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Pulse Synchronization for Vehicular Networks

This paper improves pulse-coupled synchronization for highly dynamic wireless networks, where vehicles may move unpredictably, causing topological changes of the network. For pulse-coupled methods, vehicles broadcast zerobit pulses to estimate the clock differences to their neighbors. Vehicles then update local clocks according to the average of difference of pulses from its neighbors. The proposed algorithm further introduces (1) a time wheel to improve the robustness of the synchronization protocol and (2) an additional drift compensation mechanism to reduce clock skew. We compare our new algorithm to previous works via simulation. Both static and dynamic networks are simulated and compared. Different frequencies and clock drifts are analyzed. The proposed algorithm adapts to highly dynamic vehicle networks more quickly and more robustly than previous algorithms.

I. INTRODUCTION

Clock synchronization is a critical issue in vehicular networks [START_REF] Ganeriwal | Timing-sync protocol for sensor networks[END_REF]- [START_REF] Sun | Fault-tolerant cluster-wise clock synchronization for wireless sensor networks[END_REF]. In particular, it is a cornerstone of sensor fusion, where algorithm work better when data are precisely synchronized rather than time stamped. Distributed data fusion of non-synchronized data necessitates to take into account the shift between the times of the measurements. Such shifts increase the data fusion imprecision [START_REF] Sundararaman | Clock synchronization for wireless sensor networks: a survey[END_REF]- [START_REF] Su | Time-diffusion synchronization protocol for wireless sensor networks[END_REF]. A quite large number of clock synchronization protocols, mostly for wired networks, have been developed over the past few decades. However, most of them are unsuitable for wireless vehicle networks due to their dynamicity, low bandwidth, and often low-powered computing nodes [START_REF] Elson | Wireless sensor networks: A new regime for time synchronization[END_REF], [START_REF] Ganesan | Coping with irregular spatio-temporal sampling in sensor networks[END_REF].

In a vehicle network, sensors are not necessarily connected to vehicles. There are supplementary sensors which work independently to help collecting and broadcasting useful information [START_REF] Al-Sultan | A comprehensive survey on vehicular ad hoc network[END_REF]. For those sensors, limits on bandwidth directly influence message exchanges among vehicles [START_REF] Al-Karaki | Routing techniques in wireless sensor networks: a survey[END_REF]. Also, the hardware of sensors is usually very restricted (limited storage, slow computation) because the size of the sensors is small [START_REF] Sundararaman | Clock synchronization for wireless sensor networks: a survey[END_REF], [START_REF] Bertrand | Applications and trends in wireless acoustic sensor networks: A signal processing perspective[END_REF]. In addition, unlike wired networks, wireless vehicle networks are dynamic. The vehicles move and change the communication links. In view of this, traditional clock synchronization methods for the wired networks are often not applicable for wireless vehicle networks.

Most clock synchronization algorithms for wireless sensor networks are packet-based methods, where vehicles exchange digital data to agree on a common time base. Centralized approaches [START_REF] Mills | Internet time synchronization: the network time protocol[END_REF]- [START_REF] Kopetz | Clock synchronization in distributed real-time systems[END_REF] distribute the clock of a master node to other nodes and are not robust to any failure of the master node. In the light of this, an average consensus-based Paris-Saclay, 91403 Orsay, France. cheng-yu.han@u-psud.fr, thomas.nowak@u-psud.fr, alain.lambert@u-psud.fr protocol is proposed in [START_REF] Schenato | Average timesynch: A consensusbased protocol for clock synchronization in wireless sensor networks[END_REF] to consensus both clock offsets and frequencies. A maximum consensus-based protocol is proposed in [START_REF] He | Time synchronization in wsns: A maximum-value-based consensus approach[END_REF] to improve the convergence rate. A secondorder consensus method is proposed in [START_REF] Carli | Network clock synchronization based on the second-order linear consensus algorithm[END_REF] to further reduce the clock skew. For all the above packet synchronization [START_REF] Schenato | Average timesynch: A consensusbased protocol for clock synchronization in wireless sensor networks[END_REF]- [START_REF] Carli | Network clock synchronization based on the second-order linear consensus algorithm[END_REF], nodes exchange data information (global time, frequency, or system parameters) between its neighboring nodes and agree on some parameters of the model to have a common notion of time. In large vehicle networks, message delivery might be unreliable due to both dynamicity and sparsity of these networks [START_REF] Wu | Clock synchronization of wireless sensor networks[END_REF].

