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Abstract—With recent progress in the medical signals 
processing, the EEG allows to study the Brain functioning with a 
high temporal and spatial resolution. This approach is possible 
by combining the standard processing algorithms of cortical 
brain waves with characterization and interpolation methods. 
First, a new vector of characteristics for each EEG channel was 
introduced using the Extended Kalman filter (EKF). Next, the 
spherical spline interpolation technique was applied in order to 
rebuild other vectors corresponding to virtual electrodes. The 
temporal variation of these vectors was restored by applying the 
EKF. Finally, the accuracy of the method has been estimated by 
calculating the error between the actual and interpolated signal 
after passing by the characterization method with the Root Mean 
Square Error algorithm (RMSE). 

Keywords-EEG, Extended Kalman Filter, Signal 
characterization, Spherical Spline Interpolation, Root Mean 
Square Error. 

I. INTRODUCTION  
The Electroencephalogram (EEG) provides information 

in real time with a very high temporal resolution in the order 
of 10 milliseconds, albeit with a poorer spatial resolution in 
the order of few millimeters to one centimeter. It is the 
registration of the sensorimotor cortex rhythms by using 
implanted electrodes in invasive manner, or by using non 
invasive methods from scalp [1]. EEG is a routine clinical 
procedure, widely used in the monitoring and quantification 
of the levels of drowsiness and awakening. It allows also 
recognizing abnormalities according to the potential and 
frequencies aspects [2]. The signals recorded by the EEG 
are a mixture of different sources that produce the electrical 
activity in the brain. Generally, the number of sources is 
much higher than the number of sensors. For this reason, it 
is interesting to increase the number of sensors. In this 
context, many works were conducted. Three dimensional 
interpolation’s algorithm like the 3D polynomial 
interpolation and the spherical polynomial interpolation are 
used in [3] and [4]. Nevertheless these methods gave 
unsatisfactory results, especially in case of the smallest 
orders. In [5], the authors suggest seven interpolation 
methods as barycentric, polynomial and non linear spline 
interpolation. However, these studies were suffered of the 

high error of interpolation. The result indicates that the 
optimal model for the interpolation of the cortical activity is 
a 2D-spline. 

The aim of this communication is to enhance the spatial 
resolution of EEG. The idea is to start from a reduced 
number of time-varying data collected at the surface to a 
distribution in different points not covered by sensors. The 
estimation of signal parameters follows the multivariate 
autoregressive (MVAR) modeling of EEG time series. The 
estimated MVAR parameters are interpolated and 
transformed to the temporal domain to describe new time-
varying signals. Among all MVAR estimation approaches, a 
Kalman filter based MVAR modeling gained wider 
applications due to its accurate and high dimentional EEG 
data [6], [7], [8]. The MVAR model analysis explains the 
spectral composition of the signal and generates in the 
adaptive way a vector of parameters describing the 
evolutionary spectrum. First, the EKF is a data assimilation 
method permitting the state modeling. Second the spherical 
spline method is known to be particularly robust in the EEG 
signal interpolation. The combination with a 2D-Spline 
algorithm allows an efficient interpolation result.  

The paper is organized as follow: Section 2 describes the 
data used in this approach and represents the methodology 
based on windowing, AR modeling, vectors interpolation 
and validation of the different step by calculating the RMSE 
error. In section 3, the result of these methods on simulated 
data are presented and discussed. 

II. METHODOLOGY 
A bio-mathematical model was developed on two axes. 

In the first axis, EEG signal was decomposed into windows. 
Then, the EKF was applied to extract features from each 
window. An autoregressive (AR) vector of characteristics 
parameters evolving in the time and describing the 
dynamicity of the signal in the time domain, was been 
estimated. The second axis presents a 3D interpolation 
technique to improve the spatial resolution of the EEG. Our 
physiological knowledge was been integrated in models 
selection, also, in the interpolation of the signals situated in 
the same lobe. 
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Figure 1. Bloc diagram of modeling and improvement surface resolution of scalp EEG

 
The RMSE was calculated in the first time between the 
actual and the reconstructed signal from the AR vector. In 
the second time, the RMSE was calculated between the 
actual and the reconstructed signal from the interpolated 
AR vector. 

