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Abstract

We define the class of sofic-Dyck shifts which extends the class of Markov-Dyck
shifts introduced by Inoue, Krieger and Matsumoto. Sofic-Dyck shifts are shifts
of sequences whose finite factors form unambiguous context-free languages. We
show that they correspond exactly to the class of shifts of sequences whose sets
of factors are visibly pushdown languages. We give an expression of the zeta
function of a sofic-Dyck shift.
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1. Introduction

Shifts of sequences are defined as sets of bi-infinite sequences of symbols over
a finite alphabet avoiding a given set of finite factors called forbidden factors.
Well-known classes of shifts of sequences are the shifts of finite type which avoid
a finite set of forbidden factors and the sofic shifts which avoid a regular set of
forbidden factors. Sofic shifts may also be defined as labels of bi-infinite paths
of a labeled directed graph.

Dyck shifts are shifts of sequences whose finite factors are factors of well-
parenthesized words. They were introduced by Krieger in [28]. In [21], [31], [22],
Inoue, Krieger, and Matsumoto investigated generalizations of Dyck shifts called
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Markov-Dyck shifts. Their languages of factors are unambiguous context-free
languages. Such shifts are presented by a finite-state directed graph equipped
with a graph inverse semigroup. The graph can be considered as an automaton
which operates on words over an alphabet which is partitioned into two dis-
joint sets, one for the left parentheses, the other one for the right parentheses.
In [22], Inoue and Krieger introduced an extension of Markov-Dyck shifts by
constructing shifts from sofic systems and Dyck shifts. Examples of shifts of
this type are the Motzkin shifts. Dyck shifts and their extensions are in gen-
eral not synchronized but Krieger and Matsumoto introduced weaker notions of
synchronization suitable for Markov-Dyck or Motzkin shifts (see [29], [36], [32]).
Flow invariants for these shifts are obtained in [36] and [15]. In [30] (see also
[20] and [19]), Krieger considers subshift presentations, called R-graphs, with
word-labeled edges partitioned into two disjoint sets of positive and negative
edges equipped with a relation R between positive and negative edges going
backwards.

In this paper, we introduce a larger class of shifts. We consider shifts of
sequences presented by a finite-state automaton (a labeled graph) equipped with
a set of pairs of edges called matched edges. The matched edges may not be
consecutive edges of the graph. We call such structures Dyck automata. They
may be equipped with a graph semigroup which is no more an inverse semigroup.
The automaton operates on words over an alphabet which is partitioned into
three disjoint sets of symbols, the call symbols, the return symbols, and the
internal symbols (for which no matching constraints are required).

We call the shifts presented by Dyck automata sofic-Dyck shifts. We prove
that this class is exactly the class of shifts of sequences whose set of factors is
a visibly pushdown language of finite words. Equivalently, they can be defined
as the sets of sequences which avoid some visibly pushdown language of factors.
So these shifts could also be called visibly pushdown shifts.

Visibly pushdown languages were introduced by Mehlhorn [38] and Alur
et al. [1, 2]. They form a natural and meaningful class inside the class of
unambiguous context-free languages extending the parenthesis languages [37],
[27], the bracketed languages [18], and the balanced languages [9], [10]. These
languages share many interesting properties with regular languages like stability
by intersection and complementation. Visibly pushdown languages are used as
models for structured data files like XML files.

We define also a subclass of sofic-Dyck shifts called finite-type-Dyck shifts.
We prove that sofic-Dyck shifts are images of finite-type-Dyck shifts under
proper block maps, i.e. block maps mapping call (resp. return, internal) sym-
bols to call (resp. return, internal) symbols. The classes of sofic-Dyck shifts and
finite-type-Dyck shifts are invariant by proper conjugacies.

In a second part of the paper, we address the problem of the computation
of the zeta function of sofic-Dyck shift presented by a Dyck automaton. The
zeta function allows to count the number of periodic points of a subshift. It is
a conjugacy invariant of a class of shifts. Two subshifts which are conjugate (or
isomorphic) have the same zeta functions. The invariant is not complete and it
is not known, even for shifts of finite type, whether the conjugacy is a decidable
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property [33].
The formula of the zeta function of a shift of finite type is due to Bowen

and Lanford [14]. Formulas for the zeta function of a sofic shift were obtained
by Manning [34] and Bowen [13]. Proofs of Bowen’s formula can be found in
[33] and [6, 5]. An N-rational expression of the zeta function of a sofic shift has
been obtained by Reutenauer in [39] (see also [12]). Formulas for zeta functions
of flip systems of finite type are given in [24], and for sofic flip systems in [25].
The zeta functions of the Dyck shifts were determined by Keller in [23]. For the
Motzkin shift where some unconstrained symbols are added to the alphabet of
a Dyck shift, the zeta function was determined by Inoue in [21]. In [31], Krieger
and Matsumoto obtained an expression for the zeta function of a Markov-Dyck
shift by applying a formula of Keller and with a clever encoding of periodic
points of the shift.

In Section 6, we give an expression of the zeta function of a sofic-Dyck shift.
The proof combines techniques used for computing the zeta function of a (non
Dyck) sofic shift and of a Markov-Dyck shift. We implicitly use the fact that the
intersection of two visibly pushdown languages is a visibly pushdown language.
We give an example of the computation of the zeta function of a sofic-Dyck
shift.

A short version of this paper appeared in [7].

2. Shifts

We introduce below some basic notions of symbolic dynamics. We refer to
[33, 26] for an introduction to this theory. Let A be a finite alphabet. The set
of finite sequences or words over A is denoted by A∗ and the set of nonempty
finite sequences or words over A is denoted by A+. The shift transformation σ

on AZ is defined by
σ((xi)i∈Z) = (xi+1)i∈Z,

for (xi)i∈Z ∈ A
Z. A factor of a bi-infinite sequence x is a finite word xi⋯xj for

some i, j, the factor being the empty word if j < i.
A subshift (or shift) of AZ is a closed shift-invariant subset of AZ equipped

with the product of the discrete topology. If X is a shift, a finite word is allowed
for X (or is a block of X) if it appears as a factor of some bi-infinite sequence of
X. We denote by B(X) the set of blocks of X and by Bn(X) the set blocks of
length n of X. Let F be a set of finite words over the alphabet A. We denote by
XF the set of bi-infinite sequences of AZ avoiding all words of F , i.e. where no
factor belongs to F . The set XF is a shift and any shift is the set of bi-infinite
sequences avoiding all words of some set of finite words. When F can be chosen
finite (resp. regular), the shift XF is called a shift of finite type (resp. sofic).

Let L be a language of finite words over a finite alphabet A. The language
is extensible if for any u ∈ L, there are letters w, z ∈ A+ such that wuz ∈ L. It is
factorial if any factor of a word of the language belongs to the language.

If X is a subshift, B(X) is a factorial extensible language. Conversely, if L
is a factorial extensible language, then the set B−1(L) of bi-infinite sequences x
such that any finite factor of x belongs to L is a subshift [33].
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Let X ⊆ AZ be a shift and m,n be nonnegative integers. A map Φ ∶X Ð→ BZ

is called an (m,n)-block map with memory m and anticipation n if there exists
a function φ ∶ Bm+n+1(X) Ð→ B such that, for all x ∈ X and any i ∈ Z, Φ(x)i =
φ(xi−m⋯xi−1xixi+1⋯xi+n). A block map is a map which is an (m,n)-block map
for some nonnegative integers m,n.

A conjugacy is a bijective block map from X to Y . A property of subshifts
which is invariant by conjugacies is called a conjugacy invariant.

3. Sofic-Dyck shifts

In this section, we define the class of sofic-Dyck shifts which generalizes the
class of Markov-Dyck shifts introduced in [28] and [35] (see also [31]).

We consider an alphabet A which is a disjoint union of three finite sets of
letters, the set Ac of call letters, the set Ar of return letters, and the set Ai of
internal letters. The set A = Ac ⊔Ar ⊔Ai is called a pushdown alphabet.

The two sets of call and return symbols may not have the same size. We
assume that any call symbol may match any return symbol. We denote by
MR(A) the set of all finite words over A where every return symbol is matched
with a call symbol, i.e. u ∈MR(A) if for every prefix u′ of u, the number of call
symbols of u′ is greater than or equal to the number of return symbols of u′.
These words are called matched-return. Similarly, MC(A) denotes the set of all
words where every call symbol is matched with a return symbol, i.e. u ∈MC(A)
if for every suffix u′ of u, the number of return symbols of u′ is greater than or
equal to the number of call symbols of u′. These words are called matched-call.
We say that a word is a Dyck word if it belongs to the intersection of MC(A)
and MR(A). Dyck words are well-parenthesized or well-formed words. Note
that the empty word or all words over Ai are Dyck words. The set of Dyck
words over A is denoted by Dyck(A). For instance for Ac = {(, [}, Ar = {), ]},
Ai = {i}, the word ( ( [ i ) is matched-return, the word ( ] i ] is matched-call and( [ i ] ] ( ) is a Dyck word on A.

A (finite) Dyck automaton A over A is a pair (G,M) of an automaton (or
a directed labeled graph) G = (Q,E,A) over A where Q is the finite set of
states, E ⊆ Q × A ×Q is the set of edges, and with a set M of pairs of edges((p, a, q), (r, b, s)) such that a ∈ Ac and b ∈ Ar. The edges labeled by call letters
(resp. return, internal) letters are also called call (resp. return, internal) edges
and are denoted by Ec (resp. Er, Ei). The set M is called the set of matched
edges. If e is an edge we denote by s(e) its starting state and by t(e) its target
state.

