The

sampling design is also an important factor in association analyses, as Nicolas et al. (2015) [24]

identified an association signal when applying rare variant association test to EOAD patients

with a positive family history. In this article we chose to analyze all 431 EOAD patients, whose

185 patients present a family history.

When applying statistical tests to real data, the use of an adaptive permutation procedure

[32] is needed to reduce computational times and we implemented it for most of tests. Even

using this strategy, encountering a high association signal may be time-consuming compared

to association tests using an approximate statistic distribution under the null hypothesis.

Moreover, taking into account position information is very useful to discover clusters of

DRVs, but the delineation of the analyzed region is a supplementary step in the analysis work-

flow requiring reasoning. For the analysis of BrS data, we chose to use the definition of cap-

tured coding sequences. For the EOAD data, as capture designs were differing among patients,

we used CDS annotations. Of course, by analyzing CDS regions, we may have missed few

important variants situated in splice regions. The presence of clustered rare variants is, in

some cases, due to technical artefacts as some regions are difficult to sequence. In EOAD

results, a gene presents a very high significance with DoEstRare but is a false positive due to a

cluster of rare mutations in a very small region for a very few cases. DoEstRare is also interest-

ing to explore these short genomic regions with a low sequencing quality.

The relevance of a test depends highly on the underlying biological structure when assessing

the association between a group of rare genetic variants and a disease. Each statistical test for

rare variants is based on relative complex assumptions aiming to translate mathematically the

disease mechanisms. We recommend, in order to identify the maximum association signals, to

perform different statistical tests covering various strategies.

DoEstRare enables to incorporate position information and is powerful to detect clusters of

disease risk variants. DoEstRare is a good alternative test to use in addition to classical strate-

gies in order to explore genetic architectures involving functional domains. This test is advan-

tageous in the context of analyzing long transcripts which are susceptible to contain important

sub-regions. However, the density estimation of rare variant positions may be limited by test-

ing a small group of variants. As discussed previously, DoEstRare is sensitive to short genetic
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areas that are not well sequenced, which may result in the presence of false positives. The qual-

ity control is an important step in the analysis of rare variants, and DoEstRare can also be used

to identify problematic sequences.

Our newly developed test DoEstRare is so far designed for deleterious rare alleles in case/

control studies. In this article we did not take into account genetic population structure in rare

variant association tests. However it has already been shown that this could impact significance

results [33,34]. It can be developed in four directions: (i) adapting weights in the DoEstRare

statistic in order to consider a mixture of protective and deleterious variants, or incorporating

functional information; (ii) applying DoEstRare to quantitative traits by using a latent binary

status, whose distribution probability depends on the phenotype distribution; (iii) exploring

the choice of the kernel used in the density function estimations to reduce computational

times; (iv) incorporating population stratification components in the computation of mean

allele frequencies.

Methods

Notations

Let X be the matrix of genotypes with Xij the count of rare alleles for the i-th individual and

j-th rare variant, varying between 0, 1 or 2 rare alleles. Let Y be the vector of phenotypes with

Yi = 1 if the i-th individual is a case, Yi = 0 if else. Let lj be the position of the j-th rare variant.

The number of affected (A) and unaffected (U) individuals are respectively NA and NU, with N
the total number of individuals. The number of rare variants in the gene is P.

Tests under comparison

A first category of rare variant association tests is called burden tests [4,6,7,9], and consists in

summarizing (or collapsing) the genetic information across the variants or across the individu-

als into a single value. A simple approach consists in computing for each individual a genetic

score corresponding to a weighted sum of minor allele counts

Si ¼
XP

j¼1

wjXij

with wj the weight for variant j. For example, the WSS test accords a more important weight to

rare variants, as they may be more likely to have an effect on disease susceptibility. Weights dif-

fer between approaches according to biological assumptions. Finally the association between

the genetic score and the disease status is tested.

Another category are the variance-component tests [10,11]. It has been developed to deal

with the presence of opposite effects (deleterious and protective variants) and difference of

effect magnitude (moderate effect to no effect). They test unusual variance of genetic effects on

disease susceptibility in a group of variants. SKATs enable also more complex disease suscepti-

bility models than the linear logistic regression model.

Because the proportion of deleterious and protective rare alleles is not known, some statisti-

cal tests combine both a burden test and a variance-component test such as SKAT-O [12] in

order to preserve highest power. Indeed it has been observed by Basu et al. (2011) [26] that

burden tests perform best when the gene includes a large amount of causal variants with the

same effect whereas variant-component tests perform best in situations with protective or a lot

a non-causal variants. Combined tests are developed to take advantage of the both strategies.

To simplify our classification, we put SKAT-O into the variance-component test category.
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Another strategy in association tests is to combine p-values obtained by single-marker tests

that are commonly used in GWASs such as the ADA test [14].

