
HAL Id: hal-01801622
https://hal.science/hal-01801622v1

Submitted on 28 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pulse Synchronization for Vehicular Networks
Cheng-Yu Han, Thomas Nowak, Alain Lambert

To cite this version:
Cheng-Yu Han, Thomas Nowak, Alain Lambert. Pulse Synchronization for Vehicular Networks. in-
telligent vehicle symposium, Jun 2018, Chang-Shu, China. �hal-01801622�

https://hal.science/hal-01801622v1
https://hal.archives-ouvertes.fr

Pulse Synchronization for Vehicular Networks

Cheng-Yu Han1, Thomas Nowak1 and Alain Lambert1

Abstract— This paper improves pulse-coupled synchroniza-
tion for highly dynamic wireless networks, where vehicles
may move unpredictably, causing topological changes of the
network. For pulse-coupled methods, vehicles broadcast zero-
bit pulses to estimate the clock differences to their neighbors.
Vehicles then update local clocks according to the average of
difference of pulses from its neighbors. The proposed algorithm
further introduces (1) a time wheel to improve the robustness
of the synchronization protocol and (2) an additional drift
compensation mechanism to reduce clock skew. We compare
our new algorithm to previous works via simulation. Both static
and dynamic networks are simulated and compared. Different
frequencies and clock drifts are analyzed. The proposed algo-
rithm adapts to highly dynamic vehicle networks more quickly
and more robustly than previous algorithms.

I. INTRODUCTION

Clock synchronization is a critical issue in vehicular
networks [1]–[4]. In particular, it is a cornerstone of sensor
fusion, where algorithm work better when data are precisely
synchronized rather than time stamped. Distributed data
fusion of non-synchronized data necessitates to take into
account the shift between the times of the measurements.
Such shifts increase the data fusion imprecision [5]–[7].
A quite large number of clock synchronization protocols,
mostly for wired networks, have been developed over the
past few decades. However, most of them are unsuitable
for wireless vehicle networks due to their dynamicity, low
bandwidth, and often low-powered computing nodes [8], [9].

In a vehicle network, sensors are not necessarily connected
to vehicles. There are supplementary sensors which work
independently to help collecting and broadcasting useful
information [10]. For those sensors, limits on bandwidth
directly influence message exchanges among vehicles [11].
Also, the hardware of sensors is usually very restricted
(limited storage, slow computation) because the size of the
sensors is small [5], [12]. In addition, unlike wired networks,
wireless vehicle networks are dynamic. The vehicles move
and change the communication links. In view of this, tradi-
tional clock synchronization methods for the wired networks
are often not applicable for wireless vehicle networks.

Most clock synchronization algorithms for wireless sensor
networks are packet-based methods, where vehicles exchange
digital data to agree on a common time base. Centralized
approaches [15]–[17] distribute the clock of a master node
to other nodes and are not robust to any failure of the
master node. In the light of this, an average consensus-based

1Cheng-Yu Han, Thomas Nowak and Alain Lambert are with Laboratoire
de Recherche en Informatique (LRI), CNRS, Univ Paris-Sud, University
Paris-Saclay, 91403 Orsay, France. cheng-yu.han@u-psud.fr,
thomas.nowak@u-psud.fr, alain.lambert@u-psud.fr

Fig. 1: Virtual clocks (vertical arrows) of vehicle i and
j, where the clock drift represents the difference of clock
periods between vehicles. The clock skew represents the
largest difference of time between sensor in round k.

protocol is proposed in [18] to consensus both clock offsets
and frequencies. A maximum consensus-based protocol is
proposed in [19] to improve the convergence rate. A second-
order consensus method is proposed in [20] to further reduce
the clock skew.

For all the above packet synchronization [18]–[20], nodes
exchange data information (global time, frequency, or system
parameters) between its neighboring nodes and agree on
some parameters of the model to have a common notion
of time. In large vehicle networks, message delivery might
be unreliable due to both dynamicity and sparsity of these
networks [21].

