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AN ELEMENTARY APPROACH TO UNIFORM IN TIME

PROPAGATION OF CHAOS

ALAIN DURMUS, ANDREAS EBERLE, ARNAUD GUILLIN, RAPHAEL ZIMMER

Abstract. Based on a coupling approach, we prove uniform in time propagation
of chaos for weakly interacting mean-field particle systems with possibly non-convex
confinement and interaction potentials. The approach is based on a combination of
reflection and synchronous couplings applied to the individual particles. It provides
explicit quantitative bounds that significantly extend previous results for the convex
case.

1. Introduction

Let V,W : Rd → R be twice continuously differentiable functions satisfying appropri-
ate regularity and growth conditions. We consider the kinetic Fokker-Planck equation

(1) ∂tµt = ∇ · [∇µt + (∇V +∇W ∗ µt)µt]
and its probabilistic counterpart, the nonlinear stochastic differential equation

(2) dX̄t = −∇V (X̄t) dt − ∇W ∗ µt(X̄t) dt +
√
2 dBt , µt = L(X̄t) ,

of McKean-Vlasov type. Here µt is a time dependent probability measure on R
d and ∗

denotes the standard convolution operator. The function V corresponds to a confinement
potential and the function W to an interaction potential. Variants of the equation occur
for example in the modelling of granular media, cf. [1, 34].

Both in the probability and in the p.d.e. community, existence and uniqueness of (1)
and (2) have attracted much attention, see [23, 16, 29, 24] for a few milestones, and
[27] and [17] for two recent results. During the last twenty years, there has been a lot
of progress on convergence to equilibrium of solutions (µt)t≥0 of (1). Carrillo, McCann
and Villani [7, 8] have proven an exponential convergence rate under the strict convexity
condition Hess(V + 2W ) ≥ ρ Id with ρ > 0. They have also established a polynomial
convergence rate in the case where V + 2W is only degenerately strictly convex with
Hess(V + 2W )(x) = 0 for some isolated points x ∈ R

d. Malrieu [22] and Cattiaux et
al. [11] have developed a probabilistic approach to these results that is based on an
approximation by the mean-field particle system which is defined for N ∈ N as the
solution of the equations

(3) dXi,N
t = −∇V (Xi,N

t ) dt −N−1
N
∑

j=1

∇W (Xi,N
t −Xj,N

t ) dt +
√
2dBi

t , i = 1, . . . , N,

where the initial valuesX1
0 , . . . ,X

N
0 are i.i.d. random variables, and the processes (B1

t )t≥0,
. . . , (BN

t )t≥0 are independent Brownian motions. It is well-known [29, 24] that under
1
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weak assumptions on V and W , the laws of the particles at time t converge to the solu-
tion µt of (1) as N → ∞. In [22, 11], both convergence to equilibrium for the nonlinear
SDE (2) and uniform in time propagation of chaos for the particle system have been
proven under convexity assumptions by using functional inequalities and synchronous
couplings, respectively.

When V + 2W is not convex, the situation is much more delicate. Uniqueness of a
stationary solution of (1) does not hold in general without additional conditions on V
andW . Even in this case, only few results on convergence to equilibrium are known. By
a direct study of the dissipation of the Wasserstein distance, Bolley, Gentil and Guillin
[2] established an exponential trend to equilibrium in a weakly non-convex case. In a
recent work by three of the authors [14], an exponential contraction property and thus
convergence to equilibrium could be shown for a much broader class of potentials. The
proof is based on a new coupling approach originating in [13], which is also the basis
of this work. An interesting related problem arises when there are multiple invariant
measures, see [30]. In this widely open case, a main interest are the relative basins of
attraction of the equilibria.

The convergence of the empirical measure of the particle system (3) to the solution
of (1), or, equivalently, the convergence of the pair empirical measure to the tensor
product of two solutions of (1), has been stated under the name of propagation of chaos
by Kac [20], and further developed by Sznitman [29]. However, the corresponding general
results are only valid uniformly for a fixed time horizon. A crucial point is then not only
to assert the convergence of the empirical measures but to quantify it. A remarkable
analytic framework providing also quantitative propagation of chaos estimates has been
developed by Mischler, Mouhot and their coauthors in connection with Kac’s program
in kinetic theory [25, 18, 26].