A finite path π of A is said to be an admissible path if for any factor (p, a, q) ⋅
π1 ⋅ (r, b, s) of π with a ∈ Ac, b ∈ Ar and the label of π1 being a Dyck word
on A, ((p, a, q), (r, b, s)) is a matched pair. Hence any path of length zero is
admissible and factors of finite admissible paths are admissible. A bi-infinite
path is admissible if all its finite factors are admissible.

The sofic-Dyck shift presented by A is the set of labels of bi-infinite admis-
sible paths of A and A is called a presentation of the shift.
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An equivalent semantics of Dyck automata is given in [7] with a graph semi-
group associated to A. This graph semigroup is no more an inverse semigroup
as for presentations associated to Markov-Dyck shifts [28].

Note that the label of a finite admissible path may not be a block of the
presented shift since a finite admissible path may not be extensible to a bi-
infinite admissible path.

Lemma 1. The sofic-Dyck shift presented by a Dyck automaton is exactly the
set of bi-infinite sequences x such that each finite factor of x is the label of a
finite admissible path.

Proof. Let X be the sofic-Dyck shift presented by a Dyck automaton A. By
definition, any finite factor of a bi-infinite sequence of X is the label of a finite
admissible path.

The converse part is due to the following classical compacity argument. Let
x be a bi-infinite sequence such that each finite factor of x is the label of a finite
admissible path. Thus for any positive integer i, there is a path

pi,−i−1
x−iÐÐ→ pi,−i

xi−1ÐÐ→ ⋯pi,−1
x0Ð→ pi,0

x1Ð→ pi,1⋯
xiÐ→ pi,i,

which is admissible for A. For each nonnegative integer m, there is an infinite
number of such paths sharing the states pk at all indices k for −m ≤ k ≤m. Then
π = ((pk−1, xk, pk))k∈Z is a bi-infinite path whose finite factors are admissible
paths of A. Thus the label x of π belongs to X.

Proposition 1. A sofic-Dyck shift is a subshift.

Proof. Let X be a sofic-Dyck shift defined by an automaton A. Let F be the
set of finite words which are not the label of any finite admissible path of A.
Then X = XF by Lemma 1 and thus X is a subshift.

We denote respectively by MR(X), MC(X) and Dyck(X), the intersections
of MR(A), MC(A) and Dyck(A) with the set of blocks of X.

Example 1. Let A = Ac ⊔Ar ⊔Ai with Ac = {a1, . . , ak}, Ar = {b1, . . , bk} and Ai

is the empty set. The Dyck shift of order k over the alphabet A is the set of all
sequences accepted by the one-state Dyck automaton A = (G,M) containing all
loops (p, a, p) for a ∈ A, and where the edge (p, ai, p) is matched with the edge(p, bi, p) for 1 ≤ i ≤ k.

A Motzkin shift is the set of bi-infinite sequences presented by the automaton
A = Ac ⊔ Ar ⊔ Ai with Ac = {a1, . . , ak}, Ar = {b1, . . , bk}, the set Ai being no
more the empty set. A Motzkin shift is represented in the left part of Figure 1.
It is shown in [21] that the entropy of the Motzkin shift on this alphabet is log 4.
Another example is the sofic-Dyck shift X is presented by the Dyck automaton
in the right part of Figure 1. For instance, the bi-infinite sequences ⋯(([ii][])⋯
and ⋯) ) ) ) )⋯ belong to X while the sequences ⋯( [ i ] [ ] )⋯ or ⋯( ]⋯ do not.
We have ( i i ) ( ) ∈ Dyck(X) and ( ) ( [ i ∈MR(X).

Note that a call symbol may match several return symbols and conversely
although it is not the case in the above examples.
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Figure 1: A Motzkin shift (on the left) over A = Ac ⊔Ar ⊔Ai with Ac = {(, [}, Ar = {), ]} and
Ai = {i}. A sofic-Dyck shift (on the right) over the same tri-partitioned alphabet. Matched
edges are linked with a dotted line.

4. Finite-type-Dyck shifts

In this section we give a definition of a subclass of sofic-Dyck shifts called
finite-type-Dyck shifts. We show that sofic-Dyck shifts are the images of finite-
type-Dyck shifts by proper block maps.

Let A and B be two tri-partitioned alphabets. We say that a block-map
Φ ∶ AZ Ð→ BZ is proper if and only if Φ(x)i ∈ Ac (resp. Ar, Ai) whenever xi ∈ Ac

(resp. Ar, Ai).
Let A be a tri-partitioned alphabet. If (u, v) and (u′, v′) are two pairs of

words over A, we note (u, v) ⪯ (u′, v′) if u is a suffix of u′ and v is a prefix of v′.
Let F ⊆ A∗ and U ⊆ (A∗×Ac×A

∗)×(A∗×Ar×A
∗). We say that a finite or bi-

infinite sequence x avoids F if, for each finite factor u of x, one has u ∉ F . We say
that a finite or bi-infinite sequence x avoids U if for each finite factor u = vawbz
of x with a ∈ Ac, b ∈ Ar, w ∈ Dyck(A), there is no pair ((u1, a, u2), (v1, b, v2)) in
U such that (u1, u2) ⪯ (v,wbz) and (v1, v2) ⪯ (vaw, z).

A finite-type-Dyck shift over A is a set of bi-infinite sequences X for which
there are two finite sets F ⊆ A∗, U ⊆ (A∗ ×Ac ×A

∗)× (A∗ ×Ar ×A
∗), such that

X is the set of sequences avoiding F and U .

Proposition 2. A finite-type-Dyck shift is a sofic-Dyck shift.

Proof. Let X be a finite-type-Dyck shift of bi-infinite sequences over A avoiding
two finite sets F and U . Without loss of generality we may assume that there
are positive integers m,n such that F ⊆ Am+n+1 and U ⊆ (Am

×Ac×A
n)×(Am

×

Ar ×A
n).

We define the Dyck automaton A = (G,M) over A as follows. Let us denote
G = (Q,E). We set

• Q = {(u, v) ∣ u ∈ Am, v ∈ An},
• E = {((bu, av), a, (ua, vc)) ∣ a, b, c ∈ A,u ∈ Am−1, v ∈ An−1, buavc ∉ F},
• M is the set of pairs of edges ((du, av), a, (ua, vc)), ((d′u′, bv′), b, (u′b, v′c′)),

where a ∈ Ac, b ∈ Ar, c, c
′, d, d′ ∈ A, u,u′ ∈ Am−1, v, v′ ∈ An−1 and such that((du, a, vc), (d′u′, b, v′c′)) ∉ U .

The sofic-Dyck shift presented by A is X.
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Proposition 3. Sofic-Dyck shifts are the images of finite-type-Dyck shifts by
proper block maps.

Proof. We first show that any sofic-Dyck shift is the image of a finite-type-Dyck
shift by a proper block map.

Let A = (G,M) be a Dyck automaton accepting a sofic-Dyck shift X over A
with G = (Q,E). Let E = Ec ⊔Er ⊔Ei be the tri-partitioned alphabet of edges
of A where Ec (resp. Er, Ei) is the set of call (resp. return, internal) edges of
A.

We define a Dyck automaton B over E as follows. The set of states of B is
the set of states Q of A. There is an edge (p, e, q) ∈ B if and only if e is an edge
of A starting at p and ending in q. A pair of edges ((p, e, q), (r, f, s)) of B is
matched if (e, f) is a matched pair of A.

Let Y be the sofic-Dyck shift presented by B. It is the set of sequences
avoiding

• F = {ef ∈ E2 ∣ t(e) ≠ s(f)},
• U = {((p, e, q), (r, f, s)) ∈ Ec ×Er ∣ (e, f) ∉M},

Since F and U are finite, the shift Y is a finite-type-Dyck shift.
Let Φ ∶ EZ Ð→ AZ be the (0,0)-block map defined by φ ∶ B1(Y ) Ð→ A as

follows. We set φ(e) = a where a is the label of the edge e of A. The map Φ is
clearly a proper block map sending each bi-infinite admissible path of A to its
label. As a consequence X = Φ(Y ).

We now prove that the image of a finite-type-Dyck shift by a proper block
map is a sofic-Dyck shift.

Let Φ ∶ AZ Ð→ BZ be a proper block map and X be a finite-type-Dyck shift
of sequences over A. Without loss of generality we may assume that there
are positive integers m,n such that Φ is a proper (m,n)-block map and X is
the set of sequences avoiding two finite sets F and U with F ⊆ Am+n+1 and
U ⊆ (Am

×Ac ×A
n) × (Am

×Ar ×A
n).

Let φ ∶ Am+n+1 Ð→ B be the function defining Φ. We define the Dyck au-
tomaton A(φ,F,U) = (G,M) over A ×B as follows. Let us denote G = (Q,E).
We set

• Q = {(u, v) ∣ u ∈ Am, v ∈ An},
• E = {((bu, av), (a,φ(buavc)), (ua, vc)) ∣ a, b, c ∈ A,u ∈ Am−1, v ∈ An−1 and
buavc ∉ F},

• M is the set of pairs of edges (e, f) with e = ((bu, av), (a,φ(buavc)),(ua, vc)), f = ((b′u′, a′v′), (a′, φ(b′u′a′v′c′)), (u′a′, v′c′)), where a ∈ Ac,
a′ ∈ Ar, b, b

′, c, c′ ∈ A, u,u′ ∈ Am−1, v, v′ ∈ An−1 and the pair (bu, a, vc),(b′u′, a′, v′c′) ∉ U .

Let A1 (resp. A2) be the Dyck automaton obtained by removing the second
(resp. first) components of the labels of the edges. The Dyck automaton A1

is a presentation of X. Further, if x ∈ X, there is a unique admissible path of
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A1 labeled by x. Indeed, each factor of a bi-infinite path of A1 labeled by uv
with u ∈ Am, v ∈ An, goes through the state (u, v) after reading u. A pair of bi-
infinite sequences (x, y) is the label of a bi-infinite admissible path of A(φ,F,U)
if and only if x ∈X and Φ(x) = y. Hence A2 is a presentation of Φ(X) which is
thus sofic-Dyck.