An alternative to the packet synchronization approaches,
pulse-coupled synchronization is proposed in [22], where
nodes only exchange zero-bit pulse instead of packets. The
convergence properties of [22] is studied in [23] through
graph theory. The dynamic and bi-directional properties of
[22] is analyzed in [24]. Idle listening is introduced in [25]
to reduce total energy consumption. Failing communications
between vehicles are neglected, which does not cause se-
rious impact to the result of the algorithm. Pulse-coupled
synchronization [22]–[25] can be viewed as first-order phase
locked loops [26], which suffer from carrier frequency offset
between vehicles resulting in a constant phase lag. A pulse-
coupled frequency synchronization proposed by [27] but it
only synchronizes the frequency of nodes without aligning
offsets. Our goals are to adapt the algorithm to vehicle
network and to improve the pulse-coupled approach proposed
by [24]. We apply both corrections for offset and frequency
to local clocks of nodes. The simulation results show that
the clock skew is reduced effectively.

II. FORMAL MODEL AND PROBLEM SPECIFICATION

The goal of clock synchronization is to synchronize the
virtual clocks of all vehicles because physical clocks of
each sensor do not run at the same frequency, and these
frequencies might change over time. Fig. 1 shows the virtual
clocks of vehicle i and j, where the clock drift represents the
difference of clock periods between vehicles. The clock skew
represents the largest difference of time between vehicles.
The goal is to reduce the clock skew and the clock drift
as much as possible: the clocks of the vehicles should be
synchronized and have the same time period.

A finite set N = {1, 2, . . . , n} of vehicles communicating
by message passing is considered. They are endowed with
imperfect local clocks evolving in the time-base T = [0,∞)
of nonnegative reals.

An environment is modeled by a set of scenarios Gt =
(N ,Vt), t ∈ T , where N is the set of vehicles and Vt is a set
of directed edges. The relation (i, j) ∈ Vt means that vehicle
i is able to receive message from vehicle j at time t. Mobility
is modeled by having a (possibly different) communication
graph at each time instant.

A local algorithm for a vehicle comprises a set of states
S, a set of events E , and its related functions F . All vehicles
are initialized with an initial state s0 ∈ S. Vehicles change
their state only when an event e ∈ E occurs. Vehicles modify
the state considering the event e.

An execution of an algorithm in scenario Gt is a sequence
of events (ek)k≥0, which are triggered by vehicles ik ∈ N
with its present states sk ∈ S at a specific time tk ∈ T . The
value of k is a sequence number of the event. The sequence
of events are sorted by tk. At the beginning of Gt, every
vehicle triggers its first event with its initial state s

(k)
0 at

time tk = 0.
There are three types of event eb, em, et ⊂ E . The event

eb represents the beginning of the local algorithm. The event
em represents that a sensor receives a message. The event et

represents the count down timer 4ti of sensor i is expired
(4ti = 0). A vehicle i determines its next state sk′ using
the state transition function δ(sk, e).

Functionalities of vehicles are involved when performing
clock synchronization: a vehicle i is able to send a message
to vehicle j at time t if (i, j) ∈ Vt. A vehicle i produces
and sends a message using its sending function: S → M,
which map the state sk to a message content. A vehicle j
is able to receive messages through a receive function when
a message event em occurs. The variation of delay between
sending and receiving a message is assumed to be zero. The
assumption is reasonable if the message contains only few
bits.

All vehicles are equipped with a local physical clock ci
which is a counter initiated at 0 and increasing over time
subject to a clock drift bounded by parameter %. Vehicles
use ci to estimate the experienced time

(1− %)µci ≤ t ≤ (1 + %)µci,

where µ is the ideal time unit of the count down timer. All

Fig. 2: When sensor i receives a pulse with a tag sj from
sensor j, it appends the local clock time ci to the list of sj-th
slot of wi.

vehicles are also equipped with count down timers 4ci. The
value of 4ci is set using timer set function τi(sk). Once 4ci
is set, it starts to decrease to zero whenever ci increases. The
value of 4ci can be reset while counting down. When 4ci
reachs to zero, an event et ∈ E occurs. Then, 4ci stays at
zero until it is set up again.

