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Three-dimensional doubly diffusive convection in a closed vertically extended
container driven by competing horizontal temperature and concentration gradients is
studied by a combination of direct numerical simulation and linear stability analysis.
No-slip boundary conditions are imposed on all six container walls. The buoyancy
number N is taken to be −1 to ensure the presence of a conduction state. The primary
instability is subcritical and generates two families of spatially localized steady states
known as convectons. The convectons bifurcate directly from the conduction state and
are organized in a pair of primary branches that snake within a well-defined range of
Rayleigh numbers as the convectons grow in length. Secondary instabilities generating
twist result in secondary snaking branches of twisted convectons. These destabilize
the primary convectons and are responsible for the absence of stable steady states,
localized or otherwise, in the subcritical regime. Thus all initial conditions in this
regime collapse to the conduction state. As a result, once the Rayleigh number for
the primary instability of the conduction state is exceeded, the system exhibits an
abrupt transition to large-amplitude relaxation oscillations resembling bursts with no
hysteresis. These numerical results are confirmed here by determining the stability
properties of both convecton types as well as the domain-filling states. The number
of unstable modes of both primary and secondary convectons of different lengths
follows a pattern that allows the prediction of their stability properties based on their
length alone. The instability of the convectons also results in a dramatic change
in the dynamics of the system outside the snaking region that arises when the
twist instability operates on a time scale faster than the time scale on which new
rolls are nucleated. The results obtained are expected to be applicable in various
pattern-forming systems exhibiting localized structures, including convection and
shear flows.
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1. Introduction

Spatially localized states, both stationary and travelling, are commonly found in
fluid flows, notably in convection and shear flows. In this work we are interested
in localized states consisting of a segment of a periodic state embedded in a
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homogeneous background state, corresponding either to a conduction state or to
laminar shear flow. Much useful and transferable information about states of this
type can be gleaned from studies of the bistable Swift–Hohenberg equation in one
spatial dimension with periodic boundary conditions and left–right symmetry (Burke
& Knobloch 2006). In particular, it is known that in a periodic domain with a finite
but large period, localized states bifurcate from the primary branch of subcritical
spatially periodic states and that they do so already at small amplitude, i.e. close to
the primary bifurcation. This bifurcation is likewise subcritical and in the simplest
case generates a pair of unstable localized states with reflection symmetry. However,
with decreasing forcing these states acquire stability via folds and thereafter the
two branches of localized states oscillate between a pair of well-defined limits in
parameter space in a behaviour known as homoclinic snaking (Woods & Champneys
1999). During each back and forth oscillation the localized state grows in length
via the nucleation of a new wavelength on either side. As one follows the branches
upward each gains stability at a left fold and loses stability at a right fold, thereby
generating a large multiplicity of simultaneously stable localized states of different
lengths within the snaking region. The wavelength of the structure embedded in
the background homogeneous state depends on the location in the snaking region
and increases along the stable branch segments from left to right. Close to the
folds of the snaking branches, additional bifurcations occur that produce asymmetric
spatially localized states. These states, known as rung states, are always unstable and
lie on branches that interconnect the intertwined branches of symmetric localized
states forming a snakes-and-ladders structure (Burke & Knobloch 2006, 2007a,b).
Related behaviour is present in systems with midplane reflection symmetry (Burke
& Knobloch 2007b) and in structures localized in two spatial dimensions (Avitabile
et al. 2010).

Spatially localized states are also found in a large variety of other fluid systems,
ranging from ferrofluids (Lloyd et al. 2015) to colloidal suspensions (Lioubashevski
et al. 1999), and display strikingly similar properties. Historically, localized states
in fluids were first identified in doubly diffusive convection, a term describing
convection in a binary fluid mixture driven by imposed temperature and concentration
differences. The first such states, now referred to as convectons, were computed in
1997 in natural doubly diffusive convection in a two-dimensional vertically extended
cavity, i.e. convection driven by horizontal gradients (Ghorayeb & Mojtabi 1997) but
their snaking structure was discovered only a decade later (Bergeon & Knobloch
2008b). Parallel studies of localized doubly diffusive convection in two-dimensional
horizontally extended domains (Batiste et al. 2006; Mercader et al. 2009; Beaume,
Bergeon & Knobloch 2011; Mercader et al. 2011; Watanabe, Iima & Nishiura 2012,
2016) have established a solid relationship between these types of problems and the
phenomenology captured so effectively by the bistable Swift–Hohenberg equation. In
shear flows localized states also snake (Schneider, Gibson & Burke 2010a; Gibson
& Schneider 2016) and moreover may lie on the separatrix between laminar and
turbulent flows (Duguet, Schlatter & Henningson 2009; Schneider, Marinc & Eckhardt
2010b) and so play a prominent role in the transition to turbulence. An ever-increasing
catalogue of localized states in shear flow is now available (Avila et al. 2013; Khapko
et al. 2013; Brand & Gibson 2014; Gibson & Brand 2014; Mellibovsky & Meseguer
2015).

The bistable Swift–Hohenberg equation leads one to expect that below the snaking
region localized solutions will collapse towards the conduction state while above
the snaking region such solutions will grow in length dynamically, resulting in



the invasion of the background conduction state by stable convection. This is
in fact the case in both two-dimensional natural doubly diffusive convection
(Bergeon & Knobloch 2008b) and in two-dimensional binary fluid convection
in a horizontal layer (Batiste et al. 2006). However, this attractive picture of
the dynamics does not necessarily extend to three dimensions. Already in 2002
Bergeon and Knobloch showed that in three-dimensional slot convection the
large-amplitude domain-filling state is unstable (Bergeon & Knobloch 2002). As a
result a subcritical steady state primary instability does not generate a hysteretic
transition to large-amplitude stationary convection but results instead in a non-
hysteretic transition to a finite-amplitude relaxation oscillation. This remarkable
behaviour extends to three-dimensional natural doubly diffusive convection in
vertically extended domains (Beaume, Bergeon & Knobloch 2013a). In particular, an
analogous instability, now responsible for the presence of unstable twisted convectons,
destabilizes the quasi-two-dimensional convectons resembling those computed by
Bergeon & Knobloch (2008b). The consequences of this instability are similar and
dramatic: the large-amplitude stationary domain-filling state is destabilized, and
convectons both within and above the snaking region collapse to the conduction state
instead of evolving to a large-amplitude state (Beaume et al. 2013a).

This unexpected behaviour motivates the present work. Specifically, we wish
to confirm the results of earlier direct numerical simulations of three-dimensional
natural doubly diffusive convection by performing explicit linear stability calculations
for both the quasi-two-dimensional convectons computed by Bergeon & Knobloch
(2008b) and the fully three-dimensional twisted convectons computed by Beaume
et al. (2013a). In fact, only Watanabe et al. (2016) have thus far investigated the
detailed stability properties of localized states in a fluid flow, and this in the context
of two-dimensional binary fluid convection in a horizontal layer with a negative Soret
effect. The present work extends this type of analysis to three dimensions and provides
an exhaustive account of the stability properties of convectons in three-dimensional
natural doubly diffusive convection. The results confirm those obtained in direct
numerical simulations and provide a guide to understanding the complex dynamics
displayed by the present system near threshold for the primary instability of the
conduction state.

In the following section, we introduce the specific case of natural doubly diffusive
convection that we study and summarize the state of the art. Section 3 provides an
exhaustive account of the stability properties of each of the various convecton types
known to be present in this system and describes the results of direct numerical
simulations of the system in the vicinity of the snaking region. The paper concludes
with a summary and discussion of the results obtained.