An alternative to the packet synchronization approaches, pulse-coupled synchronization is proposed in [START_REF] Li | Global clock synchronization in sensor networks[END_REF], where nodes only exchange zero-bit pulse instead of packets. The convergence properties of [START_REF] Li | Global clock synchronization in sensor networks[END_REF] is studied in [START_REF] Simeone | Distributed time synchronization in wireless sensor networks with coupled discrete-time oscillators[END_REF] through graph theory. The dynamic and bi-directional properties of [START_REF] Li | Global clock synchronization in sensor networks[END_REF] is analyzed in [START_REF] Függer | Diffusive clock synchronization in highly dynamic networks[END_REF]. Idle listening is introduced in [START_REF] Wang | Energy-efficient pulse-coupled synchronization strategy design for wireless sensor networks through reduced idle listening[END_REF] to reduce total energy consumption. Failing communications between vehicles are neglected, which does not cause serious impact to the result of the algorithm. Pulse-coupled synchronization [START_REF] Li | Global clock synchronization in sensor networks[END_REF]- [START_REF] Wang | Energy-efficient pulse-coupled synchronization strategy design for wireless sensor networks through reduced idle listening[END_REF] can be viewed as first-order phase locked loops [START_REF] Simeone | Physicallayer distributed synchronization in wireless networks and applications[END_REF], which suffer from carrier frequency offset between vehicles resulting in a constant phase lag. A pulsecoupled frequency synchronization proposed by [START_REF] Varanese | Distributed frequencylocked loops for wireless networks[END_REF] but it only synchronizes the frequency of nodes without aligning offsets. Our goals are to adapt the algorithm to vehicle network and to improve the pulse-coupled approach proposed by [START_REF] Függer | Diffusive clock synchronization in highly dynamic networks[END_REF]. We apply both corrections for offset and frequency to local clocks of nodes. The simulation results show that the clock skew is reduced effectively.

II. FORMAL MODEL AND PROBLEM SPECIFICATION

The goal of clock synchronization is to synchronize the virtual clocks of all vehicles because physical clocks of each sensor do not run at the same frequency, and these frequencies might change over time. Fig. 1 shows the virtual clocks of vehicle i and j, where the clock drift represents the difference of clock periods between vehicles. The clock skew represents the largest difference of time between vehicles. The goal is to reduce the clock skew and the clock drift as much as possible: the clocks of the vehicles should be synchronized and have the same time period.

A finite set N = {1, 2, . . . , n} of vehicles communicating by message passing is considered. They are endowed with imperfect local clocks evolving in the time-base T = [0, ∞) of nonnegative reals.

An environment is modeled by a set of scenarios G t = (N , V t ), t ∈ T , where N is the set of vehicles and V t is a set of directed edges. The relation (i, j) ∈ V t means that vehicle i is able to receive message from vehicle j at time t. Mobility is modeled by having a (possibly different) communication graph at each time instant.

A local algorithm for a vehicle comprises a set of states S, a set of events E, and its related functions F. All vehicles are initialized with an initial state s 0 ∈ S. Vehicles change their state only when an event e ∈ E occurs. Vehicles modify the state considering the event e.

An execution of an algorithm in scenario G t is a sequence of events (e k ) k≥0 , which are triggered by vehicles i k ∈ N with its present states s k ∈ S at a specific time t k ∈ T . The value of k is a sequence number of the event. The sequence of events are sorted by t k . At the beginning of G t , every vehicle triggers its first event with its initial state s

(k) 0 at time t k = 0.
There are three types of event e b , e m , e t ⊂ E. The event e b represents the beginning of the local algorithm. The event e m represents that a sensor receives a message. The event e t represents the count down timer t i of sensor i is expired ( t i = 0). A vehicle i determines its next state s k using the state transition function δ(s k , e).

Functionalities of vehicles are involved when performing clock synchronization: a vehicle i is able to send a message to vehicle j at time t if (i, j) ∈ V t . A vehicle i produces and sends a message using its sending function: S → M, which map the state s k to a message content. A vehicle j is able to receive messages through a receive function when a message event e m occurs. The variation of delay between sending and receiving a message is assumed to be zero. The assumption is reasonable if the message contains only few bits.