A. The data set 
FirstThe data used in our study was obtained from the 

online international data set recorded according to the 
10/20 standard (http://physionet.org/pn4/eegmmidb/). 
Eleven subjects are participated. The length of recorded 
1signal was four minutes with a sampling rate 512 Hz. 64 
signal situated in the different cortical lobe for each 
subject, are used in the validation step 

B. Features Extraction 
The electrical activity of the brain is usually divided 

into three categories: the bioelectrical events produced by 
the simple neurons, evoked potentials (EP) and the 
spontaneous activity. The spontaneous activity is 
measured on the scalp or on the brain and is collected in 
the form of a signal highly variable in the time. The 
electrical activities rhythmic brain was classified 
according to their frequencies in the band of the 0.1 Hz to 
100 Hz [9]. The spontaneous EEG is characterized as a 
linear stochastic process presenting similarities with 
noise. It is a pseudo-random signal, easily affected by 
various physiological noise (ECG, EOG, and EMG) and 
electrical artifacts. The signal also shows a high degree of 
non-stationary. The EEG, being a continuous signal in the 
time, is individualized in period (Figure 2) in order to 
facilitate its analysis. 
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Figure 2. Original Signal Segmentation 

This time period is called sampling window or "time". 
For a random non periodic signal such is the case of the 
EEG, it has selected a time of a very short duration. For 
example, during a second the EEG signal does not change 
of pace. The duration of a second can be considered as a 
period [10]. 

Minimize the amount of information helps to reduce 
the complexity of the signal and to better understand its 
dynamics variation. The modeling of the EEG signals part 
of a model auto-regressive at a modeling by a set of 
coefficients [11]. This is the estimate of new parametric 
vectors representing the dynamic variation of the EEG 
signal. Typically, the estimation of these parameters auto-
regressive is performed using a Kalman filter self-
adaptive [12] [2]. However, it is demonstrated that this 
may represent a erroneous modeling a view that the EEG 
signal undergoes changes instantaneous. The Kalman 
filter is an adaptive process that updates the initial 
estimates of the coefficients in the Model AR in function 
of each new observation of the signal [12]. The update is 
proportional to the difference between the new 
observations and the predicted values of the coefficients. 
Although, the performance of this model depends on two 
parameters, the first is the filter order, the second is entry 
window width. The optimal order of the model can be 
estimated by using different methods such as the AIC 
(Akaike's Information Criterion) [6] or the SBC 
(Shwartz's baysian criterions) [6]. For models ranging in 
time, the best order is estimated using SBC. Its value is 
maintained constant during the process. 

The reconstruction of the state in terms of the 
measures is then a problem of Bayesian estimation that 
determines the law of probability to retrospectively in the 
light of available measures [13] [19]. A multivariate 
autoregressive (MVAR) model combined with Extended 
Kalman filter has been used in the neurophysiological 
signal analysis. In this context, many works are concucted 
as [6], [14], [15] and [18]. In these studies, the MVAR 
model represents the time-varying with a high precision. 

To use the Extended Kalman filter, there is a need to 
establish the model space-state for the observations. The 
multivariate autoregressive (MVAR) model defined as: 
[8]: 

http://physionet.org/pn4/eegmmidb/
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With 𝑦𝑦𝑡𝑡(1:𝑁𝑁)is the time series, 𝑟𝑟 = 1:𝑃𝑃, with P is the 
optimal order of the model, 𝑤𝑤(1:𝑁𝑁) is the White Gaussian 
Noise due to the observation or measurement), 𝐴𝐴𝑡𝑡

(𝑖𝑖)is the 
scalable parameter which corresponds to a matrix of AR 
coefficients defines by : 
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The optimum combination for features extraction with 
Adaptive EKF will be used as a procedure for reduction 
of EEG channels and enhancing the quality of information 
collected from the cortex. 

C. Interpolation Method 

In order to reconstruct new cortical signals, spherical 
spline interpolation was performed using the Perrin and al. 
algorithm [16]. The algorithm receives the 3D currently 
connected electrodes coordinates (x,y,z) and AR vectors 
describing the temporal variation of each signal. The 
distance between 3D electrodes is calculated as in [5]. 

Let us denote: 
- Es is a set of M real points )1=l ( Mles  where 

real potential valueVsl was measured.  
- E is a set of N virtual points N)1=(k ke where 

interpolated cerebral activity Vk was calculated and
),,( kkk zyx was respectively, the les  and the ke point 

coordinates. 
The spherical spline interpolation assumes that the 

cerebral activity kV at any point ke  can be defined by the 
following equation: 

𝑉𝑉𝑘𝑘 = 𝑐𝑐0 + �𝑐𝑐𝑙𝑙 .𝑔𝑔(cos(𝑒𝑒𝑘𝑘 , 𝑒𝑒𝑒𝑒𝑙𝑙))
𝑀𝑀

𝑙𝑙=1

                             (3) 

Where )1( Mlcl =  was C vector coefficients which 
are determined by the following linear equations: 