2. Problem set-up

2.1. Doubly diffusive convection

Following Beaume et al. (2013a) we consider doubly diffusive convection in a binary
fluid placed within a three-dimensional box of square cross-section in the horizontal
and large extent in the vertical. We use the coordinate x for the vertical direction
and (y, z) for the horizontal coordinates. Convection is produced by competing
but balanced horizontal gradients of temperature and concentration that result from
the imposition of appropriate Dirichlet boundary conditions at z = 0, l leading to
the conduction state u∗ = 0, T∗ = Tr + z1T/l, C∗ = Cr + z1C/l, where u∗ is the
velocity, T∗ is the temperature, C∗ is the concentration of the heavier component of
the binary mixture (hereafter shortened to concentration), Tr and Cr are reference
temperature and concentration and 1T > 0 and 1C > 0 are the imposed temperature
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FIGURE 1. Sketch of the physical domain from an angle similar to that used in subsequent
figures. For convenience the system has been rotated anticlockwise by 90◦ around the y
axis, i.e. clockwise on the page. As a result, the acceleration due to gravity points towards
the left. Shaded boundaries are maintained at fixed temperature and concentration with the
darker wall maintained at higher values of T and C than the lighter one. Only a portion
of the domain in x is shown.

and concentration differences across the box. We non-dimensionalize the governing
equations using l for lengths, 1T for the temperature, 1C for the concentration and
l2/κ for the time, where κ is the thermal diffusivity. In the absence of cross-diffusion,
the Boussinesq equations describing the system are

Pr−1 [∂tu + (u · ∇) u] = −∇p + Ra(T − C)x̂ + ∇2u, (2.1)

∇ · u = 0, (2.2)

∂tT + (u · ∇) T = ∇2T, (2.3)

∂tC + (u · ∇) C = τ∇2C. (2.4)

Here u = (u, v, w) is the dimensionless velocity field in (x, y, z) coordinates, p

is the dimensionless pressure, T ≡ (T∗ − Tr)/1T is the dimensionless temperature
and C ≡ (C∗ − Cr)/1C is the dimensionless concentration. The above equations
involve three dimensionless numbers: the Rayleigh number Ra ≡ g|ρT |1Tl3/ρ0νκ ,
the Prandtl number Pr ≡ ν/κ and the (inverse) Lewis number τ ≡ D/κ , where g is
the gravitational acceleration, ρT/ρ0 < 0 is the thermal expansion coefficient in the
Boussinesq approximation evaluated at Tr, ρ0 is the density of the fluid at Tr and ν

and D are, respectively, the kinematic viscosity and the molecular diffusivity of the
heavier fluid component, both assumed to be constant. In writing this set of equations,
we have assumed that the buoyancy ratio N ≡ ρC1C/ρT1T = −1, where ρC/ρ0 > 0
is the solutal expansion coefficient evaluated at Tr, Cr. With this choice of N the
system (2.1)–(2.4) possesses the stationary conduction solution alluded to above.

The physical domain is a closed container of square horizontal cross-section and
aspect ratio L ≫ 1 in the vertical direction, as shown in figure 1. We prescribe no-slip
boundary conditions for the velocity everywhere and no-flux boundary conditions for
the temperature and concentration on all walls except z = 0, 1:

x = 0, L : u = v = w = ∂xT = ∂xC = 0, (2.5)

y = 0, 1 : u = v = w = ∂yT = ∂yC = 0, (2.6)

z = 0 : u = v = w = T = C = 0, (2.7)

z = 1 : u = v = w = T − 1 = C − 1 = 0. (2.8)



The system (2.1)–(2.4), together with the boundary conditions (2.5)–(2.8), admits
the conduction solution (u, v, w, T, C) = (0, 0, 0, z, z) for all values of the parameters
Ra, Pr and τ . In terms of the perturbation quantities (u, v, w, Θ, Σ) with Θ ≡ T −
z and Σ ≡ C − z, the system is equivariant with respect to the dihedral group D2

generated by the two reflections

Sy : [u, v, w, Θ, Σ](x, y, z) −→ [u, −v, w, Θ, Σ](x, 1 − y, z), (2.9)

S∆ : [u, v, w, Θ, Σ](x, y, z) −→ [−u, v, −w, −Θ, −Σ](L − x, y, 1 − z). (2.10)

The group structure implies that the equations are also equivariant with respect to Sc =
Sy ◦ S∆:

Sc : [u, v, w, Θ, Σ](x, y, z) −→ −[u, v, w, Θ, Σ](L − x, 1 − y, 1 − z). (2.11)

These symmetries play a key role in the properties of the solutions described below.
In particular, the symmetry S∆ plays a role that is analogous to the role played by
spatial reflection symmetry in the Swift–Hohenberg equation.

When N 6= −1 the properties of the system change dramatically. In particular, there
is no motionless conduction state and the base state now consists of a single large
scale roll that spans the whole domain 0 6 x 6 L. This circulation is responsible for
changing the primary bifurcation to an imperfect bifurcation for values of N close to
−1. Additional effects can be identified for N farther away from −1. In this paper
we focus on the case N = −1 only.

We solve the system (2.1)–(2.4) numerically using a splitting scheme for time
evolution and a finely tuned numerical continuation algorithm (Beaume 2017).
Throughout this paper, the parameters are chosen following Xin, Le Quéré &
Tuckerman (1998), Bergeon & Knobloch (2002): Pr = 1, τ = 1/11 and L = 19.8536,
corresponding to eight wavelengths of the primary instability of the two-dimensional
problem. The Rayleigh number Ra is kept as a control parameter.

2.2. State of the art

Spatially localized solutions of doubly diffusive convection in a vertically extended
domain have been studied for over 10 years. Their origin was first investigated
in a study of near-onset behaviour in a two-dimensional vertically periodic slot of
relatively small spatial period (Bergeon & Knobloch 2008a). These authors found
a number of spatially periodic states yielding a complex bifurcation diagram and
identified states composed of a single roll occupying a part of the domain. This study
was followed up by a study describing the evolution of spatially localized doubly
diffusive convectons in the same configuration but with a large spatial period in the
vertical direction (Bergeon & Knobloch 2008b). The authors showed that the primary
bifurcation from the conduction state is subcritical. The resulting spatially periodic
solution is S∆-symmetric and transforms rapidly into an array of corotating rolls as
one proceeds away from the primary bifurcation, before turning towards larger values
of Ra at a fold and generating an array of large-amplitude corotating rolls. During
this process the solution remains S∆-symmetric. Subsequent branches of spatially
periodic states with different wavenumbers but also S∆ symmetry behave in the same
way but may acquire stability at large amplitude. As expected from earlier studies
of the Swift–Hohenberg equation, the primary subcritical branch of spatially periodic
states becomes unstable almost immediately to spatially modulated states – still
S∆-symmetric – and these evolve rapidly with decreasing Ra into strongly localized



states exhibiting homoclinic snaking (Woods & Champneys 1999; Burke & Knobloch
2006). As in the Swift–Hohenberg equation there are two branches of localized
states, one consisting of an odd number of corotating rolls all rotating anticlockwise
(clockwise on the page, see figure 1) about the y axis and the other of an even number
of corotating rolls also rotating anticlockwise. In the following we refer to these states
as L+ and L−, respectively, and emphasize that each is S∆-symmetric with respect to
the centre of the domain. In contrast to the Swift–Hohenberg equation, however, the
doubly diffusive problem is not gradient-like and therefore all asymmetric solutions on
the rungs of the snakes-and-ladders structure of the bifurcation diagram correspond
to states that drift in the x direction. States of this type were not computed in
Bergeon & Knobloch (2008a,b) as they are expected to be unstable, and are likewise
not computed here. Such drifting states were computed in related systems, however,
confirming the basic bifurcation scenario (Mercader et al. 2013; Lo Jacono, Bergeon
& Knobloch 2017).

The above properties of the system persist in two-dimensional domains with end
walls at x = 0, L. However, such walls destroy the translation invariance of the system
in the x direction and prevent the formation of spatially periodic solutions (Beaume
et al. 2013a). As a result localized states bifurcate directly from the conduction
state (Mercader et al. 2009) rather than appearing in a secondary bifurcation from a
periodic state. This behaviour persists in three-dimensional domains with no-slip walls
(Sezai & Mohamad 2000; Bergeon & Knobloch 2002). In this case all the primary
branches have an additional symmetry, the reflection symmetry Sy. This symmetry
exerts a substantial influence on the properties of the resulting solutions since it can
be broken in secondary bifurcations, a fact responsible for the formation of twisted
localized states (Beaume et al. 2013a), as discussed further below.

The bifurcation diagram for steady doubly diffusive convectons in a three-
dimensional domain of square cross-section and aspect ratio L = 19.8536 is shown in
figure 2. The solutions are represented in terms of the total kinetic energy:

E =
1

2

∫ 1

0

∫ 1

0

∫ L

0
(u2 + v2 + w2) dx dy dz. (2.12)

The figure shows that the convectons bifurcate directly from the conduction state in
a transcritical bifurcation at Ra ≈ 850.86. This bifurcation gives rise to two branches
of convectons, L+ and L−, both of which snake within the interval 703 . Ra . 807.
Both types of convectons are fully symmetric, i.e. invariant under Sy, S∆ and, by
extension, Sc. Convectons from the branch L+ possess an odd number of corotating,
anticlockwise rolls centred in the domain while those from the branch L− possess an
even number of corotating, anticlockwise rolls also centred (see figure 3). These states
differ from those found in a two-dimensional periodic domain in minor ways only:
(i) because the boundary conditions at x = 0, L are no longer periodic, no spatially
periodic state is present and the convectons therefore cannot and do not connect to
any spatially periodic state, and (ii) owing to the no-slip boundary condition in y, the
convecton structure is fully three-dimensional. Despite these differences, the snaking
in the two-dimensional and three-dimensional systems is similar: in the direction of
increasing energy, going from a left fold to the next right fold (hereafter called a
positive segment, alluding to the fact that Ra increases), the corotating rolls strengthen,
while going from a right fold to the next left fold (hereafter called a negative segment:
Ra decreases) results in the nucleation of one new roll on either side of the existing
roll structure.
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FIGURE 2. Bifurcation diagram representing the total kinetic energy E as a function of
the Rayleigh number Ra. The solution E = 0 corresponds to the conduction state and
convectons (E > 0) emerge through a sequence of bifurcations from the conduction state
at Ra ≈ 850.86. The primary branches L± consist of corotating rolls with axes parallel to
the y axis. Solutions on the secondary branches L+

1 , L+
2 and L−

1 , L−
2 bifurcate from L±

and break the symmetry Sy. Such states are referred to as twisted.