All vehicles are equipped with a local physical clock c i which is a counter initiated at 0 and increasing over time subject to a clock drift bounded by parameter . Vehicles use c i to estimate the experienced time

(1 -)µc i ≤ t ≤ (1 + )µc i ,
where µ is the ideal time unit of the count down timer. All Fig. 2: When sensor i receives a pulse with a tag s j from sensor j, it appends the local clock time c i to the list of s j -th slot of w i .

vehicles are also equipped with count down timers c i . The value of c i is set using timer set function τ i (s k ). Once c i is set, it starts to decrease to zero whenever c i increases. The value of c i can be reset while counting down. When c i reachs to zero, an event e t ∈ E occurs. Then, c i stays at zero until it is set up again.

Due to clock skew, one can only guarantee the time difference of c i counting to zero within an interval

[(1 - )µ c i , (1 + )µ c i ],
where µ is the time unit of the countdown timer.

A (local) clock synchronization algorithm is an algorithm with an additional clock set function γ : S → T . An algorithm solves clock synchronization with precision π in scenario (G t ) if in all its executions (e k ) in G t , we have |γ(e(i, t)) -γ(e(j, t))| ≤ π for all node i and j and all times t ∈ T , where e(i, t) is the last state of an event of node i before time t in execution (e k ). An algorithm solve clock synchronization with precision π in an environment if it does so in each of its scenarios.

III. TIME WHEEL ALGORITHM WITH DRIFT COMPENSATION

In this section, we introduce our proposed algorithm.

A. Synchronization functions

We start by describing the general round-structure that our algorithm operates in.

Vehicles start in round k = 0. After vehicle i broadcasts a pulse in round k -1, the vehicle waits for a period of time T i (k), which is subject to its local clock drift. Because the durations T i (k) and the round start times may not be exactly the same at different vehicles, pulses are not perfectly synchronized with each other. Therefore, corrections must be computed using information of previous pulses from neighboring vehicles.

In [START_REF] Függer | Diffusive clock synchronization in highly dynamic networks[END_REF], round numbers are assumed to be known for all vehicles, which is not always realistic, because rounds estimated by vehicles can be faster or slower. In our new algorithm, vehicle i broadcast a round value s i ∈ Z, 0 ≤ s ≤ s max -1. The value s i serves a similar role as k, which increase every round, except when s i reaches s max , it return to zero for the next round. 

k i = k i + 1 16: sending_function(s i )
Vehicle i uses a time wheel w i to record s j from neighboring vehicle j. Fig. 2 shows the structure of the time wheel w i . A time wheel of sensor i has s max slots. The pointer in the center of the time wheel represents the value of s j broadcasted by sensor j. When sensor i receives a pulse with a tag s j from sensor j, it appends the local clock time c i to the list of s j -th slot of w i . The data in w i will be used to estimate the times for the next round.

Each vehicle runs the pseudo-code given in Algorithm 1. The code is divided into three parts: initial function, receive function, and state transition function. These three parts are not executed in sequence. Instead, they are triggered by different events. The initial function is executed once when the vehicles start to synchronize the clock. The receive function is executed whenever s j is received. The state transition function is executed when a new round starts.

a) Initial function: All vehicles initialize an empty time wheel w i with s max slots (line 3). Vehicles also reset s i (line 4) and c i (line 5) to zero. The variable c i represents ticks of the physical clock started at initialization, which increases subject to the clock drift. A vehicle also broadcasts s i to its neighbors (line 6).

b) Receive function: When vehicle i receives a message from sensor j, with a tag s j (line 8). Vehicle i appends the current local time c i to the list of the s j -th slot (line 9). Recall that the delay variation between broadcasting and receiving a pulse is assumed to be negligible, i.e., c i ≈ t j (k j ). Vehicles also schedule their next state transition by setting their local timer to τ i (k) (line 10). Details can be found in section III-B. Countdown timer t is set to trigger the state transition function when the timer reaches zero (line 11). c) State transition function: When the timer reaches zero, the vehicle executes the state transition function. The vehicle transitions to the next round: First, the vehicle clears the slot farthest from the current slot s i (line 13). Second, it updates s i and k i (line 14, 15). At the end, it broadcasts s i to its neighboring vehicles (line 16).

In previous work, the rounds are assumed known by vehicles and the pulses in the same round is assumed to have only small difference, In this work, the time wheel is applied to improve the robustness of the algorithm, so the assumption is no longer needed.