The KBAC test [8] is a test considering multi-locus genotypes, i.e. the combinations of

alleles across the genetic region of interest. This strategy aims to account for potential within-

gene or between-gene interactions. It also uses a weighting system to better account for poten-

tial risk variants.

Finally several tests incorporate physical positions of rare variants [16–21]. A simple

approach to detect a cluster of DRVs in a gene is to use a sliding-window approach. The

genetic region of interest is divided into windows and a rare variant association test is per-

formed for each window. Because the size and the location of the cluster are usually unknown,

sliding windows of different sizes are commonly considered. This strategy is used in the

BOMP test, proposed by Chen et al. (2013), and the test developed by Ionita-Laza et al. (2012).

We didn’t use the scan test from Ionita-Laza et al. (2012) as it is more suitable for large regions.

Other tests such as KERNEL, CLUSTER and PODKAT, incorporate position information in a

kernel matrix that measures distances between pairs of rare variants. In this article we propose

a rare variant association test, DoEstRare, which is a combination of a burden test and a test

comparing mutation position distributions.

Tests are described with more details in supplementary methods [see S1 Text].

DoEstRare test

Computation of the test statistic. DoEstRare aims to compare both the rare variant posi-

tion distributions and allele frequencies between cases and controls. To test these two aspects,

the statistic computes the area between the two mutation position density curves, each multi-

plied by the corresponding mean allele frequency, computed across all rare variants:

STAT ¼
Z Lg

1

j bpA � bf AðposÞ � cpUbf UðposÞjdpos

with Lg denotes the length of the gene in bp. bpA ,cpU , bf A and bf U are estimators for respectively mean

allele frequencies and position density functions whose computation will be explained in next sec-

tions. Without the burden components bpA andcpU , the statistic is similar to the total variation dis-

tance, used to compute a distance between the two probability density functions bf A and bf U [35].

Estimation of density functions. Position density functions fA and fU are estimated using

a non-parametric way with the Gaussian kernel density estimation [36].

bf A posð Þ ¼
1

bw
PP

j¼1
wAj;density � K

pos � lj
bw

� �

and bf U posð Þ ¼
1

bw
PP

j¼1
wUj;density � K

pos � lj
bw

� �

with bw the bandwidth (smoothing parameter) and K(.), the Gaussian kernel.

wAj;density and wUj;density are ratios of mutations at the lj-th position in cases and controls.

wAj;density ¼
mA
j

PP
j¼1
mA
j

wUj;density ¼
mU
j

PP
j¼1
mU
j

withmA
j ¼

PNA

i¼1
Xij andmU

j ¼
PNU

i¼1
Xij the observed counts of mutations for the j-th variant in

cases and controls.
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Burden components. To test the burden hypothesis, we estimate a weighted allele fre-

quency average in cases and controls. The weight system enables to better discriminate high

potential causal variants from neutral variants. The burden component expressions are:

bpA ¼
1

P

XP

j¼1

wj
PP

j¼1
wj

mA
j

2NA
cpU ¼

1

P

XP

j¼1

wj
PP

j¼1
wj

mU
j

2NU

with wj the weight for the j-th variant.

Under the assumption that all causal variants are deleterious, (i.e. variants that are enriched

in cases present a more important weight), we assume that the countMA
j of rare mutations in

cases for a variant j follows, under the null hypothesis, a binomial distribution Bð2NA;cqUj Þ

withcqUj the estimate of the minor allele frequency in controls:

cqUj ¼
mU
j þ 1

2NU þ 2

The weight wj is defined as the probability to present less than the observed countmA
j .

wj ¼ PðM
A
j � m

A
j Þ ¼

X
mAj

k¼0

2NA

k

 !

ðqUj Þ
k
ð1 � qUj Þ

2NA � k

Significance. The significance of the test is evaluated with a standard phenotype permuta-

tion procedure. For each permutation b 2 {1,. . .,B}, the phenotypes labels are randomly shuf-

fled (permuted) and the statistic STAT (b) is calculated. As the statistic is an area, which means

a positive real number, the p-value is defined, in the context of standard phenotype permuta-

tion procedure, by

PB
b¼1
ðSTAT ðbÞ�STAT Þþ1

Bþ1
[37], with B the total number of permutations. An adap-

tive permutation procedure can also be used to reduce computational times, in the context of

large data [32].

Simulation framework

We conducted genetic simulation studies to evaluate and compare the performance of DoEstRare

in terms of power and type I error. Our simulation workflow for each replicate is described with

the following steps. It briefly consists in generating a haplotype matrix from which are sampled

cases and controls, the disease risk model being a logistic regression model (see Fig 6).

Step 1: We generate 10,000 haplotypes for a 10kb region using a backward coalescent model

implemented in the COSI program [22]. Parameters correspond to what is called the “bestfit”

model by Schaffner et al. (2005), which were obtained by calibration. Haplotypes are sampled

from what corresponds to the European population in this model.