(a)

(b)

FIGURE 3. (Colour online) Convectons with the lowest kinetic energy along the branch L+

at Ra = 710.4464 (a) and L− at Ra = 703.9686 (b) represented in terms of the isocontours
u = ±0.3. Positive values are shown in red. In this and subsequent figures x points to the
right (gravitational acceleration is to the left) and z points upward.

Secondary bifurcations occur along the negative segments of these snaking branches.
These symmetry-breaking bifurcations all break the Sy symmetry together with one
other reflection and yield roll structures we refer to as twisted. In these states the axes
of adjacent rolls are rotated in opposite directions around the vertical axis. One such
pitchfork bifurcation occurs along the first negative segment of L+ (counting from low
to high energy) and yields the branch L+

1 of twisted convectons, while two bifurcations
occur in very close succession along the first negative segment of L−. One of these
yields the branch L−

1 shown in figure 2 but we have not been able to continue the
states created in the other. The states on the L+

1 branch near its birth consist of a
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FIGURE 4. (Colour online) Convectons with the lowest kinetic energy along the branch
L+

1 at Ra = 817.9884 (a), L−
1 at Ra = 818.0300 (b), L+

2c at Ra = 820.0688 (c), L+
2∆ at

Ra = 820.1873 (d), L−
2c at Ra = 823.9576 (e) and L−

2∆ at Ra = 823.4842 ( f ) represented in
the same way as in figure 3.

single Sc-symmetric roll, i.e. a roll whose axis is rotated about the vertical, while the
L−

1 branch consists of two-roll S∆-symmetric states rotated in opposite directions about
this axis. These states are shown in figure 4(a,b).

Successive secondary bifurcations yielding both Sc- and S∆-symmetric twisted
convectons can be found along each subsequent negative segment of each primary
branch. We refer to the Sc-symmetric states bifurcating from the second negative
segment of the L+ branch as L+

2c and to the S∆-symmetric states bifurcating from
this segment as L+

2∆. These branches are indistinguishable in the bifurcation diagram
in figure 2 and are therefore labelled L+

2 for simplicity. Both consist of solutions
composed of one broad untwisted roll inherited from the L+ branch, surrounded by
two narrower rolls of smaller amplitude and rotated about the x axis, as shown in
figure 4(c,d). This figure also shows solutions L−

2c and L−
2∆ produced in successive

bifurcations along the second negative segment of L− (figure 4e, f ). These secondary
branches produce secondary snaking in 745 . Ra . 819 but the mechanism differs
from that responsible for the primary snaking. Going from a left fold to the next right
fold in the direction of increasing energy (positive segment), the dominant effect is a
rotation of the roll axes about the x axis. Past the right fold, each structure gradually
nucleates a pair of new rolls, one on either side, with rotation that is always opposite
to that of the roll adjacent to it.

Having recapitulated existing results we now present three examples of the evolution
of the system initialized with the three-dimensional states just described. In figure 5(a)
we present the temporal evolution of a quasi-two-dimensional localized L− convecton,
followed in figure 5(b) by that of an initial condition taken from the same branch but
that is domain-filling and in figure 5(c) by that of a secondary twisted convecton from
the L+

1 branch. The time evolution is represented in terms of the convection amplitude
quantified through the quantity

Aconv =

√

∫ 1

0

∫ 1

0
u2dy dz. (2.13)



20

18

16

14

12

10

8

6

4

2

0

20

18

16

14

12

10

8

6

4

2

010 20 30

t

x

x

t

t

40 50 10 20 30 40 50

20

18

16

14

12

10

8

6

4

2

0 20 40 60 80 100 120 140

1.2

1.0

0.8

0.6

0.4

0.2

0

(a) (b)

(c)

FIGURE 5. (Colour online) Space–time evolution of three subcritical states:
(a) L− convecton obtained at Ra ≈ 747.14104 and time integrated at Ra = 747.1410, (b)
L− convecton obtained at Ra ≈ 756.04067 and time integrated at Ra = 756.0407 and (c)
L+

1 convecton obtained at Ra ≈ 775.76716 and time integrated at Ra = 775.7672.

This measure of convection strength is appropriate since u is the dominant velocity
component. The interesting and remarkable fact is that all our initial conditions
ultimately collapse to the conduction state, whether they are very localized, domain-
filling or twisted. This observation suggests that all the non-trivial states in the
subcritical regime of this problem are unstable. The main goal of this paper is to
explain this remarkable fact and explore its consequences.

3. Convecton stability

In this section, we report on the stability properties of the primary convectons L±

together with those of the twisted convectons L±
iS, with i = 1, 2 and S = c, 1. Our

results describe the evolution of all unstable eigenmodes along the snaking branches
and the stability of a given convecton is hereafter reported in terms of a pair of
integers (Nr, Ni), where Nr represents the number of real unstable eigenvalues and
Ni the number of pairs of unstable complex conjugate ones. Eigenmodes with a real
unstable eigenvalue correspond to instabilities with monotonic growth while those
with a complex pair of unstable eigenvalues correspond to instabilities with oscillatory
growth.

To generate these results, we compute the stability along the snaking branches from
Beaume et al. (2013a) at frequent intervals using the arclength s to step along the



(a)

(b)

FIGURE 6. (Colour online) (a) Odd eigenmode responsible for the pitchfork bifurcation
at Ra ≈ 850.78. (b) Even eigenmode responsible for the transcritical bifurcation at Ra ≈
850.86. Both eigenmodes are computed at Ra = 850.8 and represented using the two
isocontours ũ = ±0.5 max(|ũ|).

branch. For this purpose we perturb the stationary solutions F(x) in the following way:

f (x, t) = F(x) + ǫRe{f̃ (x)eλt}, (3.1)

where ǫ is a small real parameter and f̃ (x) is the eigenfunction corresponding to the
complex temporal growth rate λ≡ λr + iλi. We refer to λr as the growth rate and λi as
the frequency of the mode and present the growth rate results in terms of the quantity
eλr . Eigenvalues λr such that eλr > 1 (respectively < 1) are associated with unstable
(respectively stable) eigenmodes.

It is important to emphasize here that the bifurcation generating the convectons
is in fact the second primary bifurcation (Beaume et al. 2013a). The first instability
takes place at Ra ≈ 850.78, i.e. slightly earlier than the transcritical bifurcation
at Ra ≈ 850.86. This bifurcation breaks the symmetry S∆ but respects Sy (the
corresponding eigenmode is shown in figure 6a) and so is a pitchfork. However,
this bifurcation is expected to be subcritical (Bergeon & Knobloch 2002), a fact
confirmed here by direct numerical simulations (not shown), and hence does not lead
to stable small-amplitude states. However, the presence of this bifurcation is key in
one important respect: the resulting weakly unstable eigenvalue is inherited by both
convecton branches, and as shown below, plays a significant role in their dynamics.
The next mode that becomes unstable is an even mode that breaks no symmetry
(figure 6b), and the corresponding bifurcation, at Ra ≈ 850.86, is therefore transcritical.
This bifurcation generates the branches L± of spatially localized convectons. Of the
pair of branches that result the subcritical branch evolves into the convecton branch
L+ while the supercritical branch evolves into the convecton branch L−; the latter
undergoes a fold at very small amplitude at which it turns towards smaller values of
Ra. These small-amplitude results are summarized in figure 7.

The alternation between symmetry-breaking and symmetry-preserving bifurcation
is a standard feature of symmetric bifurcation problems (Hirschberg & Knobloch
1997) and is responsible for much of the weakly nonlinear behaviour observed in
such systems. Here both modes are spatially modulated, a consequence of the no-slip
boundary conditions at the top and bottom of the domain. The linear eigenmodes of
the nonlinear states that result likewise split into odd and even families. Specifically,
the since both L+ and L− are even under appropriate reflections all eigenmodes of
L± will have either odd or even parity.