Proposition 4. The image of a sofic-Dyck shift by a proper block map is a
sofic-Dyck shift.

Proof. Let Φ a proper block map from a sofic-Dyck shift X onto Y . By Propo-
sition 3, X is the image of a finite-type-Dyck shift S by a proper block map
Ψ. The map Φ ○Ψ ∶ S Ð→ Y is a proper block map and thus its image Y is a
sofic-Dyck shift by Proposition 3.

The following corollary is a direct consequence of Proposition 4.

Corollary 1. The class of sofic-Dyck shifts is invariant by proper conjugacy.

We prove below that the same result holds for finite-type-Dyck shifts.

Proposition 5. The class of finite-type-Dyck shifts is invariant by proper con-
jugacy.

Proof. Let X be a finite-type-Dyck shift over A which is properly conjugate to
a shift Y over B. Let Φ be a proper block map from AZ to BZ that induces a
conjugacy from X to Y . Without loss of generality we may assume that there
are positive integers m,n such that Φ is a proper (m,n)-block map and X is
the set of sequences avoiding two finite sets F and U with F ⊆ Am+n+1 and
U ⊆ (Am

×Ac ×A
n) × (Am

×Ar ×A
n).

Let Ψ = Φ−1 ∶ Y →X be the proper (m′, n′)-block map inverse of Φ and ψ the

block function of Ψ. It induces a map (still denoted by ψ) from Bm′+m+1+n+n′

to Am+1+n. We set d = m′ +m, k = n′ + n, r = d + 1 + k. Let F ′ = B5r
∖ B5r(Y )

and let U ′ ⊆ (Bd
×Bc ×B

k) × (Bd
×Br ×B

k) be the set of pairs (u′, v′) such
that (ψ(u′), ψ(v′)) ∈ U . Let us show that Y is the set Z of sequences avoiding
F ′ and U ′.

By construction, Y ⊆ Z. Let now z ∈ Z. We prove by induction that each
factor of length jr belong to B(Y ) for j ≥ 5. We first have by definition of Z that
each factor of length 5r belongs to B(Y ). Assume now that each factor of z of
length jr belongs to B(Y ) for some j ≥ 5. Let z′ be a factor of z of length 2(j−1)r
decomposed as z′ = u′

1
u′
2
u′
3
w′v′

3
v′
2
v′
1
with ∣u′

1
∣ = ∣u′

2
∣ = ∣v′

1
∣ = ∣v′

2
∣ = r, ∣w′∣ = 2r and∣u′

3
∣ = ∣v3∣ = (j − 4)r. The factors u′ = u′

1
u′
2
u′
3
w′ and v′ = w′v′

3
v′
2
v′
1
of z′ are of

length jr and are assumed to be blocks of Y . We set u = u1u2u3w1 = ψ(u′),
where ∣u1∣ = ∣u′1∣ −m′ and ∣w1∣ = ∣w′∣ − n′ and v = w2v3v2v1 = ψ(v′), where ∣w2∣ =∣w′∣−m′ and ∣v1∣ = ∣v1∣−n′. Note that w1[m′, ∣w1∣−1] = w2[0, ∣w2∣−n′]. Hence w1

and w2 overlap on a part w of length at least ∣w′∣−m′ −n′ = 2r−m′ −n′ ≥m+n.
Since u′, v′ ∈ B(Y ), we have u, v ∈ B(X).

Let A(φ,F,U) be the Dyck automaton defined in the proof of Proposition
3. A pair of bi-infinite sequences (x, y) is the label of a bi-infinite admissible
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path of A(φ,F,U) if and only if x ∈ X and Φ(x) = y. Further, all finite paths
of the input Dyck automaton A1 of A(φ,F,U) which are labeled by a given
block x1x2 ∈ B(X) with ∣x1∣ = m and ∣x2∣ = n go through the same state after
reading x1. As a consequence, since ∣w∣ ≥ m + n, there is a path in A1 labeled
by x′ = u1u2u3w1tv3v2v1 = ψ(z′), where w2 = wt. Since z

′ avoid U ′, we have x′

avoids U . Hence x′ ∈ B(X), implying φ(x′) = u′
0
u′
2
u′
3
w′v′

3
v′
2
v′
0
, where u′

0
is the

suffix of u′
1
of length ∣u′

1
∣−m′−m and v′

0
is the prefix of v′

1
of length ∣v′

1
∣−n′−n.

We obtain that u′
2
u′
3
w′v′

3
v′
2
∈ B(Y ). Hence each factor of length 2(j − 2)r of z

belongs to B(Y ) and 2(j − 2)r ≥ (j + 1)r for j ≥ 5. This proves that each factor
of z belongs to B(Y ). We get Z = Y and Y is a finite-type-Dyck shift.

5. Presentations of sofic-Dyck shifts

In this section we define several particular presentations of sofic-Dyck shifts
which will be useful for the computation of zeta function.

A Dyck automaton is deterministic1 if there is at most one edge starting
in a given state and with a given label. Sofic shifts (see [33]) always have a
deterministic presentation. Although visibly pushdown languages are accepted
by deterministic visibly pushdown automata [2], sofic-Dyck shifts may not be
presented by any deterministic Dyck automaton as is shown in Example 3. In-
deed, the two notions of determinism do not match. The notion of determinism
for visibly pushdown languages includes the stack symbol as input for return
transitions of visibly pushdown automata.

Let A be a Dyck automaton. We define the left reduction of A as the
Dyck automaton obtained through some determinization process. The process
is an adaptation to Dyck automata of the determinization of visibly pushdown
automata [1]. It is sketched in [8] and we detail it here.

Let A = (G,M) with G = (Q,E) be a Dyck automaton over A. We define
a Dyck automaton D = (H,N) over A, where H = (Q′,E′) with Q′ = P(Q ×
Q) ×P(Q) and P(Q) is the set of subsets of Q. States are pairs (S,R) where
S is called the summary2 of the state and R is a nonempty subset of Q. The
state I = (∅,Q) is called the initial state. For each state (S,R), the set S is
empty if and only the admissible paths going from I to (S,R) are labeled by a
matched-call word. It is nonempty if all admissible paths going from I to (S,R)
are of the form

I
u
Ð→ (S”,R”) a

Ð→ (T,U) w
Ð→ (S,R),

where a ∈ Ac and w is a Dyck word. If there is such a path, the summary S of
the state (S,R) is the set of pairs (p, q) in U ×R such that there is an admissible
path of A labeled by the Dyck word w from p to q. In both cases, if there is a
path labeled by v in D from I to (S,R), then R is the set of states q such that
there is an admissible path in A labeled by v ending in q.

1Deterministic presentations are also called right-resolving in [33].
2The definition of summaries differs slightly from the one given in [1].
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For a subset R of Q, we denote by Diag(R) the set of all pairs (p, p) for
p ∈ R. The edges of D are defined as follows.

• For every ℓ ∈ Ai, ((S,R), ℓ, (S′,R′)) ∈ E′ if S′ = {(p, q) ∣ ∃r ∈ Q, (p, r) ∈
S, (r, ℓ, q) ∈ E} and R′ = {q ∣ ∃p ∈ R, (p, ℓ, q) ∈ E} is nonempty.

• For every a ∈ Ac, ((S,R), a, (Diag(R′),R′)) ∈ E′ ifR′ = {q ∣ ∃p ∈ R, (p, a, q) ∈
E} is nonempty.

• For every b ∈ Ar, the edges stating from (S,R) with S ≠ ∅ labeled by b
are defined as follows. For any edge ((S′′,R′′), a, (T,U)) with a ∈ Ac we
define

– Update = {(p, p′) ∣ ∃p1, p2∶ (p, a, p1) ∈ E, (p1, p2) ∈ S, (p2, b, p′) ∈ E,((p, a, p1), (p2, b, p′)) ∈M},
– S′ = {(p, q) ∣ ∃p′, (p, p′) ∈ S”, (p′, q) ∈ Update},
– R′ = {q ∣ ∃p ∈ R”, (p, q) ∈ Update}.

If R′ is not empty, we define an edge ((S,R), b, (S′,R′)) ∈ E′ and set this
edge matched with ((S”,R”), a, (T,U)).

• For every b ∈ Ar, we define an edge ((∅,R), b, (∅, V )) ∈ E′ where V = {q ∣
∃p ∈ R, (p, b, q) ∈ E} is nonempty. This return edge is not matched with
any call edge.

We only keep in D the states reachable from I.

Proposition 6. The left reduction of a Dyck automaton A presents the same
sofic-Dyck shift as A.

Proof. Let X be the sofic-Dyck presented by A and D be the left reduction
of A. Let v be the label of an admissible path of A going from p to q. By
construction there is an admissible path of D labeled by v going from I to some
state (S,R) with q ∈ R. Thus labels of finite admissible paths of A are labels of
finite admissible paths of D.

Conversely, let v be the label of some finite admissible path π of D. We
claim that v is the label of an admissible path of A.