Due to clock skew, one can only guarantee the time
difference of 4ci counting to zero within an interval [(1 −
%)µ4ci, (1 + %)µ4ci], where µ is the time unit of the
countdown timer.

A (local) clock synchronization algorithm is an algorithm
with an additional clock set function γ : S → T . An
algorithm solves clock synchronization with precision π in
scenario (Gt) if in all its executions (ek) in Gt, we have

|γ(e(i, t))− γ(e(j, t))| ≤ π

for all node i and j and all times t ∈ T , where e(i, t) is the
last state of an event of node i before time t in execution (ek).
An algorithm solve clock synchronization with precision π
in an environment if it does so in each of its scenarios.

III. TIME WHEEL ALGORITHM WITH DRIFT
COMPENSATION

In this section, we introduce our proposed algorithm.

A. Synchronization functions

We start by describing the general round-structure that our
algorithm operates in.

Vehicles start in round k = 0. After vehicle i broadcasts
a pulse in round k − 1, the vehicle waits for a period of
time Ti(k), which is subject to its local clock drift. Because
the durations Ti(k) and the round start times may not be
exactly the same at different vehicles, pulses are not perfectly
synchronized with each other. Therefore, corrections must
be computed using information of previous pulses from
neighboring vehicles.

In [24], round numbers are assumed to be known for
all vehicles, which is not always realistic, because rounds
estimated by vehicles can be faster or slower. In our new
algorithm, vehicle i broadcast a round value si ∈ Z, 0 ≤
s ≤ smax − 1. The value si serves a similar role as k, which
increase every round, except when si reaches smax, it return
to zero for the next round.

Algorithm 1 Vehicle operations
1: Procedure for vehicle i
2: At initialization

3: wi = TimeWheel(smax)
4: si = 0
5: ci = 0
6: sending_function(si)

7: When receiving message m
8: Obtain sj from m
9: Append ci to the list in sj-th slot

10: τ(k + 1) = timer_set_function(wi, τ(k))
11: 4c = τ(k + 1)− ci

12: When timer expires
13: w[(si + bsmax/2c) mod smax].clear()
14: si = (si + 1) mod (smax)
15: ki = ki + 1
16: sending_function(si)

Vehicle i uses a time wheel wi to record sj from neighbor-
ing vehicle j. Fig. 2 shows the structure of the time wheel
wi. A time wheel of sensor i has smax slots. The pointer
in the center of the time wheel represents the value of sj
broadcasted by sensor j. When sensor i receives a pulse
with a tag sj from sensor j, it appends the local clock time
ci to the list of sj-th slot of wi. The data in wi will be used
to estimate the times for the next round.

Each vehicle runs the pseudo-code given in Algorithm 1.
The code is divided into three parts: initial function, receive
function, and state transition function. These three parts
are not executed in sequence. Instead, they are triggered
by different events. The initial function is executed once
when the vehicles start to synchronize the clock. The receive
function is executed whenever sj is received. The state
transition function is executed when a new round starts.

a) Initial function: All vehicles initialize an empty time
wheel wi with smax slots (line 3). Vehicles also reset si (line
4) and ci (line 5) to zero. The variable ci represents ticks of
the physical clock started at initialization, which increases
subject to the clock drift. A vehicle also broadcasts si to its
neighbors (line 6).

b) Receive function: When vehicle i receives a message
from sensor j, with a tag sj (line 8). Vehicle i appends the
current local time ci to the list of the sj-th slot (line 9). Recall
that the delay variation between broadcasting and receiving a
pulse is assumed to be negligible, i.e., ci ≈ tj(kj). Vehicles
also schedule their next state transition by setting their local
timer to τi(k) (line 10). Details can be found in section III-
B. Countdown timer 4t is set to trigger the state transition
function when the timer reaches zero (line 11).

c) State transition function: When the timer reaches
zero, the vehicle executes the state transition function. The
vehicle transitions to the next round: First, the vehicle clears
the slot farthest from the current slot si (line 13). Second, it
updates si and ki (line 14, 15). At the end, it broadcasts si
to its neighboring vehicles (line 16).