3.1. Stability of the primary convectons

Our eigenvalue computations show that all unstable modes of the convecton branches
L± are associated with monotonic growth: λi = 0. Figure 8 shows the resulting
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FIGURE 8. (Colour online) Linear stability results for L+ (a) and L− (b). The results
are presented in terms of the quantity eλr and shown as a function of the arclength s
along the branch. Folds correspond to saddle-node bifurcations (λr = 0) and are denoted
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Until s ≈ 100 139 236 300 337 443 503 544 800
L+ stability (2,0) (3,0) (2,0) (4,0) (6,0) (4,0) (6,0) (8,0) (6,0)

Until s ≈ 12 108 148 252 314 351 459 525 561 650
L− stability (2,0) (3,0) (5,0) (3,0) (5,0) (7,0) (5,0) (7,0) (9,0) (7,0)

TABLE 1. Stability count associated with the branches L+ (top two lines) and L− (bottom
two lines) as a function of the arclength s. The first number represents the number of
unstable real eigenvalues while the second number shows the number of pairs of unstable
complex conjugate of eigenvalues. The count was stopped at s = 800 for L+ and s ≈ 650
for L− where the branch undergoes a saddle node induced by the finite size of the domain.

(a)

(b)

FIGURE 9. (Colour online) (a) L+ convecton at Ra ≈ 749.6782 (s ≈ 101) represented using
the same colour scheme as in figure 3. (b) Twist instability eigenmode for the state in (a)
represented using the two isocontours ũ = ±0.5 max(|ũ|).

(a)

(b)

FIGURE 10. (Colour online) (a) L+ convecton at Ra ≈ 711.6782 (s ≈ 139) represented
using the same colour scheme as in figure 3. (b) Amplitude eigenmode for the state in
(a) represented in the same way as in figure 9(b). This eigenmode is responsible for both
the primary bifurcation and the first saddle node of L+.

growth rates λr along both branches as a function of the arclength s. The L+ branch is
subcritical and is thus characterized by one unstable amplitude mode in addition to the
unstable eigendirection inherited from the primary pitchfork (see table 1). The branch
becomes three times unstable at s ≈ 100 (Ra ≈ 750) owing to the onset of the twist
instability responsible for the secondary branch L+

1 . The twist instability is triggered
by the eigenmode shown in figure 9. The eigenmode represents a perturbation roll
that is rotated around the x axis by 90◦ as compared to that in the base state, resulting
in the progressive rotation of the convection roll around the x axis as the instability
develops. At s ≈ 139, the branch undergoes a saddle-node bifurcation where the mode
shown in figure 10 becomes stable. This mode has a similar profile to that of the base
state and is thus an amplitude mode: any instability arising from this mode either
strengthens or weakens the base convection roll. This eigenmode remains stable along
the whole subsequent snaking branch as it acts only on the central roll. The next
two saddle nodes are caused by the destabilization and restabilization of a different
eigenmode, shown in figure 11(b). The figure shows that this mode is responsible
for the addition of one convection roll on either side of the localized structure, a
process that takes place just beyond this fold (s ≈ 236). This eigenmode becomes
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FIGURE 11. (Colour online) (a) L+ convecton at Ra ≈ 802.1785 (s ≈ 239) represented
using the same colour scheme as in figure 3. (b) Amplitude and (c) phase eigenmodes for
the state in (a) represented in the same way as in figure 9(b). The former is responsible
for the second and third saddle nodes while the latter is responsible for the emergence of
drifting rung states via parity-breaking bifurcations.

stabilizing at the next saddle node (s ≈ 337) and remains so thereafter since it always
determines the stability of the same two rolls. Consequently, each subsequent pair
of saddle nodes is generated by a new and different eigenmode. This is so for the
phase mode (figure 11c) as well, and is in contrast to the Swift–Hohenberg equation
where the same two amplitude and phase eigenvalues repeatedly pass through zero
as one follows the snaking branches (Burke & Knobloch 2006; Kao, Beaume &
Knobloch 2014; Knobloch 2015). The saddle node at s ≈ 236 is followed shortly
thereafter by a symmetry-breaking bifurcation triggered by a phase mode, breaking
the S∆ and Sc symmetries but preserving the Sy symmetry. This bifurcation creates a
corotating roll on one side of the structure and a counter-rotating roll on the other
side. Since τ < 1, the growth of the latter is suppressed by nonlinear terms (Thangam,
Zebib & Chen 1982) resulting in the creation of a branch of asymmetric rung states.
Owing to the non-gradient nature of the present system this asymmetric state will
necessarily drift (in the x direction) until such time as it comes into contact with
one of the end walls and comes to rest (see below). The next change in stability
is located farther away on the negative segment at s ≈ 300 (Ra ≈ 740, see table 1)
where two successive bifurcations take place in rapid succession. These bifurcations
are of the same nature: they are both produced by eigenmodes breaking the symmetry
Sy and one other symmetry, and result in rotation of the axes of the end rolls either
in the same or opposite direction as shown in figure 12. Since these modes act on
the end rolls, their regions of influence are separated by the central roll where the
eigenmode vanishes. As a result, there is little dynamical difference between them
and the associated bifurcations occur at similar values of s, equivalently Ra. These
twist modes destabilize the solution yet further. However, near the next left saddle
node (at s ≈ 335) the amplitude and phase mode stabilize again, albeit at slightly
different values of Ra. This scenario then repeats during each and every oscillation
of the L+ branch. Overall, the L+ solution gains two unstable eigendirections during
each such oscillation, as summarized in table 1.

The branch L− emerges supercritically from the transcritical bifurcation that
produces L+ but is initially once unstable, owing to the pitchfork bifurcation that
precedes it. The branch undergoes a saddle node at low amplitude as shown in figure 7
where the solution gains a second unstable eigendirection and thereafter undergoes
a similar sequence of bifurcations as L+, as summarized in table 1. The eigenvalue
count is initialized at the small-amplitude saddle node. At s ≈ 12 (Ra ≈ 838), the
solution gains a third unstable direction with the corresponding eigenmode shown in
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FIGURE 12. (Colour online) (a) L+ convecton at Ra ≈ 738.1785 (s ≈ 303) represented
using the same colour scheme as in figure 3. (b) S∆-preserving twist eigenmode for the
state in (a). (c) Sc-preserving twist eigenmode for the state in (a). Both eigenmodes are
represented in the same way as in figure 9(b).

(a)

(b)

FIGURE 13. (Colour online) (a) L− convecton at Ra ≈ 837.8913 (s ≈ 12) represented using
the same colour scheme as in figure 3 but for isocontours u = ±0.1. (b) Eigenmode for
the state in (a) represented in the same way as in figure 9(b).

(a)

(b)

(c)

FIGURE 14. (Colour online) (a) L− convecton at Ra ≈ 741.8996 (s ≈ 108) represented
using the same colour scheme as in figure 3. (b) S∆-preserving twist eigenmode for the
state in (a). (c) Sc-preserving twist eigenmode for the state in (a). Both eigenmodes are
represented in the same way as in figure 9(b).

figure 13. The figure shows that this mode strengthens one of the end rolls comprising
the solution at the expense of the other. This instability likely corresponds to the
termination of the branch created in the primary pitchfork bifurcation (Bergeon &
Knobloch 2002). Proceeding up the negative branch segment, one next encounters a
pair of near-simultaneous bifurcations at s ≈ 108 (Ra ≈ 742) responsible for generating
the twisted states labelled L−

1 following similar notation for L+
1 (figure 14). After this

original set of bifurcations, the L− branch follows a similar behaviour to L+, gaining
two unstable eigendirections during each back and forth oscillation of the branch
in parameter space: the phase mode stabilizes just below the left fold followed by
the amplitude mode before destabilizing in reverse order at the right fold. A pair of
twist instabilities occurs along each negative segment of the branch leading to the
net generation of two unstable eigendirections per back and forth oscillation.



(a)

(b)

FIGURE 15. (Colour online) (a) L+ convecton at Ra ≈ 805.7820 (s ≈ 440) represented
using the same colour scheme as in figure 3. (b) Odd parity drift eigenmode for the state
in (a) represented in the same way as in figure 9(b).

(a)

(b)

FIGURE 16. (Colour online) Initial condition (a) and final state (b) obtained through direct
numerical simulation with imposed Sy symmetry at Ra = 757.141 (s ≈ 200). The states are
represented by the isocontours |u| = 1.1.

It will have been observed that both L+ and L− possess a weakly unstable
eigenvalue, with growth rate around λr ≈ 10−4 for a one-roll (strongly localized) state
and λr ≈ 10−3 for a six-roll (domain-filling) state. The corresponding eigenfunction
for a L+ solution consisting of three convection rolls is shown in figure 15(b) and is
of odd parity. Here and in the following we use this term to refer to eigenfunctions
that are odd with respect to S∆, the symmetry of L±, but invariant under Sy. In a
vertically unbounded system bifurcations triggered by the destabilization of an odd
parity mode are associated with the onset of drift and are sometimes called drift
bifurcations.