B. Timer set function

The timer set function in Algorithm 1 estimates τ (k) according to the following formula:

τ i (k + 1) = τ i (k) + R + corr 1 i + corr 2 i , (1) 
where R is a constant represents a time period between next and present round. All vehicle uses same value of R, but the time period T i (k + 1) may be differ due to frequency variation of local clocks:

(1 -)µR ≤ T i (k + 1) ≤ (1 + )µR (2) 
where corr 1 i is the correction for the offset of each pulse, and corr 2 i is the correction for clock drift. Each vehicle only communicates through pulses with the correction time and addition round information c i . The overall benefit of the method is that vehicles do not need to identify their neighboring vehicle and their pulses, so the message is short and robust. 1) Offset compensation: The term corr 1 i is used for correcting the offset for all the vehicles in previous work [START_REF] Függer | Diffusive clock synchronization in highly dynamic networks[END_REF]. corr 1 i is a time difference between the average pulse of the neighboring vehicles and the pulse of vehicle i itself in round k:

corr 1 i = 1 |In i (k + 1)| j∈Ini(k+1) (τ j (k) -τ i (k)) (3) 
where 3) is calculated by averaging the values in the k%(s max + 1)-th slot of wheel w i .

j∈Ini(k+1) (τ j (k) -τ i (k)) in (
With offset compensation, the pulses already fulfills ∀k ≥ 0, max i,j |t i (k) -t j (k)| ≤ σ k , where the σ k is the maximum clock skew at each round. The variables t i (k) and t j (k) represent the beginning time of sensor i and j in the k-th round.

2) Drift compensation: After the offset compensation algorithm is applied, all the previous pulse virtually have the same offset, i.e., t i (k i ) + corr 1 i ≈ t j (k j ) + corr 1 j . At this point, it is only necessary to compensate for possible drift errors, i.e., to find a common clock cycle T g and let

T g ≈ T i (k i + 1) + corr 2 i ≈ T j (k j + 1) + corr 2 j ≈ . . . .

Instead of exchanging the timing information and estimating the global clock cycle T i (k j ) between vehicles, we only use local variables of vehicles to perform the correction.

The goal of drift compensation is to let vehicles agree on a global clock cycle T g . The main idea is to use the τ i (k) of the vehicle itself. We obtain an approximation of the common clock cycle using

T g ≈ µ τ i (k i ) k , (4) 
where k i and l i satisfy k i , l i ∈ R, 0 ≤ l i ≤ k i , so that T g is an average clock cycle of the vehicle i. In order to correct T i (k i + 1), the correction of drift compensation is computed:

corr 2 i = τ i (k i ) k -R (5) 
The correction corr 2 i waits l i rounds until the clock skew is small enough for all the vehicles. If l i is set to 0 and the connectivity of the communication graph is low, there is a possibility that corr 2 i increases the divergence of the pulses. Our experiment discovers that l i ≥ 5 is sufficient for all the experimental cases.

IV. SIMULATIONS

We simulate a vehicle network thanks to the Simulation of Urban MObility (SUMO). The simulation environment is the 2nd district of Paris, downloaded from OpenStreetMap [START_REF]Planet dump retrieved from[END_REF].

A. Static Vehicle Network

Fig. 3 shows the simulation environment, where n = 75 vehicles are randomly placed with an average number of 2.84 neighbors per vehicle. Each vehicle has different sensing range to detect the pulses from neighboring vehicles. Vehicles can only sense the neighbors within the distance r i ∈ R, which is bounded within a range: r(1 -) ≤ r i ≤ r(1 + ). The average of sensing range for all the vehicles is r = 300 (m) and = 0.5. And the number of slots of timewheel is s max = 2.

Fig. 4 shows the vehicle nodes and their connectivity. The size of the scene is 1000 × 2000 m 2 . We set

T i (k) = R(1 + σ i + σ k ) with |σ i | ≤ 20% and |σ k | ≤ 1% and R = 0.03
second. σ i is only applied once when a vehicle is initialized. σ k changes in each round, which affects the frequency of clock every round. A realistic value of σ k is 10 -6 %. We setup all the vehicles waking up at time 0 and starting to broadcast at time T i (0).