In this article, we propose a very different and much more elementary, probabilistic
approach to quantitative bounds for propagation of chaos. Our main result is a uniform
in time propagation of chaos bound that takes the form

Wℓ1(f)

(

L(X1,N
t , . . . ,XN,N

t ), µ⊗N
t

)

≤ A ·N−1/2 for all t ≥ 0 and n ∈ N ,

if X1
0 , . . . ,X

n
0 are i.i.d. with initial law µ0, see Theorem 2 below. Here Wℓ1(f) is an L1

Wasserstein distance on (Rd)N and A is an explicit finite constant, see below for the pre-
cise definitions. The bound holds under similar assumptions as the quantitative bounds
on convergence to equilibrium for McKean-Vlasov equations in [14]. In particular, it ap-
plies in non-convex cases provided the confinement potential V is strictly convex outside
a ball, and the interaction potential W is symmetric and globally Lipschitz continuous
with sufficiently small Lipschitz constant. Consequently, our results are significant ex-
tensions of the uniform in time propagation of chaos results in the convex case in [22, 11].
The main difference to the approach in these works is that we use a more refined cou-
pling which is harder to analyse but much more powerful than synchronous coupling.
The second main ingredient in our proofs is an adequately constructed L1 Wasserstein
distance that is well adapted to the couplings we consider. Our probabilistic approach
is very different from the analytic methods developed in [25, 18, 26], and the conditions
required are not easily comparable. One advantage of the coupling approach presented



AN ELEMENTARY APPROACH TO UNIFORM IN TIME PROPAGATION OF CHAOS 3

here is that it is very simple and quite robust. This might facilitate the application to
other classes of models. For example, the same argument can be applied immediately
if ∇V is replaced by a non-gradient drift β that satisfies corresponding assumptions.
Similarly, ∇W can be replaced by a more general interaction term, see Remark 4 below.

In Section 2, we present our main hypotheses and results concerning the uniform
in time propagation of chaos. The proofs are provided in Section 3. Our approach is
based on an interplay between reflection and synchronous coupling. It relies heavily
on the framework introduced in [13, 14]. Our results use properties of the confinement
potential, which may nevertheless possess many wells. The interactions are mainly seen
as a perturbation. An interesting and challenging problem to be taken up in forthcoming
work is to prove propagation of chaos in situations where V = 0 and W is not convex,
but uniqueness of a stationary distribution holds.

2. Uniform in time propagation of chaos

In this section we state our main results. We will first state the precise assumptions
on the potentials V and W . Moreover, we define some functions and parameters that
will determine the particular Wasserstein distance that we consider.

2.1. Hypotheses and definitions. We first state our assumption on the confinement
potential.

H1. There is a continuous function κ : [0,∞) → R satisfying lim inf
r→∞

κ(r) > 0 such that

(4) 〈∇V (x)−∇V (y), x− y〉 ≤ κ(‖x − y‖) ‖x − y‖2 for all x, y ∈ R
d .

Note that under H1, there exist mV > 0 and MV ≥ 0 such that for all x, y ∈ R
d,

(5) 〈∇V (x)−∇V (y), x − y〉 ≥ mV ‖x− y‖2 −MV .

Following the framework introduced in [13], we now define constants R0 and R1 as

R0 := inf {s ∈ R+ : κ(r) ≥ 0 for all r ≥ s} ,(6)

R1 := inf {s ≥ R0 : s(s−R0)κ(r) ≥ 8 for all r ≥ s} ,(7)

and we consider the functions ϕ,Φ, g : R+ → R+ defined by

ϕ(r) = exp

(

−1

4

∫ r

0
s κ−(s)ds

)

, Φ(r) =

∫ r

0
ϕ(s)ds ,(8)

g(r) = 1− c

2

∫ r∧R1

0
Φ(s)ϕ−1(s)ds ,(9)

where κ− = max(0,−κ), and

(10) c = 1

/
∫ R1

0
Φ(s)ϕ−1(s)ds .