To unveil the consequences of the presence of this mode, we selected a solution
that allows us to suppress all other unstable eigendirections by imposing appropriate
symmetry conditions on a time simulation. For this purpose we selected a solution on
the second positive segment of L− (counting the very small-amplitude segment shown
in figure 7) at Ra ≈ 757.1410 consisting of a pair of convection rolls. This state is
shown in figure 16(a) and possesses three unstable eigendirections, two of which are
associated with the twist instability and are even in x (see figure 8) and one with odd
parity in x. Since the twist instability breaks the symmetry Sy while the odd parity
mode does not, we isolate the dynamics of the latter by imposing the symmetry Sy

in our time simulation. The effect of the odd parity mode is represented in figure 17
using the quantity Aconv defined in expression (2.13). The figure shows that drift occurs
on a time scale of the order of 104 time units, a time scale that compares well with the
magnitude of the odd parity mode eigenvalue. In this simulation, the convecton drifts
downward until it meets the bottom wall. By symmetry, an upward drifting convecton
can also be obtained. When the convecton meets the wall, it stops drifting and settles
into a steady state in which the roll closest to the wall is stronger than that farther
away. This wall-attached convecton has been converged using a Newton method (see
figure 16b) and is twice unstable, each unstable eigendirection being responsible for
the twist of one of the rolls. We expect that these states also snake, much like similar
states in binary fluid convection in a horizontal layer (Mercader et al. 2011).
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FIGURE 17. (Colour online) Space–time evolution at Ra = 757.141 of the quantity Aconv

defined in expression (2.13) and initialized with the state in figure 16(a).

We can understand these results as follows. In an unbounded, translation-invariant
system a growing odd parity perturbation would render an even state asymmetric.
Since in such systems asymmetric states generically drift, the appearance of such an
unstable mode is associated with a parity-breaking or drift bifurcation. In the present
case, however, the walls at x = 0, L prevent translation, implying that the presence of a
growing odd mode must lead to a stationary state. A simple model equation, studied
by Knobloch, Hettel & Dangelmayr (1995) and Dangelmayr, Hettel & Knobloch
(1997), captures the effect of broken translation invariance on the parity-breaking
bifurcation. The model takes the form

ċ = (µ + δ cos φ − c2)c + η sin φ; φ̇ = c − ǫ sin φ, (3.2a,b)

where µ is the bifurcation parameter and δ, η, ǫ are parameters proportional to the
amplitude of the spatial inhomogeneity, assumed small and of period 2π. When these
terms are absent equation (3.2) reduces to the normal form for the parity-breaking
bifurcation, assumed here to occur at µ = 0 and to be supercritical, with c the drift
speed and φ the spatial phase or displacement. When δ, η, ǫ are non-zero c is no
longer a drift speed but must be interpreted as the degree of asymmetry of the state.
There are then generically two fixed points (c, φ) = (0, 0) and (0, π), corresponding
to a symmetric state at the ‘wall’ (φ = 0) and a symmetric state at the centre of the
domain (φ = π), respectively. Other, asymmetric fixed points (with c 6= 0) may be
present as well (Knobloch et al. 1995; Dangelmayr et al. 1997) but we focus here on
the symmetric states. These have opposite stability properties implying that if (0, 0)
is stable then (0, π) is unstable and vice versa. We identify the symmetry-breaking
perturbation of a symmetric convecton at the centre as the perturbation that initially
generates translation, but that is arrested by pinning arising from the wall either at
x = 0 or x = L that brings this state to rest. In our case the final state that results
is not symmetric but this is a consequence of the non-periodic boundary conditions
employed in the simulation.

3.2. Stability of the twisted convectons

The stability properties along the lowest branches of twisted convectons, L±
1 , are

summarized in figure 18. The Sc-symmetric twisted convectons on L+
1 bifurcate

towards higher Rayleigh numbers and are thus initially three times unstable: in
addition to the unstable eigendirection associated with the twist instability and
responsible for the formation of the branch, the L+

1 convectons are also unstable with
respect to an amplitude mode (responsible for the primary transcritical bifurcation)
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FIGURE 18. (Colour online) Linear stability results for L+
1 (a) and L−

1 (b). The results are
presented in terms of the quantity eλr and shown as a function of the arclength s along the
branch. Folds correspond to saddle-node bifurcations (λr = 0) and are denoted by vertical
lines. Eigenvalue collisions are indicated by a red dot.

and a phase mode inherited from the odd parity drift mode of L+. Very close to the
bifurcation point to L+

1 the amplitude eigenvalue decreases while the twist eigenvalue
increases resulting in an eigenvalue collision at s ≈ 4.7 (Ra ≈ 756.1) forming a
complex conjugate pair. Such a collision is possible because both modes have the
same symmetry and is shown in the left panel of figure 19; the imaginary part of
the eigenvalues along the L+

1 branch is shown in figure 20. The resulting (1, 1)

unstable L+
1 convecton continues to larger values of Ra with the unstable eigenmodes

at Ra ≈ 781.9884 shown in figure 21.
The odd parity drift mode of the twisted convecton shown in figure 21(a) is

generally associated with slow dynamics while the observable fast dynamics is
generated by unstable oscillatory modes (figure 21b,c) that rotate the convection roll
about the x axis first in one direction and then back to its original state. To illustrate
this behaviour, we initialized a simulation using an L+

1 convecton at Ra ≈ 801.9884
placed in the centre of a larger domain in order to reduce the influence of the walls.
This convecton is three times unstable. The simulation is run at Ra = 801.9884
and we let the instability grow from numerical error. Selected snapshots from the
simulation are shown in figure 22. The snapshots show that the amplitude of the roll
first grows to a maximum, its axis then rotates about the x axis before its amplitude
and rotation angle decrease again and the process repeats. This process can be seen
in the transition from panel (b) at t = 75 to (c) at t = 85 where the roll straightens
and shrinks, before regrowing as in (d) at t = 95, and then rotating again as in (e) at
t = 99 before its ultimate decay to the conduction state.
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FIGURE 20. Imaginary part of the eigenvalues from the linear stability analysis of L+
1 (a)

and L−
1 (b) as a function of the arclength s along the branch. Saddle nodes are denoted

by vertical lines.

In the vicinity of the right fold, the L+
1 solution gains two more unstable

eigendirections in rapid succession: at Ra ≈ 818.29402, a second mode with a
real growth rate and same symmetry as the odd parity drift mode becomes unstable
and its eigenvalue collides with that of the odd parity eigenmode to form a complex
pair of eigenvalues at Ra ≈ 818.29409. At this stage and right before the saddle node,
the solution stability is thus (0, 2). The saddle-node bifurcation corresponding to
the right fold occurs at Ra ≈ 818.29457 and beyond this point the solution is (1, 2)

unstable. By Ra ≈ 818.29446 the eigenvalues that collided right before the saddle
node recombine on the positive real axis and then split, producing a state that is
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FIGURE 21. (Colour online) (a) L+
1 convecton at Ra ≈ 781.9884 (s ≈ 31) represented using

the same colour scheme as in figure 3. All unstable eigenmodes are represented as in
figure 9(b): (b, c) show the real and imaginary parts of the complex conjugate modes,
while (d) shows the odd parity drift mode.
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FIGURE 22. (Colour online) (a) L+
1 convecton at Ra ≈ 801.9884 (s ≈ 51) used as initial

condition for a time simulation in a domain of aspect ratio 2L. Snapshots of the simulation
taken at t = 76 (b), t = 85 (c), t = 95 (d) and t = 96 (e) span a quasi-period of the
oscillations observed. All states are represented using the same colour scheme as in
figure 3.

(3, 1) unstable. This behaviour is shown in figure 23. The solution remains (3, 1)

unstable until the leftmost fold where the stability again changes in a non-trivial way.
This fold occurs at Ra ≈ 745.35871 where the convecton gains an additional unstable
eigendirection. At Ra ≈ 745.35876, above the fold, a further eigenmode becomes
unstable making the solution (5, 1) unstable. The two new unstable modes collide
with the two unstable modes inherited from the dynamics close to s = 143.7, as
shown in the right panel of figure 19, forming two pairs of unstable complex modes
and making the solution (1, 3) unstable. This process repeats all along the L+

1 branch
and the solution gains two pairs of unstable complex conjugate eigenvalues after each
snaking oscillation.