We prove the claim by recurrence on the length of v. It is true if v is the

empty word. Let v = uc where c ∈ A and π = (S1,R1) u
Ð→ (S,R) c

Ð→ (S′,R′). By
induction hypothesis, we assume that for any state r ∈ R there is an admissible
path labeled by u from some state q ∈ R1 to r. If the edge ((S,R), c, (S′,R′))
is a call or internal edge or is a return edge not matched with a call edge of π,
the result holds by construction for uc. Let us assume that

π = (S1,R1) u
Ð→ (S”,R”) a

Ð→ (T,U) w
Ð→ (S,R) b

Ð→ (S′,R′),
where w is a Dyck word over A, a ∈ Ac, and b ∈ Ar. By induction hypothesis,

we assume that for any state p ∈ R” there is an admissible path q
u
Ð→ p in A for

some q ∈ R1.
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For any r ∈ R′ there are p ∈ R′′ and (p1, p2) ∈ S such that (p, a, p1) and(p2, b, r) are matched in A. Further, S is the set of pairs (s, s′) ∈ U × R such
that there is an admissible path in A labeled by w from s to s′. It follows
that there is in A an admissible path labeled by w from p1 to p2 and thus an

admissible path q
u
Ð→ p

a
Ð→ p1

w
Ð→ p2

b
Ð→ r in A which concludes the proof of the

claim.

Note that since the label of an admissible path of D is the label of an ad-
missible path of A, each label of an admissible path of D is the label of an
admissible path of D starting at I.

We similarly define the right reduction of A with a co-determinization of A
and an exchange of roles played by call and return edges. Note the left reduction
of A may have more states than A.

Let L be a language of finite words. A Dyck automaton is L-deterministic if
there is at most one admissible path starting in a given state and with a given
label in L.

By construction the left reduction of a Dyck automaton is Ac-deterministic
and Ai-deterministic.

A Dyck automaton is weak-deterministic if there is a state I such that for
any word u there is at most one admissible path labeled by u starting at I.

Proposition 7. The left reduction of a Dyck automaton is weak-deterministic.

Proof. Let D be the left reduction of a Dyck automaton A and let I be the
initial state of D. Let us suppose that the property is false. We consider two
minimal-length distinct admissible paths starting at I and sharing the same
label.

I
u
Ð→ (S,R) b

Ð→ (T,U),
I

u
Ð→ (S′,R′) b

Ð→ (T ′, U ′),

with b ∈ A and (T,U) ≠ (T ′, U ′). We may assume (S,R) = (S′,R′) since these
paths are of minimal length. Since D is Ac-deterministic and Ai-deterministic,
we may assume that b ∈ Ar. By definition, we have U = U ′. If ub is matched-call,
T and T ′ are empty, hence (T,U) = (T ′, U ′). If ub = u′awb, where w is a Dyck
word and a ∈ Ac, the two above paths are

I
u′

Ð→ (S1,R1) a
Ð→ (S2,R2) w

Ð→ (S,R) b
Ð→ (T,U),

I
u′

Ð→ (S1,R1) a
Ð→ (S2,R2) w

Ð→ (S,R) b
Ð→ (T ′, U).

Since the paths are admissible, ((S,R), b, (T,U)) is matched with ((S1,R1), a,(S2,R2)) and ((S,R), b, (T ′, U)) is matched with ((S1,R1), a, (S2,R2)). By
definition of the summary we get T = T ′, a contradiction.
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Corollary 2. The left reduction of a Dyck automaton over A is Dyck(A)-
deterministic.

Proof. Let (S,R) be a state of the left reduction of a Dyck automaton over A
and w be a Dyck word over A. Let us assume that there are two admissible
paths π1 and π2 labeled by w starting at (S,R). Since there is an admissible
path π from I to (S,R), the paths ππ1 and ππ2 are two admissible paths starting
at I. They are then equal by Proposition 7.

Example 2. The Dyck automaton A on the left of Figure 2 has as left reduction
the Dyck automaton on the right of the picture. The initial state is the state
I = (∅,{1,2,3}).

(1,1);1∅;123

∅;2 (1,2);2

(1,3);3∅;3

∅;11

2

3

b

i

b

i

j

k

a

a′

j

k

a′

a

b

b

b

i

b

i

a

a′

j

k

i

i

a

a′

j

k

b

b

Figure 2: A Dyck automaton A (on the left) over A = Ac ⊔Ar ⊔Ai with Ac = {a, a′}, Ar = {b}
and Ai = {i, j, k}. The left reduction of A (on the right) over the same tri-partitioned alphabet.
Matched edges are linked with a dotted line and each state is represented by its summary set
S of pairs of edges and the set R.

Example 3. The sofic-Dyck shift X presented by the Dyck automaton A of Fig-
ure 3 has no deterministic presentation. Let us briefly give a sketch of the proof

3 1 2

i

ji

k

b a b

Figure 3: A Dyck automaton A over A, with Ac = {a}, Ar = {b} and Ai = {i, j, k}, presenting
a sofic-Dyck shift which has no deterministic presentation. Matched edges are linked with a
dotted line.

of this fact. Let B be a deterministic Dyck automaton over A accepting the same
shift X. For any positive integers n,m, r, the words (an+mibnj)r(ibmj)r(ibmk)r
are blocks of X and are thus factors of labels of admissible paths in B, the edges
labeled by b of the path labeling (ibmj)r being matched with the edges labeled
by a of the path labeling (an+mibnj). If B is finite and deterministic, this implies
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that there are m,r, s > 0 and n′ > n > 0 such that (an′+n+mibnj)r(ibmj)r(ibmk)r
is a block of X, a contradiction.

5.1. Visibly pushdown shifts

In this section we show that the class of sofic-Dyck shifts is the class of visibly
pushdown shifts, i.e. the subshifts whose set of blocks are factorial extensible
visibly pushdown languages.

The class of visibly pushdown languages of finite words can be described
either by pushdown automata or by context-free grammars.

A visibly pushdown automaton on finite words over A = Ac ⊔ Ar ⊔ Ai is a
tuple M = (Q, I,Γ,∆, F ) where Q is a finite set of states, I ⊆ Q is a set of
initial states, Γ is a finite stack alphabet that contains a special bottom-of-stack
symbol �, ∆ ⊆ (Q ×Ac ×Q × (Γ ∖ {�})) ∪ (Q ×Ar × Γ ×Q) ∪ (Q ×Ai ×Q), and
F ⊆ Q is a set of final states.

A transition (p, a, q, γ), where a ∈ Ac and γ ≠ �, is a push-transition. On
reading a, the stack symbol γ is pushed onto the stack and the control changes
from state p to q. A transition (p, a, γ, q) is a pop-transition. The symbol γ is
read from the top of the stack and popped. If γ = �, the symbol is read but not
popped. A transition (p, a, q) is a local action.

A stack is a nonempty finite sequence over Γ starting with �. A run of M
labeled by w = a1 . . ak is a sequence (p0, σ0)⋯(pk, σk) where pi ∈ Q, σ0 = �,
σi ∈ (Γ ∖ {�}) for 1 ≤ i ≤ k, and such that:

• If ai is call symbol, then there are γi ∈ Γ and (pi−1, ai, pi, γi) ∈ ∆ with
σi = σi−1 ⋅ γi.

• If ai is a return symbol, then there are γi ∈ Γ and (pi−1, ai, γi, pi) ∈∆ with
either γi ≠ � and σi ⋅ γi = σi−1 or γi = � and σi = σi−1 = �.

• If ai is an internal symbol, then (pi−1, ai, pi) ∈∆ and σi = σi−1.

A run is accepting if p0 ∈ I, σ0 = �, and the last state is final, i.e. pk ∈ F . A
word over A is accepted if it is the label of an accepting run. The language of
words accepted by M is denoted by L(M). The language accepted by a visibly
pushdown automaton is called a visibly pushdown language.

We will use also the following grammar-based characterization (see [2]).
A context-free grammar over an alphabet A is a tuple G = (V,S,P ), where

V is a finite set of variables, S ∈ V is a start variable and P is a finite set of rules
of the form X Ð→ α such that X ∈ V and α ∈ (V ∪ A)∗. The semantics of the
grammar G is defined by the derivation relation Ð→ over (V ∪A)∗. If X Ð→ α is
a rule and β, β′ are words of (V ∪A)∗, then βXβ′ Ð→ βαβ′ holds. The language
accepted by the grammar G, denoted L(G) is the set of words u in B∗ such that

S
∗
Ô⇒ u, where

∗
Ô⇒ is the transitive closure of the relation Ð→.

Let A be a tri-partitioned alphabet. A context-free grammar G = (V,S,P )
over A is a visibly pushdown grammar with respect to A if the set V of variables
is partitioned into two disjoint sets V 0 and V 1, such that all rules in P are of
one of the following forms

13



• X → ε;

• X → aY , such that if X ∈ V 0, then a ∈ Ai and Y ∈ V
0;

• X → aY bZ, such that a ∈ Ac, b ∈ Ar, Y ∈ V
0, and if X ∈ V 0, then Z ∈ V 0.

The variables in V 0 derive only Dyck words. The variables in V 1 derive words
that may contain unmatched call letters as well as unmatched return letters. In
the rule X → aY , if a is a call it is unmatched and the variable X must be in
V 1 if a is a call or return. In the rule X → aY bZ, the symbols a and b are the
matching call and return. The words generated by Y belong to V 0 and thus
are Dyck words. Furthermore, if X is required to generate Dyck words, then Z
also.

It is shown in [2] that a language is visibly pushdown language if and only
if it is accepted by a visibly pushdown grammar.

Proposition 8. The set of labels of finite admissible paths of a Dyck automaton
is a visibly pushdown language.

Proof. Let A = (G,M) be a Dyck automaton over A, where G = (Q,E).
We define a visibly pushdown automaton V = (Q, I,Γ,∆, F ) over A, where

I = F = Q and Γ is the set of edges of A. The set of transitions ∆ is obtained
as follows.

• If (p, a, q) ∈ E with a ∈ Ac, then (p, a, q, (p, a, q)) ∈∆.

• If (p, b, q) ∈ E with b ∈ Ar, then (p, b, γ, q) ∈ ∆ for each call edge γ which
is matched with the return edge (p, b, q).