Note that ϕ(r) = ϕ(R0) for r ≥ R0, and g(r) = 1/2 for r ≥ R1. In addition, for all
r ∈ R+, g(r) ∈ [1/2, 1]. We now define an increasing function f : [0,∞) → [0,∞) by

(11) f(r) =

∫ r

0
ϕ(s)g(s)ds .
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Since ϕ and g are decreasing, f is concave, for all r ≥ 0,

(12) ϕ(R0)r/2 ≤ Φ(r)/2 ≤ f(r) ≤ Φ(r) ≤ r .

Note that by (12), (x, y) 7→ f(‖x − y‖) induces a distance that is equivalent to the
Euclidean distance on R

d. Below, we will use contraction properties in L1 Wasserstein
distances based on the underlying distance f(‖x−y‖). These contraction properties will
be a consequence of the inequality

(13) f ′′(r)− rκ(r)f ′(r)/4 ≤ −cf(r)/2 for all r ∈ R+ \ {R1} .
Indeed, notice that (13) is satisfied for r ∈ [0, R1) by the definitions and since f ≤ Φ.
Moreover, for r > R1, f(r) = f(R1) + ϕ(R0)(r −R1)/2, and thus by definition of R1,

f ′′(r)− rκ(r)f ′(r)/4 = −rκ(r)ϕ(R0)/8 ≤ −r(R1(R1 −R0))
−1ϕ(R0)

≤ −Φ(r)(Φ(R1)(R1 −R0))
−1ϕ(R0) ≤ −1

2
Φ(r)

/
∫ R1

R0

Φ(s)ϕ−1(s)ds ≤ −cf(r)/2 .

Here we have used that for r ≥ R0, ϕ is constant, Φ(r) = Φ(R0) + (r −R0)ϕ(R0), and
∫ R1

R0

Φ(s)ϕ(s)−1 ds = Φ(R0)ϕ(R0)
−1(R1 −R0) + (R1 −R0)

2/2

≥ (R1 −R0) (Φ(R0) + (R1 −R0)ϕ(R0))ϕ(R0)
−1/2 = (R1 −R0)Φ(R1)ϕ(R0)

−1/2 .

Next, we state the assumptions on the interaction potential.

H2. (i) W is symmetric, i.e., W (x) =W (−x) for all x ∈ R
d.

(ii) There exists η ∈ (0, c) such that for all x, y ∈ R
d,

‖∇W (x)−∇W (y)‖ ≤ η f (‖x− y‖) ,
where f and c are defined by (11) and (10).

Notice that by (12), a sufficient condition for H 2-(ii) is that ∇W is L−Lipschitz
continuous, with L < 2c/ϕ(R0). By H2-(i), ∇W (0) = 0. Thus, since f ′ ≤ 1, H2 implies

(14) ‖∇W (x)‖ ≤ η ‖x‖ .

We consider also the following additional condition:

H3. There exists MW ∈ [0,∞) such that for all x, y ∈ R
d,

〈∇W (x)−∇W (y), x− y〉 ≥ −MW .

Under H 1 and H 2, the equations (2) and (3) both have unique strong solutions
(X̄t)t≥0 and {(Xi

t )t≥0, i = 1, . . . , N} if we suppose sufficient integrability assumptions on
the initial measures (say moments of order 4), see e.g. [11, Theorem 2.6]. In addition,

(15) supt∈[0,T ] E
[

‖X̄t‖2 + ‖X1
t ‖2
]

<∞ for all T ≥ 0 .

Example 1 (Double-well potential). A natural example which satisfies the assumptions
above is the case of a double well confinement potential with quadratic interaction

V (x) = ‖x‖4 − a‖x‖2, W (x) = ±‖x‖2, a > 0 ,

where the sign of the interaction implies attractiveness or repulsion. Using [13, Lemma
1 and Example 4], one has that the constant c in (13), which is crucial for the rate of
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convergence to equilibrium, is of order Θ(1) for small a, whereas for large a, log(c−1) is
of order Θ(a2).