In previous work, the rounds are assumed known by

Fig. 3: Static vehicle network simulation environment

Fig. 4: Static vehicle network

vehicles and the pulses in the same round is assumed to
have only small difference, In this work, the time wheel is
applied to improve the robustness of the algorithm, so the
assumption is no longer needed.

B. Timer set function

The timer set function in Algorithm 1 estimates τ(k)
according to the following formula:

τi(k + 1) = τi(k) +R+ corr1i + corr2i , (1)

where R is a constant represents a time period between next
and present round. All vehicle uses same value of R, but
the time period Ti(k + 1) may be differ due to frequency
variation of local clocks:

(1− %)µR ≤ Ti(k + 1) ≤ (1 + %)µR (2)

where corr1i is the correction for the offset of each pulse,
and corr2i is the correction for clock drift. Each vehicle
only communicates through pulses with the correction time
and addition round information ci. The overall benefit of
the method is that vehicles do not need to identify their
neighboring vehicle and their pulses, so the message is short
and robust.

(a) waveform of the pulses

(b) timing of pulses at each round

Fig. 5: Simulation result shows the comparison between broadcasted pulses using (1) no algorithm (left), (2) corr1i (middle)
and using (3) corr1i + corr2i (right).

1) Offset compensation: The term corr1i is used for cor-
recting the offset for all the vehicles in previous work [24].
corr1i is a time difference between the average pulse of the
neighboring vehicles and the pulse of vehicle i itself in round
k:

corr1i =
1

|Ini(k + 1)|
∑

j∈Ini(k+1)

(τj(k)− τi(k)) (3)

where
∑

j∈Ini(k+1) (τj(k)− τi(k)) in (3) is calculated by
averaging the values in the k%(smax + 1)-th slot of wheel
wi.

With offset compensation, the pulses already fulfills ∀k ≥
0,maxi,j |ti(k)− tj(k)| ≤ σk, where the σk is the maximum
clock skew at each round. The variables ti(k) and tj(k)
represent the beginning time of sensor i and j in the k-th
round.

2) Drift compensation: After the offset compensation
algorithm is applied, all the previous pulse virtually have
the same offset, i.e., ti(ki) + corr1i ≈ tj(kj) + corr1j . At
this point, it is only necessary to compensate for possible
drift errors, i.e., to find a common clock cycle T g and let
T g ≈ Ti(ki + 1) + corr2i ≈ Tj(kj + 1) + corr2j ≈
Instead of exchanging the timing information and estimating
the global clock cycle T i(kj) between vehicles, we only use
local variables of vehicles to perform the correction.

The goal of drift compensation is to let vehicles agree
on a global clock cycle T g . The main idea is to use the
τi(k) of the vehicle itself. We obtain an approximation of
the common clock cycle using

T g ≈ µτi(ki)
k

, (4)

where ki and li satisfy ki, li ∈ R, 0 ≤ li ≤ ki, so that T g is
an average clock cycle of the vehicle i. In order to correct
Ti(ki+1), the correction of drift compensation is computed:

corr2i =
τi(ki)

k
−R (5)

The correction corr2i waits li rounds until the clock skew is
small enough for all the vehicles. If li is set to 0 and the
connectivity of the communication graph is low, there is a
possibility that corr2i increases the divergence of the pulses.
Our experiment discovers that li ≥ 5 is sufficient for all the
experimental cases.

IV. SIMULATIONS

We simulate a vehicle network thanks to the Simulation
of Urban MObility (SUMO). The simulation environment is
the 2nd district of Paris, downloaded from OpenStreetMap
[28].

A. Static Vehicle Network
Fig. 3 shows the simulation environment, where n = 75

vehicles are randomly placed with an average number of
2.84 neighbors per vehicle. Each vehicle has different sensing
range to detect the pulses from neighboring vehicles. Vehi-
cles can only sense the neighbors within the distance ri ∈ R,
which is bounded within a range: r(1− ε) ≤ ri ≤ r(1 + ε).
The average of sensing range for all the vehicles is r = 300
(m) and ε = 0.5. And the number of slots of timewheel is
smax = 2.