• If (p, ℓ, q) ∈ E with ℓ ∈ Ai, then (p, ℓ, q) ∈∆.

Let w be a finite word over A. There is run (p0, σ0)⋯(pk, σk) in V labeled by w
such that σ0 = �, p0 = p and pk = q if and only if w be the label of an admissible
path π of A going from p to q. Thus w is the label of an admissible path of A if
and only if it is the label of an accepting run of V , which proves the proposition.

In order to prove that the set of blocks of sofic-Dyck shift is a visibly push-
down language, we have to prove that the subset of words labeling a finite
admissible path which are extensible to labels of bi-infinite admissible paths is
also a visibly pushdown language.

Let L be a language of finite words over A. We denote by E(L) the set words
w ∈ L such that, for any integer n, there are words u, v of length greater than n
such that uwv ∈ L. Note that E(L) is a factorial language when L is factorial.
This set is called in [16] the bi-extensible subset of L.

We show below that the bi-extensible subset of a factorial visibly pushdown
language is a visibly pushdown language. It is shown in [16] that it is not
true that the bi-extensible subset of a context-free language is a context-free
language but the result holds for factorial context-free languages. We prove a
similar result for factorial visibly pushdown languages.

We first recall the following pumping lemma (see [16, Lemma 5.6]).
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Lemma 2. Let G = (V,S,P ) be a context-free grammar and L = L(G). Then
for any integer t > 0, there exists an integer p(t) such that for each z ∈ L and any
set K of distinguished positions in z, if ∣K ∣ ≥ p(t), then there is a decomposition
z = ux1⋯xtwy1⋯ytv such that

• There exists a variable X ∈ V such that

S
∗
Ð→ uXv

∗
Ð→ ux1Xy1v

∗
Ð→ ⋯

∗
Ð→ ux1⋯xtXyt⋯y1v

∗
Ð→ ux1⋯xtwyt⋯y1v.

• For any i1, . . , it, we have uxi1
1
⋯xitt wy

it
t ⋯y

i1
1
v ∈ L.

• If K(x) denotes the distinguished positions of K in a word x, then either
K(u),K(x1), . .K(xt),K(w) ≠ ∅, or K(w),K(yt), . .K(y1), K(v) ≠ ∅.
We also have ∣K(x1) ∪ . .K(xt) ∪K(w) ∪K(yt) ∪ . .K(y1)∣ ≤ p(t).

Proposition 9. If L is a factorial visibly pushdown language, then E(L) is a
factorial visibly pushdown language.

Proof. Let G = (V,S,P ) be a visibly pushdown grammar over A accepting L.

We define a grammar G′ = (V ∪{Xi}, S,P ′) over A′ = (Ac ∪{$1},Ar ∪{$1},Ai ∪{$0}) obtained by adding the following rules to G:

• X → $1X$1X1 and X1 → ε, for each X ∈ V 0 such that X
∗
Ð→
G
uXv with

u, v ∈ A+,

• X → $0X, for each X ∈ V such that X
∗
Ð→
G
uX with u ∈ A+.

Note that it is not possible to have a rule X ∈ V such that X
∗
Ð→ Xu with

u ∈ A+. The grammar G′ is a visibly pushdown grammar over A′.
Let L1 = {w ∈ A∗ ∣ ∃wi ∈ A

∗, w1$w2ww3$
′
w4 ∈ L(G′),$ = $0 or $1,$

′
=

$0 or $1}, L2 = {w ∈ A∗ ∣ ∃wi ∈ A
∗,w1$1w2ww3$1w4, ∈ L(G′)} and L3 = L1 ∪L2.

Let us prove that L3 ⊆ E(L). We first consider a word w ∈ L2 such that

w1$1w2ww3$1w4 ∈ L(G′). Then w2ww3 is generated in G by some variable

X ∈ V 0 such that X
∗
Ð→ uXv, for u, v ∈ A+. Thus, for any integer n, we have

unw2ww3v
n ∈ L. Thus w ∈ E(L).

Let us consider a word w ∈ L1 such that w1$1w2ww3$1w4 ∈ L(G′). Thus

there are words u1, u2, u3, u4 such that u1$1u2$1w2ww3$1u3$1u4 ∈ L(G′). It
follows that there are words x, y, z, t ∈ A+ such that u1x

nu2y
nw2ww3 z

nu3t
nv4 ∈

L, for any positive integer n. Thus w ∈ E(L).
We now consider the case where w ∈ L1 with w1$0w2ww3$0w4 ∈ L(G′). Then

there are variables X, Y such that X
∗
Ð→ uX for some u ∈ A+, Y

∗
Ð→ vY with

v ∈ A+, such that S
∗
Ð→ αXβY γ and Xβ

∗
Ð→ w2ww3. It follows that, for any

positive integer n, we have unw2ww3v
n ∈ L. Hence w ∈ E(L). The remaining

cases are proved similarly.
We now prove that E(L) ⊆ L3. Let z ∈ E(L) of length t. We choose z1, z2 ∈

A+ of length greater than p(t), where p(t) is defined in Lemma 2, such that
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z′ = z1zz2 ∈ L. For technical reasons that will appear below, we also choose∣z2∣ > 4∣K ∣(∣z1∣ + ∣z∣).
We consider a set of distinguished positions in z1. By Lemma 2, there is a

variable X in V such that

S
∗
Ð→ uXv

∗
Ð→ ux1Xy1v

∗
Ð→ ⋯ux1⋯xtXyt⋯y1v

∗
Ð→ ux1⋯xtwyt⋯y1v = z

′.

Let T be the induced derivation tree and T ′ be the subtree of T (labeled by X)
generating w. Let π be the path going from the root of T to the parent of the
root of T ′. The length ℓ of π is at most ∣ux1⋯xt∣ since all rules of G produce
either the empty word or a non empty word over V ∪A with a terminal symbol
on the left.

At least one of two following cases holds.

• K(u),K(x1), . . ,K(xt),K(w) ≠ ∅.
– If z is a factor of wyt⋯y1 and X → $1X$1X1 is a rule of G′, then
u$1x1⋯xt wyt⋯y1$1v ∈ L(G′) and thus z ∈ L3.

– If z is a factor of wyt⋯y1 and X → $1X$1X1 is not a rule of G′. Then
yt⋯y1 = ε and X → $0X is a rule of G′. Thus the word ẑ obtained
after inserting $0 between u and x1 is still in L(G′).
Furthermore, z is a factor of w. We set w = w1zw2. If ∣w2∣ < ∣K ∣,∣yt⋯y1v∣ = ∣z2∣ − ∣w2∣ > 4∣K ∣ × ∣z1z∣ − ∣K ∣ ≥ 3∣K ∣ × ∣ux1⋯xt∣ ≥ 3ℓ∣K ∣. We
denote by R the set of nodes in T which are children of nodes of π
on the right of π and thus generate yt⋯y1v. The size of the set R is
at most 3ℓ since all rules of G have an arity at most 4.

At most 3ℓ variables generating a sequence of length greater than
3ℓ∣K ∣, there is a variable Y in R such that Y generates a factor of
length at least ∣K ∣ of yt⋯y1v which is a factor of z2. We do a second
pumping for words generated by Y using distinguished positions on
yt⋯y1v and get that the word obtained from ẑ after inserting either
$0 or $1 in yt⋯y1v is still in L(G′).
If ∣w2∣ ≥ ∣K ∣, we do a second pumping for words generated by X using
distinguished positions on w2 and get that the word obtained from ẑ

after inserting either $0 or $1 in w2 is still in L(G′).
– If z is a factor of yt⋯y1v, then w can be replaced either by $1w

or by $0w and gives a word ẑ. A similar argument as above for a
second pumping still holds. We have this time ∣z2∣ > 4∣K ∣ × ∣z1z∣ ≥
4∣K ∣ × ∣ux1⋯xt∣ ≥ 3ℓ∣K ∣. Hence there is a variable Y in R such that
Y generates a factor of length at least ∣K ∣ of z2. We do a second
pumping for words generated by Y using distinguished positions on
z2 and get that the word obtained from ẑ after inserting either $0 or
$1 in z2 is still in L(G′).

– Otherwise z is a factor of wyt⋯y1v and z crosses w, yt⋯y1 and v.
Then ∣yt⋯y1∣ < ∣z∣ = t. Thus there is 1 ≤ i ≤ t such that yi = ε. So we
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can replace xi by $0xi obtaining ẑ. Again here there is a variable Y
in R such that Y generates a factor of length at least ∣K ∣ of z2. We
do a second pumping for words generated by Y using distinguished
positions on z2 and get that the word obtained from ẑ after inserting
either $0 or $1 in z2 is still in L(G′).

• K(w),K(yt), . . ,K(y1),K(v) ≠ ∅. Then z is a factor of v since the distin-

guished positions are on z1. Then w can be replaced either by $1w or by
$0w. The second pumping is done as the in the last item of the previous
case.

We obtain that for any z ∈ E(L), there is in L(G′) either a word of the

form w1$w2zw3$
′
w4 with $ = $0 or $1, $

′
= $0 or $1 or a word of the form

w1$1w2zw3$1w4. Thus z ∈ L3. Hence L3 = E(L).
We now show that L3 is a visibly pushdown language. Indeed, let us show

that L$$
′ = {w ∈ A∗ ∣ w1$w2ww3$

′
w4 ∈ L(G′)} is visibly pushdown.

Let L′ = Fact(L(G′))∩$A∗$′, where Fact(L(G′)) denotes the set of factors of
L(G′), and let L” = Fact(L′)∩A∗. Since the class of visibly pushdown languages
is closed by prefix and suffix, it is closed by factor. Hence the languages L′ and
L” are visibly pushdown. We have L$$

′ = L”.
As a consequence, L$$

′ is visibly pushdown. The class of visibly pushdown
languages being closed by union, we get that L3 is visibly pushdown.