2.2. Main results. Let Wf denote the Kantorovich (L1 Wasserstein) distance on prob-

ability measures based on the underlying distance function f(‖x− y‖) on R
d, i.e.,

Wf (ν, µ) = inf
ξ∈Π(ν,µ)

∫

Rd×Rd

f (‖x− y‖) dξ(x, y) ,

where Π(ν, µ) is the set of couplings of µ and ν, i.e., probability measures ξ on B(Rd×R
d)

such that for all A ∈ B(Rd), ξ(A×R
d) = µ(A) and ξ(Rd ×A) = ν(A). In the case where

f is the identity function f(r) ≡ r, Wf is the usual L1 Wasserstein distance W1. We
also consider corresponding Kantorovich distances on probability measures ν̂, µ̂ on the
configuration space (Rd)N . Here we set

Wℓ1(f)(ν̂, µ̂) = inf
ξ∈Π(ν̂,µ̂)

∫

RN·d×RN·d

1

N

N
∑

i=1

f
(
∥

∥xi − yi
∥

∥

)

dξ(x, y) .

For t ≥ 0 and ν, µ ∈ P(Rd), we denote by µ̄νt and µµ,Nt the laws of X̄t and X
i,N
t , for an

arbitrry i, with initial distributions ν and µ (µ being the common distribution of the

i.i.d. random variables Xi,N
0 , i ∈ {1, . . . , N}. We now state our main result.

Theorem 2. Assume H1 and H2, and suppose that H3 is satisfied or η ∈ (0,mV /2),
where mV is given by (5). Let ν and µ be probability measures on (Rd,B(Rd)) which
admit a finite fourth moment. Then for all t ≥ 0 and N ∈ N, we have

Wf

(

µµ,Nt , µ̄νt

)

≤ e−2(c−η)tWf (ν, µ) + (2(c − η))−1CηN−1/2 ,

and, more generally,

Wℓ1(f)

(

L(X1,N
t , . . . ,XN,N

t ), (µ̄νt )
⊗N
)

≤ e−2(c−η)tWf (ν, µ) + (2(c − η))−1CηN−1/2 .

Here f and c are defined by (11) and (10), respectively, and C is a constant that depends
only on the dimension d, the second moment of ν, as well as V and W .

By (12) and the definition of Wf , we immediately obtain:

Corollary 3. Under the same hypotheses as in Theorem 2, for all t ≥ 0 and N ∈ N,

W1(µ
µ,N
t , µ̄νt ) ≤ 2ϕ(R0)

−1e−2(c−η)tWf (ν, µ) + (ϕ(R0)(c− η))−1CηN−1/2 ,

where R0 and ϕ are defined by (6) and (8), respectively, and C is a constant only
depending on d, the second moment of ν, as well as V and W .

The dependence of the bounds on N is of the right order and consistent with both
the non uniform in time estimates, and the uniform in time bounds under uniform strict
convexity for L2 Wasserstein distances obtained for example in [29, 22].

Remark 4. For the sake of clarity and comparison with other recent works on uni-
form propagation of chaos [22, 11], we have restricted ourselves to interaction drifts of
the type b(x, µ) = −∇W ∗ µ. Similarly to [14], the present result can be extended to
b(x, µ) =

∫

b(x, y)µ(dy) if b satisfies a Lipschitz condition with sufficiently small Lip-
schitz constant. Similarly, the confinement drift −∇V can be replaced by a non-gradient
drift satisfying a corresponding assumption as H1.
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Remark 5. In [7, 22, 11], it has been shown that for a fixed center of mass, exponential
contractivity of the nonlinear SDE and uniform propagation of chaos hold if V +2W is,
for example, strictly uniformly convex. This suggests that convexity of the interaction
potential W can make up for non-convexity of V , a fact that is not visible from our
current approach. The problem is that a symmetrization trick is used to get a benefit
from the convexity of the interaction potential. This trick does not carry over in the
same form to the ℓ1 type distances considered here. We will address this challenging
issue in a future work.

Remark 6. By combining the result of Therorem 2 and the contraction result for mean-
field particle systems in [13, Corollary 3.4], one can derive a contraction result for the
non-linear equation (1), recovering essentially [14, Theorem 2.3].