The stability of the S∆-symmetric L−
1 solutions follows the same pattern: after a

pair of initial collisions (two collisions occur, see figure 18), the solution is (1, 2)

unstable along most of the positive segment of the branch. Like L+
1 this state acquires

an additional unstable mode close to the rightmost saddle node and the associated
eigenvalue collides with that of the (unstable) drift eigenmode shortly thereafter to
form an additional unstable complex conjugate pair of eigenvalues. Approaching the
first fold, the L−

1 solution is (0, 3) unstable. It acquires a new unstable eigendirection
at the saddle node and shortly thereafter the most recent complex pair of eigenvalues
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FIGURE 23. Enlargement of the s ∈ [67.152, 67.16] interval of the top panel of figure 18.
The instability threshold eλr = 1 is indicated by a thin horizontal line and the saddle node
corresponds to the change of stability indicated by the black circle.

collides on the positive real axis and splits. The state thus becomes (3, 2) unstable.
Overall, the passage through this saddle node (and its vicinity) has added two unstable
eigenvalues to the L−

1 state and it remains (3, 2) unstable along most of the subsequent
negative segment. The branch then gains two more unstable eigendirections which
collide with the previous two around the left fold, where the solution becomes (1, 4)

unstable and the process then repeats.
From the previous discussion, it follows that all the secondary localized states

are unstable and become more so as the structure broadens. The most unstable
eigenmodes along the positive segments of the L+

1 and L−
1 branches correspond

to oscillatory instabilities arising after eigenvalue collisions (see figure 18) with
growth rate in the vicinity of eλr = 1.2. As shown in figure 20, the magnitude of
the corresponding imaginary part of the complex eigenvalues reaches a maximum at
each right fold, and then decreases towards the next left fold. Importantly, as we go
up the snake, the number of unstable complex conjugate eigenvalues increases while
their real parts remain comparable, and so do their imaginary parts. The presence
of these eigenvalues is typical of non-gradient systems (Burke & Dawes 2012) and
implies the emergence of non-trivial oscillatory dynamics in the vicinity of the
corresponding fixed points. In contrast, the leading eigenvalues are real along most of
the negative segments of the snake. Figure 24 summarizes all the unstable eigenmodes
associated with an L+

1 convecton computed at Ra ≈ 780.7143 along the first negative
segment of the branch as it begins snaking (see figure 24a). The oscillatory instability
corresponding to panels (b) and (c) has complex growth rate 0.1485 ± 0.5400i and,
if triggered, is responsible for oscillatory tilt of the central roll about the vertical.
This oscillatory instability is inherited from the eigenvalue collision right after the
bifurcation of the L+

1 state from the L+ state but does not dominate along most of the
negative branch segment. The dominant modes are instead the eigenmodes shown in
(d) and (e), with real growth rates 0.2861 and 0.2860, respectively. The former leads
to solutions with no remaining reflection symmetry and is akin to the eigenmode
represented in figure 11(c): this mode creates a bifurcation to drifting rung states
close to each fold. The latter is the amplitude mode that changes stability at the
fold. Lastly, the odd parity drift mode in panel ( f ) is once again close to marginal
(its growth rate is 7.715 × 10−4). Thus, the growth of the rolls is observed first
and is then followed by their rotation about the x axis. To understand the stability



(a)

(b)

(c)

(e)

( f )

(d)

FIGURE 24. (Colour online) (a) L+
1 convecton at Ra ≈ 780.7143 (s ≈ 105) on the first

negative segment represented using the same colour scheme as in figure 3. All unstable
eigenmodes are represented as in figure 9(b): panels (b) and (c) show the real and
imaginary parts of the complex conjugate modes, while (d) and (e) show the new steady
eigenmodes and ( f ) the odd parity drift mode.

changes along the secondary snaking branches, we represent in figure 25 all the
unstable eigenmodes of a L+

1 convecton at Ra ≈ 779.7672 corresponding to the next
positive branch segment. All three rolls are now of approximately the same strength
(compare figure 25a to figure 24a) and the convecton is now 7 times unstable as
opposed to being 5 times unstable as in figure 24(a). The mode responsible for the
oscillations of the central roll is still unstable with growth rate 0.1379 + 0.5579i. Two
new unstable eigenmodes have appeared and undergone collisions with those shown
in figure 24(d,e). These modes are shown next to those they are coupled to: the
eigenmodes in figure 25(d,e) have growth rate 0.1605 ± 0.4970i and are responsible
for in-phase oscillations of the axes of the outer rolls of the convecton with respect
to the y direction, while those in figure 25( f,g) have growth rate 0.1571 ± 0.4959i

and generate out-of-phase oscillations on the part of the outer rolls. Lastly, the odd
parity drift mode is still present with the same small growth rate of 1.067 × 10−3

(figure 25h).
The process by which the stability properties evolve during the secondary snaking

scenario repeats after each back and forth oscillation and each time is responsible
for the addition of two pairs of unstable complex conjugate eigenvalues to the
convecton spectrum. The evolution described here repeats for all subsequent branches
of secondary states (not shown) with one main difference – the number of unstable
eigenvalues inherited from the primary convecton branch: L+

2∆ and L+
2c convectons

are (6, 0) unstable before a double eigenvalue collision making them (2, 2) unstable
while L−

2∆ and L−
2c convectons are originally (7, 0) unstable and turn into a (3, 2)

unstable state. Moreover, since the new rolls are smaller than those on the primary
convecton branches, it follows that the secondary snaking proceeds further than the
primary snaking for given length of structure, implying that the twisted states can be
more unstable than the primary states.
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FIGURE 25. (Colour online) (a) L+
1 convecton at Ra ≈ 779.7672 (s ≈ 174) on the

second positive segment represented using the same colour scheme as in figure 3. All
unstable eigenmodes are represented as in figure 9(b): panels (b) and (c) show the real
and imaginary parts of the complex conjugate modes associated with the first eigenvalue
collision (matching figure 24b,c), while panels (d) and (e), and ( f ) and (g), show the real
and imaginary parts of the newly formed complex conjugate modes; (h) is the odd parity
drift mode.

3.3. Depinning

The main differences between the two-dimensional system studied by Bergeon &
Knobloch (2008b) and the three-dimensional system under investigation here can be
understood in terms of the additional Sy symmetry. This symmetry gives rise to twist
instabilities that are absent in the two-dimensional problem and these instabilities
are in turn responsible for the emergence of secondary convectons. Moreover, it also
impacts the dynamics outside the snaking region. In a typical depinning scenario, the
convecton length grows in time via successive nucleation of additional rolls on either
side of the structure. These nucleation events are interspersed with intervals of stasis
during which the structure is almost steady. The time spent in the latter state grows
with decreasing distance from the edge of the pinning region and does so as the
inverse square root of the distance (Burke & Knobloch 2006) but this relationship
has not been tested in fluid systems.

Figure 26 shows the dynamics at Ra = 808 of a convecton just outside the pinning
region. The simulation was initialized using a convecton at the lower right saddle
node on the L+ branch (Ra ≈ 805.2252) and run with and without imposing the
symmetry Sy. The figure highlights the fundamental differences between Sy-symmetric
dynamics and unconstrained direct numerical simulation (DNS). The symmetric
dynamics behaves like the simulations reported by Bergeon & Knobloch (2008b): the
front depins and rolls are sequentially added to both sides of the convecton until the
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FIGURE 26. (Colour online) Space–time dynamics at Ra = 808 initialized with an L+

convecton at the lower right fold corresponding to Ra ≈ 805.2252 with no imposed
symmetry (a) and with Sy symmetry imposed (b), and at Ra = 809 with no imposed
symmetry (c). The solution is represented in the same way as in figure 17.

roll pattern fills the domain. This is not the case in the unconstrained DNS where
the pattern decays to the conduction state when t reaches t ≈ 60, as also found
by Bergeon & Knobloch (2008b). The decay time in fact depends quite sensitively
on the state used to initialize the simulation and does not vary monotonically with
increasing Ra. For example, at Ra = 807, it takes 40 units of time to decay and
no nucleation takes place (not shown but see figure 28a for a similar situation). At
Ra = 808, it takes 60 units of time to decay but there are ‘some’ nucleation events,
see figure 26(a). At Ra = 809 (figure 26c), it takes approximately 50 units of time:
the nucleation event observed at t = 35 for Ra = 808 now occurs at t = 30 and the
nucleated rolls survive until t ≈ 48 (a similar time to Ra = 808) but the central roll
reappears at t = 40 only to vanish at t = 45, whereas it only appeared at t = 50 for
Ra = 808. Another fundamental difference concerns the behaviour of the central roll:
this roll remains essentially unchanged in the symmetric simulation while it tilts and
then decays between t = 30 and t = 35 in the DNS before temporarily regrowing.
Despite this novel behaviour nucleation of new rolls still takes place and does so
on a similar time scale as in the symmetric simulation. However, the DNS state at



20
1 10

100

200

FIGURE 27. Time δ at which the first nucleation event occurs as a function of the
Rayleigh number Ra for direct numerical simulations (‘×’ signs) and for simulations
with the symmetry Sy imposed (‘+’ signs). The straight line corresponds to the relation
δ = 65(Ra − 805.22523)−0.5 expected on the basis of general theory.

t = 40 takes the form of two rolls separated by a roll-wide gap as opposed to a
three-roll pattern in the symmetric simulation. The reappearance in the DNS of the
central roll at t ≈ 50 coincides with the decay of the two previously nucleated rolls.
In each case, the decay of a roll is preceded by rotation of its axis suggesting that
the decay is due to increased dissipation arising from the resulting closer approach
to the adiabatic walls. Both simulations reveal a characteristic overshoot when a roll
is nucleated, a property indicative of a non-gradient system and observed by Bergeon
& Knobloch (2008b).