Note that that G′ can be constructed in an effective way since it is decidable

whether X
∗
Ð→ uXv or X

∗
Ð→ uX for some words u, v ∈ A+.

Theorem 1. Let X be a sofic-Dyck shift. Then B(X) is a visibly pushdown
language. Conversely, if L is a factorial extensible visibly pushdown language,
then B−1(L) is a sofic-Dyck shift.

Proof. Let X be the sofic-Dyck shift presented by a Dyck automaton A. By
Propositions 8, the set L of labels of finite admissible paths of A is a visibly
pushdown language. By 9, the language E(L) also. By Lemma 1, we have
B(X) = E(L) and thus B(X) is a visibly pushdown language.

Conversely, let L be a factorial extensible visibly pushdown language. Let
G = (V,S,P ) be a visibly pushdown grammar over A accepting L. We may
assume that variables that do not generate any word are discarded. We define
a Dyck automaton A = (G,M) with G = (V ∪(V ×({$}∪(A×V )),E) as follows.
We denote below by (X, ○) any state which is either X or (X,$), or (X, (a, Y )).

• If X → ℓY ∈ P with ℓ ∈ Ai, then ((X, ○), ℓ, Y ) ∈ E.

• If X → aY ∈ P with a ∈ Ac, then ((X, ○), a, (Y,$)) ∈ E.

• If X → aY bZ ∈ P , then ((X, ○), a, (Y, (b,Z))) ∈ E.

• If X → bY ∈ P with b ∈ Ar, then ((X, ○), b, Y ) ∈ E.

• If b ∈ Ar, Z Ð→ ε and Z ∈ V 0, then ((Z, ○), b, T ) ∈ E for any T ∈
V . Each of these edges is also matched with each edge of the form((X, ○)), a, (Y, (b, T ))).
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Note that all states (X, ○) have the same outgoing edges. A state (X, ○) is
nullable if X generates the empty word.

We claim that if w is a word generated by X in G, there is an admissible
path in A labeled by w from X to some nullable state T or (T,$).

The proof is by induction on the size of w. Let us first consider the case
w = ε. If w is generated by Z, then Z → ε is a rule of G. Thus the claim is true.

If w is nonempty, since w is generated by X, then either X → aY ∈ P ,
w = aw1 with w1 is generated by Y and a is not matched with symbols of w1, or
X → aY bZ ∈ P , w = aw1bw2 and w1,w2 are generated by Y and Z respectively,
with Y ∈ V 0.

In the first case, there is an edge (X,a, (Y,$)). By induction, there is an
admissible path in A from Y to some nullable state T or (T,$). Thus there is
an admissible path labeled by w1 from (Y,$) to some nullable state T or (T,$)
and thus there is an admissible path labeled by w from X to some nullable state
T or (T,$).

In the second case, there is an edge (X,a, (Y, (b,Z))). By induction, there
is an admissible path labeled by w1 from (Y, (b,Z)) to some nullable state T
or (T,$). There is also an admissible path labeled by w2 from (Z, ○) to some
nullable state U or (U,$) and an edge ((T, ○), b,Z). Thus we obtain the path

X
a
Ð→ (Y, (b,Z)) w1Ð→ T (or (T,$)) b

Ð→ Z
w2Ð→ U(or (U,$)).

Since T is nullable and in V 0, any edge ((T, ○), b,Z) is matched with (X,a,(Y, (b,Z))), this path is an admissible path labeled by w going from X to either
U or (U,$). Thus L is included in the set of labels of admissible paths of A.

Conversely, let w be the label of an admissible path π in A starting at a state(X, ○). Then w is a prefix of a word generated by X in G. If w is moreover a
Dyck word and X is nullable, then w is generated by X.

The proof is again by induction on the size of w. Note that it holds for the
empty word. We first decompose π into one of the following paths:

1. (X, ○) a
Ð→ Y

w1Ð→ (U, ○), with a ∈ Ai,

2. (X, ○) a
Ð→ (Y,$) w1Ð→ (U, ○), a ∈ Ac not matched with letters of w1

3. (X, ○) a
Ð→ Y

w1Ð→ (U, ○), with a ∈ Ar,

4. (X, ○) a
Ð→ (Y, (b,Z)) w1Ð→ (U, ○), a not matched with letters of w1,

5. (X, ○) a
Ð→ (Y, (b,Z)) w1Ð→ (T, ○) b

Ð→ Z
w2Ð→ (U, ○), with a ∈ Ac, b ∈ Ar, and w1

is a Dyck word.

In Cases (1) to (3), by induction, w1 is a prefix of a word generated by Y and
there is a rule X → aY in G. Thus aw1 is a prefix of a word generated by X.
If w is a Dyck word and U is nullable, then w = aw1, where w1 is a Dyck word
a ∈ Ai. By induction hypothesis, the word w1 is generated by Y and thus w is
generated by X.

In Case (4), by induction, w1 is a prefix of a word generated by Y and there
is a rule X → aY bZ in G. Thus aw1 is a prefix of a word generated by X. The
word w is never a Dyck word.
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In Case (5), there is a rule X → aY bZ in G and the edges ((X, ○), a,(Y, (b,Z)) and ((T, ○), b,Z) are matched Thus T is nullable and in V 0. By
induction w2 is a prefix of a word generated by Z. Since w1 is a Dyck word, by
induction again, w1 is generated by Y . It follows that w is a prefix of a word
generated by X. If w is a Dyck word, then w2 is a Dyck word and thus w2 is
generated by Z. As a consequence, w is generated by X.

Thus labels of admissible paths of A are prefixes of words of L. Since L
is factorial, they belong to L. As a consequence L is the set of labels of finite
admissible paths of A. By definition, B−1(L) is the set of infinite sequences
whose finite factors belong to L and thus A presents B−1(L).

This gives the following characterization of sofic-Dyck shifts.

Theorem 2. Sofic-Dyck shifts over A are shifts XF where F is a visibly push-
down language over A.

Proof. If X is a sofic-Dyck shift over A, then Theorem 1 says that B(X) is a
visibly pushdown language over A. Let F = A∗ ∖B(X). Since visibly pushdown
languages are closed y complementation, F is visibly pushdown and X =XF .

Conversely, if X = XF where F is a visibly pushdown language. Let L =
A∗ ∖F which is a factorial visibly pushdown language. The set B(X) is the set
of extensible words of L and is thus visibly pushdown. Thus X is sofic-Dyck.

Proposition 10. It is decidable whether a sofic-Dyck shift is empty.

Proof. Let X be a sofic-Dyck shift. By Theorem 1, the set of blocks of X is
generated by a context-free grammar which is furthermore computable from
some Dyck automaton accepting the sofic-Dyck shift. Since the emptiness is
decidable for a language generated by a context-free grammar, the emptiness
of X is decidable. Indeed, X is nonempty if and only if its set of blocks is
nonempty.

6. Zeta function of sofic-Dyck shifts

Zeta functions count the periodic orbits of subshifts and constitute stronger
invariants by conjugacies than the entropy (see [33]).

In this section, we give an expression of the zeta function of a sofic-Dyck
shift which extends the formula obtained by Krieger and Matsumoto in [31] for
Markov-Dyck shifts. The proof of Krieger and Matsumoto is based on Markov-
Dyck codes which encode periodic sequences. We use a similar encoding to
compute the zeta function of sofic-Dyck shifts.

As counting periodic points for sofic shifts is trickier than for shifts of fi-
nite type, counting periodic points of sofic-Dyck shifts is also trickier than for
Markov-Dyck of finite-type-Dyck shifts.

19



6.1. Definition and general formula

The zeta function ζX(z) of the shift X is defined as the zeta function of its
set of periodic patterns, i.e.

ζX(z) = exp∑
n≥1

pn
zn

n
,

where pn the number of sequences of X of period n, i.e. of sequences x such
that σn(x) = x. Note that n may not be the smallest period of x.

Call periodic pattern of X a word u such that the bi-infinite concatenation
of u belongs to X and denote P (X) the set of periodic patterns of X. These
definitions are extended to σ-invariant sets of bi-infinite sequences which may
not be shifts (i.e. which may not be closed subsets of sequences).

Let A be a Dyck automaton over a tri-partitioned alphabet A.
We say that a Dyck word w over A is prime if it is nonempty and any Dyck

word prefix of w is w or the empty word. We denote by Prime(A) the set of
prime Dyck words over A and by Prime(X) the set of prime Dyck words which
are blocks of a shift X.

We define the following matrices where Q is the set of states of A.

• C = (Cpq)p,q∈Q where Cpq is the set of prime Dyck words labeling an
admissible path from p to q in A.

• Mc = (Mc,pq), (resp. Mr) where Mc,pq is the sum of call (resp. return)
letters labeling an edge from p to q in A.

Let H be one of the matrices C, CMc
∗, Mc, Mr

∗C or Mr. We call H-path a
path (pi, ci, pi+1)i∈I in A, where I is Z or an interval and ci ∈Hpipi+1

. Note that
an H-path is admissible. We denote by XH be the σ-invariant set containing all
of sequences labeling a bi-infinite H-path of A.

Proposition 11. Let X be a the sofic-Dyck shift accepted by a Dyck automa-
ton A. We have P (X) = P (XMc

) ⊔ P (XMr
) ⊔ ((P (XCMc

∗) ∪ p(XMr
∗C))), and

P (XC) = P (XCMc
∗) ∩ P (XMr

∗C), where ⊔ denotes a disjoint union.

For a finite word u, we denote the balance of u by bal(u). It is the difference
between the number of letters of u in Ac and the number of letters of u in Ar.
A word u is positive if bal(u) > 0 and bal(v) ≥ 0 for any prefix v of u. We say
that u and v are conjugate if they are words w, t such that u = wt and v = tw.