Fig. 4 shows the vehicle nodes and their connectivity. The
size of the scene is 1000× 2000 m2. We set Ti(k) = R(1+
σi + σk) with |σi| ≤ 20% and |σk| ≤ 1% and R = 0.03
second. σi is only applied once when a vehicle is initialized.
σk changes in each round, which affects the frequency of
clock every round. A realistic value of σk is 10−6%. We
setup all the vehicles waking up at time 0 and starting to
broadcast at time Ti(0).

We compare the three different algorithms in the exactly
same environment:

1) without any clock synchronization
2) clock synchronization using only corr1i
3) clock synchronization using corr1i + corr2i

The second algorithm is our improvement of the work pub-
lished by [24] and the third is our new proposed technique.

Fig. 6: Clock skew comparison between corr1 (red) and
corr1 + corr2 (blue)

We take corr2i into account after at the sixth round. Fig. 5
shows the comparison of these three algorithms. Fig. 5 (a)
shows the waveform of the pulses for all vehicles from 0 to
1 second. The x-axis indicates time in seconds and the y-
axis shows a value 1 whenever any pulse is broadcasted,
otherwise it shows 0. The green and red colors indicate
the different rounds: si = 0 and si = 1. The color lines
are overlapped in the middle figure of Fig. 5 (a), so the
actual clock skew is larger than the appearance. Fig. 5 (b)
shows the timing of pulses for each round. Dots linked
by lines with different colors indicate that the pulses are
broadcasted by the same vehicle. One can observe that if
no clock synchronization technique is applied, the pulses for
each round diverge (column 1 in Fig. 5). Pulses in the same
round for algorithm "corr1i " are successfully trapped within
an interval, but the interval will not reduce as time goes
on (column 2 in Fig. 5). In contrast, pulses from the method
corr1i +corr2i are broadcasted more orderly than corr1i as time
goes on (column 3 in Fig. 5).

Fig. 6 shows the clock skew for each round. We calculate
clock skew by considering the nearest pulse from all vehicles
in the same round k to the target vehicle. Clock skew for
first five rounds are the same, because corr1+ corr2 includes
the term corr2 = 0. As soon as corr2 is enabled, the clock
skew reduces significantly. The clock skew of corr1+corr2 is
approximately 7 times smaller than the clock skew of corr1
after both are stable.

B. Clock Drift Analysis

In this experiment, we analyze the methods in situations
where σi and σk are different to verify the robustness of
corr1i and corr1i + corr2i . In order to test the edge cases, the
total variation of σi + σk is ±20% of the constant R. Fig. 7
shows the five different situations. The scene is exactly the
same except σi and σk is changed. In this fifth simulation, the
error for method corr1i becomes smaller when σi decrease,
which shows that it can handle random uncertainty of clock
drift σk better than corr1i + corr2i . In contrast, the error for
method corr1i + corr2i increase when σk increases. It shows

case1 case2 case3 case4 case5
σi,max ≤ 20% ≤ 15% ≤ 10% ≤ 5% ≤ 0%
σk,max ≤ 0% ≤ 5% ≤ 10% ≤ 15% ≤ 20%

Fig. 7: Experiment 2

Fig. 8: Time of each rounds of a dynamic vehicle network
using different algorithms: (left) corr1 (right) corr1 + corr2

that large amount of additional random clock drift can make
corr1i +corr2i synchronize worse than corr1i alone. Notice that
we test the edge cases here, in normal cases, σk is smaller
than 10−4%

C. Moving Vehicle Network

Vehicles are initially setup as Fig. 3, but start to move with
the maximum speed on the road. The acceleration and the
deceleration of each vehicle is 2.6 (m/s2) and 4.5 (m/s2),
respectively. Vehicles slow down when they turn and stop
when traffic lights are red. There are 214 traffic lights on
the map. The start and end points of vehicles are randomly
generated by SUMO.