𝐺𝐺𝐺𝐺 + 𝑡𝑡𝑐𝑐0 = 𝑉𝑉𝑉𝑉                                                              (4) 
Let us denote: 

𝑡𝑡 = [1,1, … . ,1]𝑡𝑡                                                              (5) 
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The function g is calculated by the Eq(8): 
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m is the order of the sV  spline, )(xPn  is the ordinary 
Legendre polynomials of order n which have been 
calculated recursively as follows: 
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All distances separating the electrodes are provided 
with recording’s files. From 19 actual points, 64 points 
are generated by our approach. The difference between 
the simulated and actual results is calculated for each new 
simulated point by the RMS Error. 
This result is summarized in the TABLE I. 

D. RMS Error 
To compare the reconstructed signal with the real 

many researchers use the Root Mean Square Error 
(RMSE) as measure of quality because it is relatively easy 
to analyze. The RMSE calculates the error between the 
real values and the interpolated ones. For comparing the 
quality of the different interpolation methods, it is 
important that the matching between the measured values 
and their corresponding interpolated cerebral values 
should be compared. This matching is judged by 
computing the RMSE. 
The RMSE is calculated as follow [17]: 

Vr
VVr

RMSE
−

=                                                    (9) 

With : The superscript denoting the Euclidean 
norm, Vr  is a vector of the 64 measured values, and V  is 
the corresponding interpolated values. 

III. RESULTS AND DISCUSSION 
The problem discussed in this communication is the 

EEG capability increase the information collected to 
provide a large number of information from sensors 
collected on the surface of the cerebral cortex via a 
limited number of electrodes. The proposed method, 
simple to implement and relevant, is to provide an 
interpolation algorithm, based on the spherical spline, 
vectors, auto-regressive representing the temporal 
variation of the signals at each moment in time. The 
improvement is demonstrated in a simulation framework 
on 64 electrodes which 19 are actually connected. 

The goal of EEG signal parameterization is to 
minimize the amount of information contained in a signal 
without change the medical signification of the original 
signal. Therefore, the EEG signal was decomposed into 
short segment of one second. In this case, the signal was 
considered periodic and stationary. The EKF filter was 
applied to each segment and generated AR vectors of 10 
coefficients. From these vectors, their temporal variation 
was reconstructed with the same characteristics. 

Then, EEG signal was interpolated by 3D-spline as 
follow [17] The simulation was tested using MATLAB on 
a laptop giving Core ™i3-2310 CPU with a frequency of 



2.10 GHz and RAM of 4.00 GO. Tab 1 presents a 
comparative study of five signals issue from electrodes 
actually collected on the cortex. 

TABLE I.  EVALUATION RESULTS OF RECONSTRUCTION SIGNALS 

Reconstructed 
Signal : 

Signal’s  
C2 CP3 F6 Fc5 PO7 

From 3D-
Spline 

interpolation 

 
0.22 

 
0.003 

 
0.1577 

 
0.552 

 
0.008 

From 3D-
spline 

Interpolation 
of AR Kalman 

vectors 

 
 

0.0288 

 
 

0.0531 

 
 

0.0462 

 
 

0.0488 

 
 

0.0327 

The spline family is characterized by the most 
minimal RMS error mean; in particular the 3D-spline 
interpolation. Moreover, the combination with Kalman 
filter generates the best reconstruction and offers the 
closest interpolated signal to the real EEG as shown in 
Figure 3. 

 
Figure 1. Temporal variation of real and interpolated EEG signal 

Figure 3 illustrates the comparaison between the real 
and the interpolated EEG time varying of the 
Po7electrode of a normal patient. 

TABLE 2 represents the RMS error, made upon 11 
healthy subject’s EEG records in the different 
neurosensory conditions. The Error was calculated 
between the real EEG and the reconstructed one on 64 
signals for each patient. 

TABLE II.  GLOBAL EVALUATION OF THE METHODOLOGY  

Reconstruction Method RMSE 

Temporal reconstruction using 2D-
Spline interpolation 

0.1163 

Temporal reconstruction using EKF 
coefficient’s vector 

0.0643 

Temporal reconstruction using coupling 
between coefficient’s vector and 2D-

Spline interpolation 

0.0417 

The biomedical signals like EEG are characterized by 
a high sensibility, and a strong dynamic aspect. The result 
showen in TABLE 2 demonstrate that the RMS error 
evaluating the time-varying reconstruction of 11 patients, 
by different methods, was the smallest by the approach 

combining the AR Kalman filter with the 3D-Spline 
interpolation algorithm. 
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