Proof. Let us assume that a sequence x of X is equal to u∞ = ⋯uu ⋅ uu⋯ . Let
u = u0u1⋯un−1 where ui are letters. We consider the following three cases.

• If bal(u) = 0, then u is conjugate to a word in Prime(X)∗ and thus x is a
periodic point of XC .

• If bal(u) > 0, then u is conjugate to a word v such that bal(v0 . . vi) ≥ 0 for
any 0 ≤ i ≤ n−1. If v ∈ A+c , then x is a periodic point of XMc

. If v ∉ A+c , there
are two indices 0 ≤m1 <m2 ≤ n−1 such that bal(v0 . . vm1

) = bal(v0 . . vm2
).
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Let (m1,m2) two such indices with moreover bal(v0 . . vm1
) = bal(v0 . . vm2

)
minimal. Let w = vm1

⋯vn−1v0⋯vm1−1. The word w is again a conjugate
of v and u.

Let j1 be the largest integer less than or equal to n− 1 such that w0⋯wj1

has a suffix in Prime(X) and i1 be the smallest integer such that wi1⋯wj1 ∈
Prime(X)∗. Then wi1⋯wn−1 ∈ Prime(X)+A∗c and w0⋯wi1−1 is a positive
word. We define indices i2, j2 similarly for the word w0⋯wi1−1 and thus
iteratively decompose w into a product of words in Prime(X)A∗c . It follows
that x belongs to XCM∗

c
.

• If bal(u) < 0, we denote by ũ the word un−1⋯u0. By exchanging the roles
played by call and return symbols, we have bal(ũ) > 0 and thus either ũ is
conjugate to a word in A+r or ũ is conjugate to a word in (P̃A∗r)+, where
P̃ = {c̃ ∣ c ∈ Prime(X)}. We thus get that u is conjugate to a word in(A∗r Prime(X))+ and x belongs to XM∗

rC
.

As a consequence, we obtain the following expression of the zeta function of
a sofic-Dyck shift.

Proposition 12. Let X be a sofic-Dyck shift presented by a Dyck automaton
A and C, Mr, Mc defined as above from A. The zeta function of X is

ζX(z) = ζXCMc
∗ (z)ζXMr

∗C
(z)ζXMc

(z)ζXMr
(z)

ζXC
(z) (1)

Proof. The formula is a direct consequence of Proposition 11 and of the defini-
tion of the zeta function.

We recall below the notion of circular codes (see for instance [11]). We say
that a subset S of nonempty words over A∗ is a circular code if for all n,m ≥ 1
and x1, x2, . . . , xn ∈ S, y1, y2, . . . , ym ∈ S and p ∈ A∗ and s ∈ A+, the equalities

sx2x3⋯xnp = y1y2⋯ym, (2)

x1 = ps (3)

implies

n =m p = ε and xi = yi (1 ≤ i ≤ n).
Proposition 13. Let A be a tri-partitioned alphabet. The sets Prime(A) and
Prime(A)Ac

∗ are circular codes.

Proof. We prove that Prime(A)Ac
∗ is circular. This implies that its subset

Prime(A) is circular.
Let us suppose that Equations 2 and 3 imply n =m and xi = yi for n+m < N .

Assume that Equations 2 and 3 hold for some n,m with n +m = N .
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Let us assume that s ≠ x1. Since s is a prefix of some y1y2⋯yj and a suffix
of x1, we have s ∈ Prime(A) or s ∈ Ac

+. As ps ∈ Prime(A)Ac
∗, we get that

p ∈ Prime(A) and s ∈ Ac
+. It implies that the balance of each nonempty prefix

of sx2x3⋯xnp is positive, in contradiction with y1 prefix of sx2x3⋯xnp. Hence
s = x1 and p = ε. If y1 ≠ x1, one of these two words is a prefix of the other. Let us
assume that x1 = y1z with z ∈ A∗c . Then zx2x3⋯xn is positive, a contradiction
with that fact that it has y2 as prefix. Thus x1 = y1. By iteration of this process,
we get n =m and xi = yi.

The notion of circular matrix below extends the classical notion of circular
codes. We say that the matrix (Hpq)p,q∈Q, where each Hpq is a set of nonempty
words over A is circular if for all n,m ≥ 1 and x1 ∈ Hp0,p1

, x2 ∈ Hp1,p2
, . . . , xn ∈

Hpn−1p0
, y1 ∈ Hq0,q1 , y2 ∈ Hq1,q2 , . . . , ym ∈ Hqm−1q0 and p ∈ A∗ and s ∈ A+, the

equalities

sx2x3⋯xnp = y1y2⋯ym, (4)

x1 = ps (5)

implies

n =m p = ε and xi = yi (1 ≤ i ≤ n).
Proposition 14. Let A be a Dyck automaton. The matrices C, Mc and CMc

∗

defined from A are circular matrices.

Proof. It is a direct consequence of the fact that Prime(A), A and Prime(A)A∗c
are circular codes.

We say that A is left reduced (resp. right reduced) it is the left (resp. right)
reduction of some Dyck automaton.

We say that A is H-deterministic if and only if for any two (admissible)
H-paths sharing the same start and label are equal.

Proposition 15. If A is left reduced, it is H-deterministic when H is Mc, C
or CMc

∗.

Proof. The Dyck automaton A is Mc-deterministic by construction. It is C-
deterministic by Proposition 2.

One proves similarly that

Proposition 16. If A is right reduced, it is H-codeterministic for H is Mr, C
or Mr

∗C.

In order to count periodic sequences of sofic-Dyck shifts, we need some ma-
chinery similar to the one used to count the periodic sequences of sofic shifts
(see for instance [33]).

Let A be a Dyck automaton over A where A = (G,M) with G = (Q,E). Let
ℓ be a positive integer. We fix an ordering on the states Q. We define the Dyck
automaton A⊗ℓ = (G⊗ℓ,M⊗ℓ) over a new alphabet A′ where G⊗ℓ = (Q⊗ℓ,E⊗ℓ) as
follows.
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• We set A′ = (A′c,A′r,A′i) with A′c = Ac ∪ {−a ∣ a ∈ Ac}, A′r = Ar ∪ {−a ∣ a ∈
Ar}, and A′i = Ai ∪ {−a ∣ a ∈ Ai}.

• We denote by Q⊗ℓ the set of ordered ℓ-uples of distinct states of Q.

• Let P = (p1, . . . , pℓ), R = (r1, . . . , rℓ), be two elements of Q⊗ℓ. Thus
p1 < ⋯ < pℓ and r1 < ⋯ < rℓ. There is an edge labeled by a from P to R in
A⊗ℓ if and only if there are edges labeled by a from pi to p

′
i for 1 ≤ i ≤ ℓ

and R is an even permutation of (p′
1
, . . . , p′ℓ). If the permutation is odd we

assign the label −a. Otherwise, there is no edge with label a or −a from
P to R.

• We define M⊗ℓ as the set of pairs of edges ((p1, . . . , pℓ), a, (p′1, . . . , p′ℓ)),
and ((r1, . . . , rℓ), ±b, (r′1, . . . , r′ℓ)) of A⊗ℓ such that each edge (pi, a, p′i) is
matched with (ri, b, r′i) for 1 ≤ i ≤ ℓ.

We say that a path of A⊗ℓ is admissible if it is admissible when the signs of
the labels are omitted, the sign of the label of a path being the product of the
signs of the labels of the edges of the path.

We denote by C⊗ℓ,PP ′ the set of signed prime Dyck words c labeling an ad-
missible path inA⊗ℓ from P to P ′. We denote by C⊗ℓ the matrix (C⊗ℓ,PP ′)P,P ′∈Q⊗ℓ
whose coefficients are sums of signed words of A+. More generally, if H denotes
one of the matrices C,CMc

∗,Mc,Mr
∗C,Mr defined from A, we denote by H⊗ℓ

the matrix defined from A⊗ℓ similarly.

6.2. Computation of the zeta function of XH

Denote Z⟪A⟫ the set of noncommutative formal power series over the alpha-
bet A with coefficients in Z. Let Z[[A]] be the usual commutative algebra of
formal power series in the variables a in A and π∶Z⟪A⟫→ Z[[A]] be the natural
homomorphism. Let S be a commutative or noncommutative series. One can
write S = ∑n≥0[S]n where each [S]n is the homogeneous part of S of degree n.
We denote by θ∶Z[[A]] → Z[[z]] the homomorphism such that θ(a) = z for any
letter a ∈ A. The homomorphism θ and π extends to matrices with coefficients
in Z⟪A⟫ and Z[[A]] respectively.
Proposition 17. Let A be a left reduced Dyck automaton and H be one of the
matrices C,CMc

∗,Mc defined from A. We have

πPn(XH) =
∣Q∣
∑
ℓ=1
(−1)ℓ+1 trace ∑

1≤j≤n
j[πH⊗ℓ]j[(1 − πH⊗ℓ)−1]n−j .

where Pn(XH) is the set of periodic pattern of XH of length n.

Proof. With a slight abuse of notations, we will say that a word u belongs to H
if u is belongs to some Hpq.

Let x be a periodic sequence of XH of period n ≥ 1. We have σn(x) = x
if and only if x is a two-sided infinite concatenation of a word w = vx2⋯xku
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of length n with xi ∈ H, x1 = uv ∈ H, and v ≠ ε. Let j = ∣x1∣. The sequences
x,σ(x), . . . , σj−1(x) are all distinct by circularity of the matrix H. Since π(w) =
uvx2 . . xk = x1 . . xk, we get that

πPn(XH) = ∑
1≤j≤n

∑
k≥1

jEn,j,k = ∑
1≤j≤n

jEn,j ,

where En,j,k is the H-path labels of length n which are concatenation of k words
x1 . . xk of H with ∣x1∣ = j, and En,j is the union of the En,j,k. The sets En,j,k

and En,j′,k′ are disjoint for k ≠ k′ or for j ≠ j′.
Let us denote by Dn,j,k and Dn,j the matrices

Dn,j,k = [H]j[Hk−1]n−j ,
Dn,j = ∑

k≥1
Dn,j,k.