Step 2: In the haplotype matrix generated in step 1, we select rare variants with a MAF 2

[0.001;0.01]. We set a minimal MAF to avoid a lot of non-observed causal mutations in the

simulated data, a framework leading to the null hypothesis model because of the very low fre-

quency of a large proportion of variants.

Step 3: We determine rare causal variants for the logistic regression model. Causal variants

are determined according different scenarios related to their positions on the gene. These sce-

narios are explained further in the simulation framework description.

Step 4: We sample two haplotypes from the haplotype matrix generated in step 1 to consti-

tute the genotype data Xi for the i-th individual.
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Step 5: The phenotype of the i-th individual is simulated with the following logistic regres-

sion model:

logitðPðYi ¼ 1jXiÞÞ ¼ b0 þ Xi
Tβ

with β0 the intercept and β the vector of regression coefficients for the genetic effects. We set

b0 ¼ log 0;05

1� 0;05

� �
so that 5% of individuals without any rare mutation are affected. In the con-

text of rare variants, this value is close to the disease prevalence. For regression coefficients, we

chose βj = log(ORj) with ORj = 3 if the j-th is a causal variant, else βj = 0. The disease status of

the individual i is sampled according to the Bernoulli distribution of probability P(Yi = 1|Xi).
Step 6: We repeat steps 4 and 5 until we obtain 1,000 cases and 1,000 controls.

Three main scenarios (Fig 3) are considered in relation to the positions of causal variants.

In a first scenario, DRVs are not clustered in any specific area and are randomly sampled with-

out replacement on the whole gene. In the second and third scenarios, DRVs cluster respectively

in one and two areas. In these scenarios, initial causal variant positions correspond to the

median of all variant positions for the second scenario, and to the quantiles 1/3 and 2/3 for the

third scenario. Then DRVs are extended from initial causal positions to the neighbor variants

until the specified number of DRVs is reached. We set the number of DRVs so that the propor-

tions vary between 5%, 10%, 15% and 20% of the total variants within a gene (noted scenarios

P5, P10, P15 and P20). In the context of clustered DRVs, these proportions are related to cluster

window sizes. Indeed, cluster window sizes are larger with higher proportions of DRVs.

Fig 6. Simulation workflow. The different steps of the simulation workflow are further detailed in the article.

The red dashed frame represents the step 6 which consists in the repetition of steps 4 and 5.

https://doi.org/10.1371/journal.pone.0179364.g006
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The performances of the different tests (see section Tests under comparison) are compared

in terms of power and type I error. We defined the type I error and the power as

PR
r¼1
Iðp � valuer � aÞ

R
¼

type I errorðaÞ if H0 situation

powerðaÞ if H1situation

(

with r 2 {1,. . .,R} the replicate index. We did 1,000 replicates for each scenario of the power

analysis and 10,000 replicates for type I error analysis. Power and type I errors were computed

for the test significance level at α = 5%.

We applied DoEstRare and 14 other rare variant association tests on simulated data. We

set B = 500 permutations for each permutation-based test, i.e. all tests except CAST, SKAT,

SKAT-O and PODKAT.

Real data

We performed DoEstRare and other rare variant association tests (see section Tests under com-

parison) on BrS and EOAD data. We analyzed the significance result similarities between the

different tests by using a PCA [28]. The PCA data is the matrix containing (−log10(p−value))jt
for gene j in row and statistical test t in column. The PCA was performed with the R package

FactoMineR [38].

Data from the BrS study. We applied DoEstRare and 14 rare variant association tests to

BrS data published by Le Scouarnec et al. (2015) [23]. In this study, rare variant association

tests were conducted to identify new genes of susceptibility for BrS. A significant enrichment

of SCN5A rare variant carriers was observed in BrS patients.

In this study, cases include 167 patients diagnosed with BrS, and controls include 167 indi-

viduals aged over 65-year old and showing no history of cardiac arrhythmia. Both cases and

controls are individuals of European origin.

This is a candidate gene study in which coding sequences of 163 candidate genes have been

captured and sequenced. In this publication, burden test results for 45 genes are published.

These genes have been previously shown to be related to cardiac arrhythmias or conduction

defects and/or sudden cardiac death. The functional units tested are genes and more specifi-

cally the coding regions with a margin of 10 bp to take into account splicing sites.

In the present study, rare genetic variants were defined as variants with a MAF<1% in the

Exome Aggregation Consortium (ExAC) database for the Non-Finnish European population

(NFE) (release 0.3 downloaded at ftp://ftp.broadinstitute.org/pub/ExAC_release/release0.3/

ExAC.r0.3.sites.vep.vcf.gz) [39]. To avoid false positives, we excluded variants found in more

than 5% of cases or controls but absent from ExAC database. Unlike the burden test frame-

work described in the original publication, we analyzed all variants regardless their Sequence

Ontology (SO) terms, estimated with Ensembl (http://www.ensembl.org), which describe the

type of consequence of the mutation.