Fig. 8 shows the comparison of the two methods (corr1
and corr1 + corr2). Fig. 8 (left) shows the rounds and the
pulses using only corr1. Each color represents a vehicle and
each dots represents both the time and the round number of
pulses. Fig. 8 (right) shows the round of the pulses using
both corr1 and corr2. The color of points overlaps so only
single color can be seen. The pulses are aligned better with
algorithm corr1+corr2 than corr1. Pulses using corr1+corr2
converge faster than corr1.

D. Pulse Frequency and Convergence Rate

In this section, different frequencies of pulse are consid-
ered. With the same dynamic vehicle network, if the vehicles
exchange pulses more frequently, then the clock skew tends

Fig. 9: Simulation result for different frequency of pulse

to converge faster. Fig 9 illustrates four simulations where the
scene setup is exactly the same as Fig 3 (except the default
time period between two pulses µR which is different). The
variable R is the number of ticks of the internal physical
clock between pulses, and µ is the ideal time period for a
single tick of the internal physical clock of a vehicle. If the
value of the µR is small, vehicles exchange pulses rapidly
and pulses tend to converge faster than the simulation that
µR is large. However, pulses exchange frequently cost extra
energy consumption considering the same time period. The
parameter µR can be chosen to balance the convergence
rate and the energy consumption. In the vehicle network, all
pulses in the same round converge regardless of µR. There
is also a possibility to slow down the pulse exchange after
the clock synchronization is converged.

V. CONCLUSION

This work improves the pulse-coupled synchronization by
introducing a time-wheel algorithm and drift compensation.
The time-wheel algorithm enables vehicles to exchange the
information of the rounds during clock synchronization. Drift
compensation applies an additional correction to clock skew.
The simulation results show that the proposed algorithm
performs better than the compared algorithm, especially
when considering a highly dynamic wireless vehicle network.

For future work, we intend to evaluate the algorithm using
practical wireless vehicle network. The first step will be to
select an appropriate communication hardware and to closely
simulate it in a large scale network.

REFERENCES

[1] S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing-sync protocol
for sensor networks,” in Conference on Embedded networked sensor
systems. ACM, 2003, pp. 138–149.

[2] S. A. Munir, B. Ren, W. Jiao, B. Wang, D. Xie, and J. Ma, “Mo-
bile wireless sensor network: Architecture and enabling technologies
for ubiquitous computing,” in Conference on Advanced Information
Networking and Applications, vol. 2. IEEE, 2007, pp. 113–120.

[3] A. A. Syed, J. S. Heidemann, et al., “Time synchronization for high
latency acoustic networks.” in Infocom, vol. 6, 2006, pp. 1–12.

[4] K. Sun, P. Ning, and C. Wang, “Fault-tolerant cluster-wise clock
synchronization for wireless sensor networks,” Transactions on De-
pendable and Secure Computing, vol. 2, no. 3, pp. 177–189, 2005.

[5] B. Sundararaman, U. Buy, and A. D. Kshemkalyani, “Clock synchro-
nization for wireless sensor networks: a survey,” Ad hoc networks,
vol. 3, no. 3, pp. 281–323, 2005.

[6] R. Solis, V. S. Borkar, and P. Kumar, “A new distributed time syn-
chronization protocol for multihop wireless networks,” in Conference
on Decision and Control. IEEE, 2006, pp. 2734–2739.

[7] W. Su and I. F. Akyildiz, “Time-diffusion synchronization protocol for
wireless sensor networks,” IEEE/ACM Transactions on Networking,
vol. 13, no. 2, pp. 384–397, 2005.

[8] J. Elson and K. Römer, “Wireless sensor networks: A new regime
for time synchronization,” ACM SIGCOMM Computer Communication
Review, vol. 33, no. 1, pp. 149–154, 2003.

[9] D. Ganesan, S. Ratnasamy, H. Wang, and D. Estrin, “Coping with
irregular spatio-temporal sampling in sensor networks,” ACM SIG-
COMM Computer Communication Review, vol. 34, no. 1, pp. 125–
130, 2004.