We compare the three different algorithms in the exactly same environment:

1) without any clock synchronization 2) clock synchronization using only corr 1 i 3) clock synchronization using corr

1 i + corr 2 i
The second algorithm is our improvement of the work published by [START_REF] Függer | Diffusive clock synchronization in highly dynamic networks[END_REF] and the third is our new proposed technique. We take corr 2 i into account after at the sixth round. Fig. 5 shows the comparison of these three algorithms. Fig. 5 (a) shows the waveform of the pulses for all vehicles from 0 to 1 second. The x-axis indicates time in seconds and the yaxis shows a value 1 whenever any pulse is broadcasted, otherwise it shows 0. The green and red colors indicate the different rounds: s i = 0 and s i = 1. The color lines are overlapped in the middle figure of Fig. 5 (a), so the actual clock skew is larger than the appearance. Fig. 5 (b) shows the timing of pulses for each round. Dots linked by lines with different colors indicate that the pulses are broadcasted by the same vehicle. One can observe that if no clock synchronization technique is applied, the pulses for each round diverge (column 1 in Fig. 5). Pulses in the same round for algorithm "corr 1 i " are successfully trapped within an interval, but the interval will not reduce as time goes on (column 2 in Fig. 5). In contrast, pulses from the method corr 1 i +corr 2 i are broadcasted more orderly than corr 1 i as time goes on (column 3 in Fig. 5).

Fig. 6 shows the clock skew for each round. We calculate clock skew by considering the nearest pulse from all vehicles in the same round k to the target vehicle. Clock skew for first five rounds are the same, because corr 1 + corr 2 includes the term corr 2 = 0. As soon as corr 2 is enabled, the clock skew reduces significantly. The clock skew of corr 1 +corr 2 is approximately 7 times smaller than the clock skew of corr 1 after both are stable.

B. Clock Drift Analysis

In this experiment, we analyze the methods in situations where σ i and σ k are different to verify the robustness of corr 1 i and corr 1 i + corr 2 i . In order to test the edge cases, the total variation of σ i + σ k is ±20% of the constant R. Fig. 7 shows the five different situations. The scene is exactly the same except σ i and σ k is changed. In this fifth simulation, the error for method corr 1 i becomes smaller when σ i decrease, which shows that it can handle random uncertainty of clock drift σ k better than corr 1 i + corr 2 i . In contrast, the error for method corr 1 i + corr 2 i increase when σ k increases. It shows that large amount of additional random clock drift can make corr 1 i +corr 2 i synchronize worse than corr 1 i alone. Notice that we test the edge cases here, in normal cases, σ k is smaller than 10 -4 %

case1 case2 case3 case4 case5 σ i,max ≤ 20% ≤ 15% ≤ 10% ≤ 5% ≤ 0% σ k,max ≤ 0% ≤ 5% ≤ 10% ≤ 15% ≤ 20%

C. Moving Vehicle Network

Vehicles are initially setup as Fig. 3, but start to move with the maximum speed on the road. The acceleration and the deceleration of each vehicle is 2.6 (m/s 2 ) and 4.5 (m/s 2 ), respectively. Vehicles slow down when they turn and stop when traffic lights are red. There are 214 traffic lights on the map. The start and end points of vehicles are randomly generated by SUMO.

Fig. 8 shows the comparison of the two methods (corr 1 and corr 1 + corr 2 ). Fig. 8 (left) shows the rounds and the pulses using only corr 1 . Each color represents a vehicle and each dots represents both the time and the round number of pulses. Fig. 8 (right) shows the round of the pulses using both corr 1 and corr 2 . The color of points overlaps so only single color can be seen. The pulses are aligned better with algorithm corr 1 + corr 2 than corr 1 . Pulses using corr 1 + corr 2 converge faster than corr 1 .

D. Pulse Frequency and Convergence Rate

In this section, different frequencies of pulse are considered. With the same dynamic vehicle network, if the vehicles exchange pulses more frequently, then the clock skew tends The variable R is the number of ticks of the internal physical clock between pulses, and µ is the ideal time period for a single tick of the internal physical clock of a vehicle. If the value of the µR is small, vehicles exchange pulses rapidly and pulses tend to converge faster than the simulation that µR is large. However, pulses exchange frequently cost extra energy consumption considering the same time period. The parameter µR can be chosen to balance the convergence rate and the energy consumption. In the vehicle network, all pulses in the same round converge regardless of µR. There is also a possibility to slow down the pulse exchange after the clock synchronization is converged.

V. CONCLUSION

This work improves the pulse-coupled synchronization by introducing a time-wheel algorithm and drift compensation. The time-wheel algorithm enables vehicles to exchange the information of the rounds during clock synchronization. Drift compensation applies an additional correction to clock skew. The simulation results show that the proposed algorithm performs better than the compared algorithm, especially when considering a highly dynamic wireless vehicle network.

For future work, we intend to evaluate the algorithm using practical wireless vehicle network. The first step will be to select an appropriate communication hardware and to closely simulate it in a large scale network.
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 34 Fig. 3: Static vehicle network simulation environment

Fig. 5 :
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