3. Proofs

The proof of the main result is based on three ingredients. As usual, the starting
construction is to consider i.i.d. copies of the nonlinear process and to couple them with
the system of particles. This will be done by considering a reflection coupling coordinate
by coordinate. The second ingredient will then be to consider a specific Kantorovich (L1

Wasserstein) distance based on an ℓ1 type metric on the product space that is particularly
suited to this coupling. The last ingredient is a law of large numbers type control in L2.
Let us first define the reflection coupling between the independent nonlinear processes
and the mean-field particle system.

3.1. Coupling by reflection. For every δ > 0, we consider Lipschitz continuous func-
tions φδs , φ

δ
r : R

d → R satisfying

(16) (φδs)
2(x) + (φδr)

2(x) = 1 for all x ∈ R
d, φδr(x) =

{

1 if ‖x‖ ≥ δ ,

0 if ‖x‖ ≤ δ/2 .

Now fix δ > 0, probability measures ν, µ on R
d with finite fourth moment, and a coupling

ξ ∈ Π(ν, µ). We consider the coupling between the independent nonlinear processes and
the mean-field particle system defined by the following system of stochastic differential
equations:

dX̄i
s = −∇V (X̄i

s)ds−∇W ∗ µ̄νs(X̄i
s)ds+

√
2
{

φδr(E
i
t)dB

i
s + φδs(E

i
t)dB̃

i
s

}

,

dXi,N
s = −∇V (Xi,N

s )ds− 1

N

∑N

j=1
∇W (Xi,N

s −Xj,N
s )ds

+
√
2
{

φδr(E
i
t)
(

Id−2eit(e
i
t)
T
)

dBi
s + φδs(E

i
t)dB̃

i
s

}

.

Here we assume that (X̄i
0,X

i,N
0 ), i ∈ {1, . . . , N}, are independent random variables with

law ξ, (Bi
s)s≥0 and (B̃i

s)s≥0, i ∈ {1, . . . , N}, are independent standard Brownian motions
in R

d that are also independent of the initial conditions, and

(17) Ei
t = X̄i

t −Xi,N
t , eit = n(Ei

t) ,

where n : Rd → R
d is given for all x ∈ R

d \ {0} by n(x) = x/ ‖x‖, and n(0) = 0.
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Under the fourth moment assumption on ν and µ, the system of SDEs has a unique
strong solution. This can be shown similarly to [11, Theorem 2.6]. By (16) and Lévy’s

characterization of Brownian motion, the process ((X̄1
t , . . . , X̄

N
t )t≥0, (X

1,N
t , . . . ,XN,N

t )t≥0)
is indeed a realization of a coupling between the system of independent nonlinear diffu-
sions with initial law ν⊗N and the mean-field particle system with initial law µ⊗N . In
particular,

(18) µ̄νt = L(X̄i
t) and µµ,Nt = L(Xi,N

t ) for all t ≥ 0 and i ∈ {1, . . . , N} .
Lemma 7. Assume H1 and H2. Then almost surely, for all t ≥ 0 and i ∈ {1, . . . , N},

d
∥

∥Ei
t

∥

∥ = −
〈

∇V (X̄i
s)−∇V (Xi,N

s ), eit
〉

dt + Ai
t dt + 2

√
2φδr(E

i
t)(e

i
t)
TdBi

t ,

where (Ai
t)t≥0 is an adapted stochastic process such that

(19) Ai
t ≤

∥

∥

∥

∥

∇W ∗ µ̄νt (X̄i
t)−

1

N

∑N

j=1
∇W (Xi,N

t −Xj,N
t )

∥

∥

∥

∥

.

Proof. For all i ∈ {1, . . . , N}, using Itô’s formula, we have

d
∥

∥Ei
t

∥

∥

2
= −2

〈

∇V (X̄i
t)−∇V (Xi,N

t ), Ei
t

〉

dt

− 2

〈

∇W ∗ µ̄νt (X̄i
t)−N−1

∑N

j=1
∇W (Xi,N

t −Xj,N
t ), Ei

t

〉

dt

+ 4
√
2φδr(E

i
t)
〈

eit, E
i
t

〉

(eit)
TdBi

t + 8(φδr (E
i
t))

2dt .