To compare the dynamics of our DNS to established depinning dynamics, we
report in figure 27 the time at which the first nucleation event occurs in simulations
initialized by the same solution as in figure 26. The figure shows a relatively good
agreement between the inverse square root law found in other systems (Knobloch
2015) and the simulations with the symmetry Sy imposed. This agreement indicates
that the two-dimensional system of Bergeon & Knobloch (2008b) behaves in a similar
fashion to the Swift–Hohenberg equation (Burke & Knobloch 2006). On the other
hand, the DNS provides substantially different results. Sufficiently far away from the
fold, we recover the inverse square root law. However, for Ra < 807.6, this law breaks
down and no depinning event is observed. The reason for this failure is that with no
imposed symmetry, all the computed convecton states are unstable with respect to the
twist instability and in the vicinity of a fold the time scale involved in the depinning
process is so long that this instability kicks in before any nucleation can occur. A
precursor to this behaviour can be seen in figure 26(a) where the central roll dies
shortly after undergoing a rotation about the x axis, and does so at the same time as
the nucleation of a pair of side rolls is taking place. For comparison, at Ra = 807.6
(not shown), the central roll decays on a similar time scale but the nucleation of
the side rolls takes much longer, up to 45 units of time. If the Rayleigh number is
decreased below 807.6, the central roll decays even further and there is no seed left
for nucleation (see figure 28a for Ra = 806). Further away from the snaking interval,
nucleation occurs much more quickly than twist and several nucleation events can be
observed before any of the rolls decay, as exemplified in figure 28(b) for Ra = 834.

It remains to consider what happens when the Rayleigh number Ra moves past Ra≈
850.78, the location of the primary pitchfork bifurcation. For Ra.850.78 all solutions,
as far as we can tell, decay to the stable conduction state. This is no longer possible
once Ra & 850.78 since the primary state is now unstable. In this regime (figure 29)
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FIGURE 28. (Colour online) Space–time dynamics at (a) Ra = 806 and (b) Ra = 834
initialized with an L+ convecton at the lower right fold corresponding to Ra ≈ 805.2252
with no imposed symmetry. The solution is represented in the same way as in figure 17.

we find that the system exhibits relaxation oscillations resembling bursts. The figure
shows that the flow frequently collapses towards the conduction state but does so in
a spatially incoherent manner. As a result the rolls never completely disappear, and
since the conduction state is now weakly unstable, they eventually grow back. As
revealed in the figure both the collapse and the regrowth proceed by front propagation
with well-defined speeds whereby the conduction state invades the roll state and vice

versa. Moreover, because the collapse is spatially incoherent this behaviour results
in irregular oscillations of relaxation type. Evidently this behaviour is a consequence
of the competition between roll decay as a result of the twist instability and the
linear instability of the conduction state acting as a regrowth mechanism, mediated
via back-and-forth front propagation that maintains spatial asymmetry at all times,
thereby guaranteeing spatially incoherent collapse and regrowth. The length of time
the system spends near the conduction state depends on the initial condition prior to
the initiation of the collapse event. Figure 29 shows episodes when the domain is
almost devoid of convection (t ≈ 40 and t ≈ 175) as well as others when it is populated
by a single roll (t ≈ 60 and t ≈ 95). Indeed figure 29(a) reveals the presence of a kind
of ‘quantization’ reflecting the presence of 0, 1, 2, . . . rolls in the domain with abrupt
and irregular transitions between these states. Despite these types of regularity the
final state represents spatio-temporal chaos since rolls may regrow at random locations
owing to the instability of the background state. Figure 29(b) shows the appearance
at t ≈ 190 of an isolated roll near x = 18.

The situation resembles the behaviour of binary fluid convection in a horizontal
layer just prior to the appearance of stable stationary convectons (Batiste et al. 2006)
where it is a focusing instability that leads to intermittent dynamics from which the
stationary convectons emerge.
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FIGURE 29. (Colour online) Relaxation oscillations observed at Ra = 850.80, in the
vicinity of the primary instability (Ra ≈ 850.78), shown through the temporal evolution
of the kinetic energy (a) and through the corresponding space–time plot (b). The origin
of time is chosen to fit the beginning of the visualized time frame.

4. Discussion

In this paper, we have discussed the stability of steady spatially localized doubly
diffusive convection in a closed three-dimensional vertically extended cavity. These
states, referred to as convectons, consist of an array of corotating rolls embedded
in a background conduction state. Such a conduction state is only present when the
contributions of the temperature and concentration to the buoyancy force balance, a
key assumption made here in order to compare the present work with earlier work on
the two-dimensional case with periodic boundary conditions in the vertical (Bergeon
& Knobloch 2008b).

The domain studied is of long spatial extent in the vertical direction and of
square cross-section in the horizontal. Convection is driven by temperature and
concentration differences imposed on a pair of opposite vertical walls resulting
in horizontal forcing, in contrast to the more common situation in which doubly
diffusive convection takes place in a horizontal layer, driven by imposed temperature
and concentration differences in the vertical. The latter geometry has been studied
extensively in the context of binary fluid convection in the presence of a Soret
effect (Batiste et al. 2006; Mercader et al. 2011) and exhibits behaviour that is quite
close to that familiar from simple models of localized states such as the bistable
Swift–Hohenberg equation (Burke & Knobloch 2006, 2007b). The present, vertically
extended geometry is therefore of additional interest, both in order to understand the
consequences of horizontal rather than vertical forcing, and also to elucidate the role
played by the different symmetries of the system. Of these the symmetry S∆ plays
a prominent role (Bergeon & Knobloch 2008b) but in the present, three-dimensional
case the transverse reflection Sy has dramatic consequences also.



FIGURE 30. Scenario representing the stability of convectons L± along the primary
snaking branches. Open circles represent bifurcations (either saddle nodes or pitchforks)
while the filled circle represents an n-roll convecton based on which the scenario is
proposed.

Since we impose no-slip boundary conditions on all the walls periodic structures
are absent. In this case, as in other examples of this type (Mercader et al. 2009),
a pair of convecton states bifurcates directly from the conduction state and after
an interval of snaking (703 < Ra < 807) each evolves continuously with increasing
Rayleigh number into a three-dimensional spatially extended domain-filling state.
Twist instabilities that break the symmetry Sy of the primary snaking states are
observed along the snaking branches and yield secondary twisted convectons whose
branches display secondary snaking. These states are hybrid states: their core reflects
the structure of the primary convecton from which they bifurcate while the side
rolls generated via secondary snaking are typically weaker and have a different
and smaller size, as well as being rotated about the x direction. Unfortunately, as
shown here, the presence of the symmetry Sy leads to progressive destabilization of
the localized states as one proceeds up both the primary snaking branches and the
secondary snaking branches. Since these turn continuously into domain-filling states
it follows that even domain-filling states are destabilized by the twist instability, a
fact confirmed here by direct numerical simulation of the governing equations (cf.
figure 5). In other words, our stability calculations confirm the numerical observation
in Beaume et al. (2013a) that in the subcritical region below the primary pitchfork
bifurcation all non-trivial states collapse to the stable conduction state and hence
explain the absence of hysteresis at Ra ≈ 850.78 observed in the transition from the
subcritical regime to the finite-amplitude relaxation oscillations present beyond.