We evaluated significance of association tests using a standard permutation procedure

(excluding CAST, SKAT, SKAT-O and PODKAT) with 1,000 phenotype permutations for all

genes except SCN5A, which is a major gene implicated in BrS and where we performed

200,000 permutations.

Note: More details about population sampling, sequencing and variant calling can be found

in the publication of Le Scouarnec et al. (2015) [23].

Data from the Alzheimer study. We performed rare variant association tests on EOAD

data from Nicolas et al. (2015) [24]. In this study, a significant enrichment of SORL1 rare vari-

ants was detected in EOAD patients.
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Published data, after quality control preprocessing, include 498 controls from 5 different

French cities and 484 EOAD patients recruited by the French National CNR-MAJ consortium

(205 patients with positive family history). We brought some modifications to the initial design

in order to allow a robust comparison between tests. First, we decided to minimize technical

biases by including only cases and controls that were sequenced by either Agilent SureSelect

Human All Exons V5 or Agilent SureSelect Human All Exons V5UTR capture designs. Addi-

tional controls from another French city were also included, due to the French Exome project’s

progress. Our analysis finally compared 555 controls to 431 EOAD patients.

In this exome study, we annotated variants with Variant Effect Predictor (Ensembl). For

each protein coding gene, we analyzed the “canonical” transcript: the transcript which presents

(1) the longest CDS length, (2) if CDS lengths are equal, the longest transcript length with

UTR regions. A total of 19,076 autosomal protein coding genes were annotated. For associa-

tion tests incorporating position in the transcript, we used CDS regions and each variant was

annotated with a CDS position.

Filters on genetic variant are the same as for the BrS data analysis. Rare genetic variants

present a MAF<1% in the ExAC database for the NFE population and present a MAF in cases

and in controls both less than 5%. To avoid false positives we excluded all rare variants which

were very significant, as they could influence results from gene-based tests. These variants

need to be checked apart from the analysis. Variants with a p-value less than 1e-04 by single-

marker test (Fisher exact) were removed.

Due to the data size, we used the adaptive permutation procedure described by Che et al.

(2014) to reduce computational times [32]. We set, as parameters, the adjusted nominal signif-

icance level to α = 5e-07, with a precision of c = 0.2. We chose to not apply all statistical tests

and selected several tests per category. We applied CAST and WSS as burden tests, SKAT

and SKAT-O as variance component tests, KBAC as a multi-locus genotype test, KERNEL,

PODKAT and DoEstRare as position tests. Some statistical tests as ADA and CLUSTER were

not easily adaptable for adaptive permutation and thus were not included in this round of

analyses.
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S1 Table. Power and type I error tables. Values of type I errors and powers assessed with the

analysis of simulated data.
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S1 Fig. Power comparison between simulated scenarios. The Fig A is another illustration of

power results to better compare simulated scenarios, represented in Fig 4.
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S2 Fig. Manhattan plots for EOAD results. From Fig A to Fig I, are represented significance

results for the 17,409 autosomal genes that were analyzed. Only the names of the three genes,

KRTAP5-5, CELA3B and NIPAL4, are indicated. The red line corresponds to a significance

level of 2.5e-06 (5% adjusted with a Bonferroni correction for 20,000 genes).
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S3 Fig. Mutation position density plots for EOAD results. From Fig A to Fig C, are repre-

sented allele counts and mutation position densities for the three genes, KRTAP5-5, CELA3B
and NIPAL4, in cases and controls. Density functions for mutation positions were estimated

with a Gaussian kernel.

(PDF)

Density-based rare variant association test

PLOS ONE | https://doi.org/10.1371/journal.pone.0179364 July 24, 2017 17 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0179364.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0179364.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0179364.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0179364.s004
https://doi.org/10.1371/journal.pone.0179364


S1 Text. Supplementary methods. Further details about the rare variant association tests we

compared.

(PDF)

Acknowledgments

The authors would like to thank Genomics and Bioinformatics Core Facility of Nantes (Geno-

BiRD, Biogenouest). Computations were also performed on the "Centre de calcul intensif des

Pays de la Loire" (CCIPL) computer "Erdre". We are also grateful to French clinical network

against inherited cardiac arrhythmias. We gratefully acknowledge Pierre Lindenbaum and

Floriane Simonet for technical support in bioinformatics, biostatistics and data management.

Consortia: The FREX Consortium’s principal investigators are Emmanuelle Génin, Domi-

nique Campion, Jean-François Dartigues, Jean-François Deleuze, Jean-Charles Lambert, and

Richard Redon. Collaborators are as follows: bioinformatics group (Thomas Ludwig, Benja-
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