Now let a > 0, and consider the function ψa(r) = (r + a)1/2 for r ≥ 0. Note that ψa

is infinitely continuously differentiable on (0,∞), and for all t ≥ 0, lima→0 ψa(t) = t1/2.
Therefore, using again Itô’s formula, we get

dψa

(

∥

∥Ei
t

∥

∥

2
)

= −2ψ′
a

(

∥

∥Ei
t

∥

∥

2
)〈

∇V (X̄i
t)−∇V (Xi,N

t ), Ei
t

〉

dt

− 2ψ′
a

(

∥

∥Ei
t

∥

∥

2
)

〈

∇W ∗ µ̄νt (X̄i
t)−N−1

∑N

j=1
∇W (Xi,N

t −Xj,N
t ), Ei

t

〉

dt(20)

+ (φδr(E
i
t))

2
{

8ψ′
a

(

∥

∥Ei
t

∥

∥

2
)

+ 16
∥

∥Ei
t

∥

∥

2
ψ′′
a

(

∥

∥Ei
t

∥

∥

2
)}

dt(21)

+ 4
√
2ψ′

a

(

∥

∥Ei
t

∥

∥

2
)

φδr(E
i
t)
〈

eit, E
i
t

〉

(eit)
TdBi

t .(22)

Note that 2rψ′
a(r

2) = r/
√
r2 + a ≤ 1/2 for all a, r > 0. In particular,

∣

∣

∣
2ψ′

a

(

∥

∥Ei
t

∥

∥

2
)〈

∇V (X̄i
t)−∇V (Xi,N

t ), Ei
t

〉
∣

∣

∣
≤
∥

∥

∥
∇V (X̄i

t)−∇V (Xi,N
t )

∥

∥

∥
.

Therefore, by dominated convergence, we see that that almost surely for all T ≥ 0,

lim
a→0

∫ T

0
2ψ′

a

(

∥

∥Ei
t

∥

∥

2
)〈

∇V (X̄i
t)−∇V (Xi,N

t ), Ei
t

〉

dt =

∫ T

0

〈

∇V (X̄i
t)−∇V (Xi,N

t ), eit

〉

dt .

Furthermore, for any a > 0, the term in (20) is bounded from above by the expression on
the right hand side of (19). Moreover, noting that φδr(z) = 0 for z ∈ R

d with ‖z‖ ≤ δ/2,

and 8ψ′
a(r

2) + 16r2ψ′′
a(r

2) = 4a/(r2 + a)3/2 ≤ 4a/r3 for a, r > 0, we see that for T ≥ 0,

lim
a→0

∫ T

0
(φδr(E

i
t))

2
{

8ψ′
a

(

∥

∥Ei
t

∥

∥

2
)

+ 16
∥

∥Ei
t

∥

∥

2
ψ′′
a

(

∥

∥Ei
t

∥

∥

2
)}

dt = 0 .
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Finally, by [28, Theorem 2.12], we have almost surely

lim
a→0

∫ T

0
4
√
2ψ′

a

(

∥

∥Ei
t

∥

∥

2
)

φδr(E
i
t)
〈

eit, E
i
t

〉

(eit)
TdBi

t =

∫ T

0
2
√
2φδr(E

i
t)(e

i
t)
TdBi

t ,

for any T ≥ 0. This completes the proof of the lemma. �

3.2. A moment control. The following uniform moment bound will be important for
the proof of our main result.

Lemma 8. Assume H1 and H2, and suppose that η ∈ (0,mV /2) or Assumption H3
is satisfied. Let (X̄t)t≥0 be a solution of (2) with E

[

‖X̄0‖2
]

< ∞. Then there exists

C ∈ (0,∞) depending only on d, V,W and the second moment of X̄0 such that

supt≥0 E
[

‖X̄t‖2
]

≤ C .