[10] S. Al-Sultan, M. M. Al-Doori, A. H. Al-Bayatti, and H. Zedan,
“A comprehensive survey on vehicular ad hoc network,” Journal of
network and computer applications, vol. 37, pp. 380–392, 2014.

[11] J. N. Al-Karaki and A. E. Kamal, “Routing techniques in wireless
sensor networks: a survey,” IEEE wireless communications, vol. 11,
no. 6, pp. 6–28, 2004.

[12] A. Bertrand, “Applications and trends in wireless acoustic sensor
networks: A signal processing perspective,” in IEEE Symposium on
Communications and Vehicular Technology, 2011, pp. 1–6.

[13] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“Wireless sensor networks: a survey,” Computer networks, vol. 38,
no. 4, pp. 393–422, 2002.

[14] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient MAC pro-
tocol for wireless sensor networks,” in Proceedings of IEEE Infocom,
vol. 3, 2002, pp. 1567–1576.

[15] D. L. Mills, “Internet time synchronization: the network time pro-
tocol,” IEEE Transactions on communications, vol. 39, no. 10, pp.
1482–1493, 1991.

[16] F. Cristian, “Probabilistic clock synchronization,” Distributed comput-
ing, vol. 3, no. 3, pp. 146–158, 1989.

[17] H. Kopetz and W. Ochsenreiter, “Clock synchronization in distributed
real-time systems,” IEEE Transactions on Computers, vol. 100, no. 8,
pp. 933–940, 1987.

[18] L. Schenato and F. Fiorentin, “Average timesynch: A consensus-
based protocol for clock synchronization in wireless sensor networks,”
Automatica, vol. 47, no. 9, pp. 1878–1886, 2011.

[19] J. He, P. Cheng, L. Shi, J. Chen, and Y. Sun, “Time synchronization
in wsns: A maximum-value-based consensus approach,” IEEE Trans-
actions on Automatic Control, vol. 59, no. 3, pp. 660–675, 2014.

[20] R. Carli and S. Zampieri, “Network clock synchronization based on
the second-order linear consensus algorithm,” IEEE Transactions on
Automatic Control, vol. 59, no. 2, pp. 409–422, 2014.

[21] Y.-C. Wu, Q. Chaudhari, and E. Serpedin, “Clock synchronization of
wireless sensor networks,” IEEE Signal Processing Magazine, vol. 28,
no. 1, pp. 124–138, 2011.

[22] Q. Li and D. Rus, “Global clock synchronization in sensor networks,”
IEEE Transactions on computers, vol. 55, no. 2, pp. 214–226, 2006.

[23] O. Simeone and U. Spagnolini, “Distributed time synchronization
in wireless sensor networks with coupled discrete-time oscillators,”
EURASIP Journal on Wireless Communications and Networking, vol.
2007, no. 1, p. 057054, 2007.

[24] M. Függer, T. Nowak, and B. Charron-Bost, “Diffusive clock synchro-
nization in highly dynamic networks,” in Conference on Information
Sciences and Systems. IEEE, 2015, pp. 1–6.

[25] Y. Wang, F. Nunez, and F. J. Doyle, “Energy-efficient pulse-coupled
synchronization strategy design for wireless sensor networks through
reduced idle listening,” IEEE Transactions on Signal Processing,
vol. 60, no. 10, pp. 5293–5306, 2012.

[26] O. Simeone, U. Spagnolini, G. Scutari, and Y. Bar-Ness, “Physical-
layer distributed synchronization in wireless networks and applica-
tions,” Physical Communication, vol. 1, no. 1, pp. 67–83, 2008.

[27] N. Varanese, U. Spagnolini, and Y. Bar-Ness, “Distributed frequency-
locked loops for wireless networks,” IEEE Transactions on Commu-
nications, vol. 59, no. 12, pp. 3440–3451, 2011.

[28] OpenStreetMap contributors, “Planet dump retrieved from
https://planet.osm.org ,” https://www.openstreetmap.org , 2017.