Except for the peculiarities due to the finite size of the domain or the choice of
boundary conditions, the stability of a primary convecton can be predicted from the
number of rolls within it, at least until the convectons start filling the domain. Figure
30 presents a scenario that is consistent with all our observations. To understand
this scenario, let us consider a left saddle-node solution composed of an untwisted
structure of n large rolls. Above the saddle node, on the positive branch segment, the
solution is (n + 1, 0) times unstable, including the unstable eigenmodes corresponding
to the tilt of each of the rolls (or combinations) as well as the odd parity drift
eigenmode. This stability assignment remains unchanged until the subsequent saddle
node on the right. At the right saddle node, the amplitude mode responsible for
the nucleation of one new roll on either side of the pattern becomes unstable
and the solution is then (n + 2, 0) unstable. Soon thereafter, a phase eigenmode
becomes unstable; this mode is responsible for the creation of rung states (it is a
parity-breaking mode that usually results in drifting asymmetric states but here it
results in asymmetric states attached to either the top or bottom domain boundary)



FIGURE 31. Same as figure 30 but for twisted convectons along the secondary snaking
branch. The state represented by the filled circle consists of n large rolls and t small,
twistable rolls. Stars represent eigenvalue collisions.

and the solution becomes (n + 3, 0) unstable. On the negative branch segment that
follows the stability of the state changes owing to a pair of nearby bifurcations
generating twisted states: one eigenmode generates identical tilts in the two new rolls
that start to emerge as one passes the right fold, while the other creates opposing
tilts. After these two bifurcations, the state is (n + 5, 0) unstable and remains so until
the phase eigenmode regains stability in the vicinity of the subsequent left saddle
node, making the solution (n + 4, 0) unstable. At the saddle node the amplitude mode
restabilizes, and the solution becomes (n + 3, 0) times unstable. Since the number of
rolls comprising the structure is n + 2 this fact provides a simple rule for determining
the number of unstable modes of a given convecton. This process persists for as long
as the snaking continues. When the domain starts becoming full the branch L+ turns
towards larger Ra and no new bifurcations occur. The leading eigenvalues then evolve
monotonically with Ra. For L− the evolution is more complex and the state becomes
more and more unstable, even after snaking terminates. Crucially, once the domain
is full, the solution starts losing rolls in the centre and develops into a 2-pulse state
that extends beyond the threshold for the primary instability (Ra ≈ 850). These states
are more unstable than the 1-pulse convectons discussed here.

For the twisted convectons a similar scenario applies and consists of two steps: the
emergence of the branch of twisted states followed by repeated back and forth
oscillations associated with secondary snaking. The scenario is summarized in
figure 31. Near the secondary twist bifurcation, the branch of twisted convectons
is (n + 5, 0) times unstable. The unstable eigendirections correspond to the twist
eigenmodes of the n large rolls and of the two small rolls surrounding them,
together with the amplitude mode responsible for the creation of the small rolls,
the phase mode associated with the near saddle-node bifurcations of the rung
states in figure 30 and the odd parity drift eigenmode. Almost immediately the
eigenvalues associated with the instabilities of the small rolls collide two by two.
The first collision involves the eigenvalues associated with the amplitude eigenmode
(responsible for the nucleation of the rolls) and the eigenmode responsible for the
same sense rotation of the small rolls. The second collision involves the eigenvalues
related to the phase eigenmode (a priori responsible for the rung states) and the
eigenmode responsible for opposite sense rotation of the small rolls. After these two
collisions, the stability of the twisted convecton is (n + 1, 2). To continue describing
the stability of these states, we need to introduce the number t of small rolls whose
axes rotate about the vertical axis and consider a left saddle-node state consisting
of n large unrotated rolls and t small rotated rolls. At a small distance beyond
the saddle node, the stability is (n + 1, t) and remains so until the vicinity of the



right saddle node. The unstable eigenmodes are the twist eigenmodes of the n large
rolls, the odd parity drift mode and the eigenmodes associated with the t pairs of
complex conjugate eigenvalues. The latter eigenmodes are responsible for oscillatory
instabilities that produce un/rotation and growth/decay of the t small rolls. Close to
the right saddle node, the twisted convecton undergoes a number of stability changes.
Firstly, a phase eigenmode similar to those creating rung states becomes unstable
and the convecton becomes (n + 2, t) unstable prior to the saddle node (cf. Burke &
Dawes 2012). Shortly after, the eigenvalue associated with this eigenmode collides
with that of the odd parity drift eigenmode to form a short-lived pair of complex
conjugate eigenvalues. The convecton stability changes from (n, t + 1) to (n + 1, t + 1)
as it picks up another unstable eigendirection at the saddle node. This eigendirection
is generated by an amplitude eigenmode responsible for the nucleation of side
rolls. Very shortly after the saddle node, the odd parity drift and phase eigenmodes
separate and the convecton is then (n + 3, t) unstable. At this stage, the unstable
eigenmodes are the twist eigenmodes of the n large rolls, the odd parity drift mode,
the amplitude and phase modes associated with the nucleation of small rolls and the
t pairs of eigenmodes acting on the t small rolls by modifying their inclination and
amplitude. The stability remains the same along the negative segment of the branch
until the left saddle node where another amplitude eigenmode, resembling the first
one, becomes unstable, followed by another phase eigenmode similar to that already
unstable. After these two bifurcations, the convecton stability is (n + 5, t) and the two
newly unstable eigenvalues collide almost immediately with the two coming from
the previous saddle node. The first eigenvalue collision is that of the two amplitude
modes, followed by that of the two phase eigenmodes. After these two eigenvalue
collisions, the eigenmodes take on different roles: one acts on the roll tilt and the
other on the amplitude, see figure 25. The stability of the convecton is (n + 1, t + 2)
and the process then repeats.

The above scenario breaks down for the first twist bifurcation along L+ that yields
a solution consisting of only one rotated small roll, without the accompanying second
bifurcation. With this proviso the scenario is a reliable predictor of the convecton
stability. In the case of periodic boundary conditions in x, the unstable odd parity drift
eigenmode becomes marginal and serves as the generator of infinitesimal translations
in the x direction. The primary convecton then has one fewer unstable eigendirection.
Unfortunately, the stability of the twisted convectons does not follow so simply owing
to the collisions between the drift and phase eigenvalues in the vicinity of the right
saddle nodes.

We have seen that the spatio-temporal chaos identified here is a consequence
of the simultaneous absence of stable stationary finite-amplitude states, be they
spatially extended or localized, and the instability of the conduction state to which
the system attempts to collapse when such states are unavailable. In small domains
this mechanism is responsible for periodic relaxation oscillations. As explained in
Bergeon & Knobloch (2002) these are present because the finite-amplitude state is
unstable to a symmetry-breaking mode, and it is this mode that returns the system
to the vicinity of the conduction state before the growth of a symmetric state takes
the system back to the finite-amplitude state. In large domains this mechanism
operates locally in space but does not occur coherently across the cell. This is a
consequence of the fact that the asymmetric state now invades the conduction state
via an asymmetric invasion front. Likewise the collapse phase of the oscillation also
takes place via a front, this time with the conduction state displacing convection.
Viewed this way it becomes apparent that the mechanism behind the incoherent
relaxation oscillations observed in natural doubly diffusive convection is qualitatively



identical to that described by Nishiura & Ueyama (2001) for the Gray–Scott model,
following earlier work on this system by Merkin et al. (1996a,b). In this system
also the homogeneous state is unstable to a growing symmetric Turing mode, but the
expected periodic state is itself unstable to a modulational instability that generates
pulses that lead to the collapse of the periodic state and local return to the unstable
homogeneous state. As in the Gray–Scott system the parameter regime where such
incoherent relaxation oscillations are present is bounded from below by a simple
bifurcation, the primary (subcritical) pitchfork at Ra ≈ 850.78. However, in our
system there appears to be no specific upper end: as Ra increases the growth of the
unstable modes of the conduction state accelerates and the domain becomes filled
with cells at all times. Front propagation is no longer observed except that every
now and then a roll rotates and collapses. Thus spatio-temporal chaos persists to
values of Ra in excess of Ra = 900. In contrast, in the Gray–Scott model the lower
end of the interval of relaxation oscillations is determined by a (subcritical) Hopf
bifurcation but there is an upper end as well, determined by a fold of the spatially
periodic state. In both systems this type of large-amplitude dynamics sets in only
when the domain is sufficiently large. Our work shows that this mechanism operates
equally well in three-dimensional flows in bounded domains with realistic boundary
conditions imposed on the boundaries, provided only that the domain is sufficiently
extended in one direction, and therefore that it is robust. Indeed, a similar mechanism
also operates in horizontally extended domains where it is a focusing instability that
is responsible for the spatial inhomogeneity that is key to its operation (Batiste et al.
2006).

The results obtained in this paper follow a large scale numerical simulation effort
to understand the dynamical implications of three-dimensionality on the stability
of spatially localized states in fluids. The results have revealed clear shortcomings
of the intuition developed on the basis of lower-dimensional systems (Knobloch
2015) and revealed a number of new phenomena, including secondary snaking,
three-dimensional destabilization of all stationary states in the subcritical regime, and
the abrupt transition to complex relaxation oscillations associated with the loss of
stability of the background homogeneous state. A scenario has been formulated to
simplify and extrapolate the linear stability results obtained here to other systems.
These are expected to be helpful in other systems in which localized solutions
are subject to three-dimensional instabilities such as plane Couette flow (Gibson &
Schneider 2016) and two-component convection (Mercader, Alonso & Batiste 2008;
Beaume et al. 2013a; Beaume, Knobloch & Bergeon 2013b; Watanabe et al. 2016)
and suggest that spatially incoherent relaxation oscillations are a general feature of
this class of spatially extended systems.
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