Proof. The proof is quite standard but we include it here for completeness. First, by
Itô’s formula, we have

(1/2)d‖X̄t‖2 = −〈X̄t,∇V (X̄t)〉dt− 〈X̄t,∇W ∗ µ̄νt (X̄s)〉dt+ ddt+
√
2X̄T

t dBt ,

where ν denotes the law of X̄0. Let (X̃t)t≥0 be an independent copy of (X̄t)t≥0. Then
by symmetrization and (15), we get taking the expectation that

d

dt
E
[

‖X̄t‖2
]

= −2E
[

〈X̄t,∇V (X̄t)〉
]

− E

[

〈X̄t − X̃t,∇W (X̄t − X̃t)〉
]

+ 2d .

Now suppose first that H1, H2 and H3 are satisfied. Then by (5) and since ∇W (0) = 0,

d

dt
E
[

‖X̄t‖2
]

≤ 2MV +MW + 2d− 2mV E
[

‖X̄t‖2
]

+ 2 ‖∇V (0)‖E
[

‖X̄t‖2
]1/2

.

Hence Gronwall’s lemma concludes the proof.

Alternatively, assume only that H1 and H2 are satisfied. Since f(r) ≤ r, we obtain

d

dt
E
[

‖X̄t‖2
]

≤ 2MV + 2d+ 2(η −mV )E
[

‖X̄t‖2
]

+ 2 ‖∇V (0)‖E
[

‖X̄t‖2
]1/2

.

Hence for η < mV /2, we can still apply Gronwall’s lemma to conclude the proof. �

3.3. Proof of main results. We can now prove our main result.

Proof of Theorem 2. We fix δ > 0 and a coupling ξ ∈ Π(ν, µ), and we consider the
reflection coupling with initial law ξ⊗N between the system of nonlinear processes and
the mean-field particle system as introduced in Subsection 3.1. Since f is continuously
differentiable and f ′ is absolutely continuous, by Lemma 7 and the Itô-Tanaka formula,
we obtain

df
(
∥

∥Ei
t

∥

∥

)

= (Ci
t +Ai

t) f
′
(
∥

∥Ei
t

∥

∥

)

dt+ 4f ′′
(
∥

∥Ei
t

∥

∥

)

(φδr (E
i
t))

2dt+
√
8φδr(E

i
t)(e

i
t)
TdBi

t ,

where Ci
t = −

〈

∇V (X̄i
t)−∇V (Xi,N

t ), eit

〉

. Define ω : R+ → R+ by

(23) ω(r) = sups∈[0,r] sκ(s)
− .
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By definition of κ given by (4), and by (13),

Ci
t f

′
(
∥

∥Ei
t

∥

∥

)

+ 4f ′′
(
∥

∥Ei
t

∥

∥

)

(φδr(E
i
t))

2

≤ −
∥

∥Ei
t

∥

∥κ(
∥

∥Ei
t

∥

∥)f ′
(∥

∥Ei
t

∥

∥

)

+ 4f ′′
(∥

∥Ei
t

∥

∥

)

(φδr(E
i
t))

2(24)

≤ −2cf
(
∥

∥Ei
t

∥

∥

)

(φδr (E
i
t))

2 + ω(δ)(25)

≤ −2cf
(
∥

∥Ei
t

∥

∥

)

+ ω(δ) + 2cf (δ) .

Moreover, by (19), we can estimate Ai
t ≤ N−1

∑N
j=1 Ξ

i,j
t +Υi

t, where

Ξi,j
t =

∥

∥

∥
∇W (X̄i,N

t − X̄j,N
t )−∇W (Xi,N

t −Xj,N
t )

∥

∥

∥
,

Υi
t =

∥

∥

∥

∥

∇W ∗ µ̄νt (X̄i
t)−N−1

∑N

j=1
∇W (X̄i

t − X̄j
t )

∥

∥

∥

∥

.

Therefore, and since (
∫ t
0 φ

δ
r(E

i
s)(e

i
s)

TdBi
s)t≥0 is a martingale and f ′ ≤ 1, we obtain

1

N

N
∑

i=1

d

dt
E
[

f
(
∥

∥Ei
t

∥

∥

)]

≤ −2c

N

N
∑

i=1

E
[

f
(
∥

∥Ei
t

∥

∥

)]

+
1

N

N
∑

i=1

E





1

N

N
∑

j=1

Ξi,j
t +Υi

t





+ω(δ) + 2cf (δ)(26)

for a.e. t ≥ 0. By Assumption H2, for all i, j ∈ {1, . . . , N} and t ≥ 0,

(27) Ξi,j
t ≤ η f

(

∥

∥Ei
t

∥

∥+
∥

∥

∥
Ej

t

∥

∥

∥

)

≤ η
(

f
(
∥

∥Ei
t

∥

∥

)

+ f
(

‖Ej
t ‖
))

.

Moreover, in order to control Υi
t, we remark that given X̄i

t , the random variables X̄j
t ,

j 6= i, are i.i.d. with law µ̄νt . In particular,

E

[

∇W (X̄i
t − X̄j

t )|X̄i
t

]

= ∇W ∗ µ̄νt (X̄i
t) .

Since by H2, ∇W (0) = 0 and ∇W is Lipschitz with constant η, we obtain

E

[

∥

∥

∥

∥

∇W ∗ µ̄νt (X̄i
t)−

1

N − 1

∑N

j=1
∇W (X̄i

t − X̄j
t )

∥

∥

∥

∥

2
∣

∣

∣

∣

∣

X̄i
t

]

=
1

N − 1
Varµ̄ν

t

(

∇W (X̄i
t − ·)

)

≤ η2

N − 1

∫

‖x‖2 µ̄νt (dx) .

Hence, by the Cauchy-Schwarz inequality and (14),

E
[

Υi
t

]

≤ E

[
∥

∥

∥

∥

∇W ∗ µ̄νt (X̄i
t)−

1

N − 1

∑N

j=1
∇W (X̄i

t − X̄j
t )

∥

∥

∥

∥

]

+

(

1

N − 1
− 1

N

)

∑N

j=1
E

[

η
∥

∥

∥
X̄i

t − X̄j
t

∥

∥

∥

]

≤ η

(

1√
N − 1

+

√
2

N

)

(
∫

‖x‖2 µ̄νt (dx)
)1/2

.

By Lemma 8, we conclude that there is an explicit finite constant C such that for N ≥ 2,

(28) supt≥0 E
[

Υi
t

]

≤ CηN−1/2 , i = 1, . . . , N .
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Now, combining (26), (27) and (28), we finally obtain

d

dt

1

N

N
∑

i=1

E
[

f
(
∥

∥Ei
t

∥

∥

)]

≤ −2
c− η

N

N
∑

i=1

E
[

f
(
∥

∥Ei
t

∥

∥

)]

+ ω(δ) + 2cf (δ) +
Cη√
N

for a.e. t ≥ 0. Assuming η < c, we can conclude that

1

N

∑N

i=1
E
[

f
(
∥

∥Ei
t

∥

∥

)]

≤ e−2(c−η)t 1

N

∑N

i=1
E
[

f
(
∥

∥Ei
0

∥

∥

)]

+(2(c− η))−1
(

ω(δ) + 2cf (δ) + CηN−1/2
)

.

Noting that E
[

f
(
∥

∥Ei
0

∥

∥

)]

≤
∫

‖x− y‖ dξ(x, y) for all i ∈ {1, . . . d}, we obtain

Wℓ1(f)

(

L(X1,N
t , . . . ,XN,N

t ), (µ̄νt )
N
)

≤ e−2(c−η)t

∫

‖x− y‖ dξ(x, y) + (2(c − η))−1
(

ω(δ) + 2cf (δ) + CηN−1/2
)

.

By (23) and H 1, limδ→0+ ω(δ) = 0. Hence taking the limit as δ goes to 0, and the
infimum over all couplings ξ ∈ Π(ν, µ) concludes the proof of the second inequality in
Theorem 2. The first inequality follows similarly, noting that by (18), for all i ∈ {1, . . . d}
and t ≥ 0,

Wf (µ̄
ν
t , µ

µ,N
t ) ≤ E

[

f
(∥

∥

∥
X̄i

t −Xi,N
t

∥

∥

∥

)]

= E
[

f
(
∥

∥Ei
t

∥

∥

)]

.

�
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