Then En,j,k (resp. En,j) is the set of labels of Dn,j,k-paths (resp. Dn,k-paths).
Let j be a fixed integer between 1 and n. Let us show that

∑
w∈En,j

w =
∣Q∣
∑
ℓ=1
(−1)ℓ+1 trace((Dn,j)⊗ℓ).

Note that w appears in trace((Dn,j)⊗ℓ) for some integer ℓ with 1 ≤ ℓ ≤ ∣Q∣
only if w ∈ En,j .

Thus we can write

∣Q∣
∑
ℓ=1
(−1)ℓ+1 trace((Dn,j)⊗ℓ) = ∑

w∈En,j

c(w)w, (6)

where c(w) ∈ Z.
We will show that c(w) = 1 for every word w such that w ∈ En,j .
Let w be such a word. Since A is H-deterministic, the coefficient of each

word in Hk
pq for k ≥ 1 and fixed states p, q, is at most one since there is at

most one H-path in A going from p to q and labeling a given word. Hence the
coefficient of w in each (Dn,j)pq is at most one for fixed states p, q.

If w ∈ En,j there must be at least one nonempty subset R of Q (of cardinal
m) on which w acts as a permutation µw of R induced by Dn,j , i.e. such that
the coefficient of w in (Dn,j)pµw(p) is one for each p ∈ R. If two subsets have
this property, then does the union. Hence there is a largest subset P ⊆ Q on
which w acts as a permutation. At this point we need a combinatorial lemma
used in [33, Lemma 6.4.9]. We recall its proof for the sake of completeness.

In the following lemma, the notation µ∣R means the restriction of a permu-
tation µ to a set of states R and ε(µ) is the signature of the permutation µ.

Lemma 3. [33, Lemma 6.4.9] Let µ be a permutation of a finite set P and let
P = {R ⊆ P ∣ R ≠ ∅, µ(R) = R}. Then

∑
R∈P
(−1)∣R∣+1ε(µ∣R) = 1.
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Proof of Lemma 3. Recall that P decomposes under µ into disjoint cycles, say
P1,⋯ , Pd. Thus each µ∣Pi

is a cyclic permutation and so

ε(µ∣Pi
) = (−1)1+∣Pi∣.

The nonempty sets R ⊆ P for which µ(R) = R are exactly the nonempty unions
of sub-collections of {P1,⋯ , Pd}. Thus

∑
R∈P
(−1)∣R∣+1ε(µ∣R) = ∑

∅≠K⊆{1,...,d}
(−1)1+∣∪k∈KPk ∣ε(µ∣∪k∈KPk

),
= ∑
∅≠K⊆{1,...,d}

(−1)1+∑k∈K ∣Pk ∣ ∏
k∈K
(−1)1+∣Pk ∣,

= ∑
∅≠K⊆{1,...,d}

(−1)∣K∣+1+2∑k∈K ∣Pk ∣,

=
d

∑
i=1
(−1)i+1(d

i
) = 1 − (1 − 1)d = 1.

Returning to the computation of the coefficient c(w) in Equation 6, let P
be the largest subset of Q on which w acts as a permutation. The coefficient
c(w) is by definition of (Dn,j)⊗ℓ,

c(w) = ∑
R∈P
(−1)∣R∣+1ε(µw ∣R) = 1.

Hence
∣Q∣
∑
ℓ=1
(−1)ℓ+1 trace((Dn,j)⊗ℓ) = ∑

w∈En,j

w, . (7)

We get

πPn(XH) = n

∑
j=1

jEn,j ,

=
∣Q∣
∑
ℓ=1
(−1)ℓ+1 n

∑
j=1

j trace(π(Dn,j)⊗ℓ),

=
∣Q∣
∑
ℓ=1
(−1)ℓ+1 trace n

∑
j=1

j∑
k≥0

π([H]j[Hk]n−j)⊗ℓ,

=
∣Q∣
∑
ℓ=1
(−1)ℓ+1 trace n

∑
j=1

j∑
k≥0
([πH⊗ℓ]j[πHk

⊗ℓ]n−j),

=
∣Q∣
∑
ℓ=1
(−1)ℓ+1 trace n

∑
j=1

j[πH⊗ℓ]j[(1 − πH⊗ℓ)−1]n−j .
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Proposition 18. Let A be a left reduced Dyck automaton. The zeta function
of XH , where H is one of the matrices C,CMc

∗,Mc defined from A, is

ζXH
(z) = ∣Q∣∏

ℓ=1
det(I −H⊗ℓ(z))(−1)ℓ ,

where H⊗ℓ(z) = θπH⊗ℓ.
The same formula holds for XH when H is equal to C, Mr

∗C or Mr when
A be a right reduced.

Proof. We get from Proposition 17

∑
n≥1

θπPn(XH)
n

= ∑
n≥1

1

n

∣Q∣
∑
ℓ=1
(−1)ℓ+1 trace n

∑
j=1

j[θπH⊗ℓ]j[(I − θπH⊗ℓ)−1]n−j ,

=
∣Q∣
∑
ℓ=1
(−1)ℓ+1 ∑

n≥1

1

n
trace

n−1
∑
j=0
(j + 1)[θπH⊗ℓ]j+1[(I − θπH⊗ℓ)−1]n−j−1,

=
∣Q∣
∑
ℓ=1
(−1)ℓ+1 ∑

n≥1

1

n
trace

n−1
∑
j=0
[dθπH⊗ℓ]j[(I − θπH⊗ℓ)−1]n−j−1,

=
∣Q∣
∑
ℓ=1
(−1)ℓ+1 ∑

n≥1

1

n
trace[(dθπH⊗ℓ)(I − θπH⊗ℓ)−1]n−1,

=
∣Q∣
∑
ℓ=1
(−1)ℓ+1 ∑

n≥1

1

n
trace[(d log(I − θπH⊗ℓ)]n−1,

=
∣Q∣
∑
ℓ=1
(−1)ℓ+1 ∑

n≥1
trace[− log(I − θπH⊗ℓ)]n,

=
∣Q∣
∑
ℓ=1
(−1)ℓ+1 trace(− log(I − θπH⊗ℓ)),

where d denotes the derivative with respect to the variable z.
Thus, using Jacobi’s formula, we obtain

ζ(XH)(z) = exp trace(
∣Q∣
∑
ℓ=1
(−1)ℓ+1(− log(I − θπH⊗ℓ))),

= det exp( ∣Q∣∑
ℓ=1
(−1)ℓ log(I − θπH⊗ℓ))),

=
∣Q∣
∏
ℓ=1

det(I − θπH⊗ℓ)(−1)ℓ .
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6.3. Computation of the zeta function of X

The previous computations allow us to obtain directly the following general
formula for the zeta function of a sofic-Dyck shift X.

Theorem 3. The zeta function of a sofic-Dyck shift accepted by a left reduced
Dyck (resp. right reduced) Dyck automaton A (resp. B) is given by the following
formula, where C, Mc and CMc

∗ are defined from A and Mr and Mr
∗C are

defined from B.

ζX(z) = ζXCMc
∗ (z)ζXMr

∗C
(z)ζXMc

(z)ζXMr
(z)

ζXC
(z)

=
∣Q∣
∏
ℓ=1

det(I − (CMc
∗)⊗ℓ(z))(−1)ℓ det(I − (Mr

∗C)⊗ℓ(z))(−1)ℓ

det(I −C⊗ℓ(z))(−1)ℓ+1 det(I −Mr,⊗ℓ(z))(−1)ℓ det(I −Mc,⊗ℓ(z))(−1)ℓ .
Corollary 3. The zeta function of a sofic-Dyck shift is Z-algebraic.

Example 4. Let A be the Dyck automaton over A pictured on the left part of
Figure 4, where A = ({a, a′},{b, b′},{i}). The Dyck automaton A⊗1 is the same
as A. The Dyck automaton A⊗2 is pictured on the right part of Figure 4. Let

1
−i

1 2

i

i
b

a

a′ b′

Figure 4: A Dyck automaton A (on the left) over A = Ac⊔Ar⊔Ai with Ac = {a, a′}, Ar = {b, b′}
and Ai = {i} and the Dyck automaton A⊗2 (on the right). Matched edges are linked with a
dotted line.

us compute the zeta function of XC for this automaton. Let

C = [C11 C12

C21 C22

] , C⊗2 = [C(1,2),(1,2)] .
We have C11 = aD11b+a

′D11b
′, C22 = 0, C12 = i, C21 = i, with D11 = aD11bD11+

a′D11b
′D11 + iiD11 + ε. Hence

2z2D2

11
(z) − (1 − z2)D11(z) + 1 = 0

Since the coefficient of z0 in D11(z) is 1, we get

D11(z) = 1 − z2 −
√
1 − 10z2 + z4

4z2
.

Hence

C11(z) = 2z2D11(z) = 1 − z2 −
√
1 − 10z2 + z4

2
.
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We have C22(z) = 0, C12(z) = C21(z) = z. We also have C(1,2),(1,2) = −i and
thus C(1,2),(1,2)(z) = −z. Thus

ζXC
(z) = 2

∏
ℓ=1

det(I −C⊗ℓ(z))(−1)ℓ

= (1 + z) ∣1 − 1−z2−
√
1−10z2+z4

2
−z

−z 1
∣
−1

,

=
1 + z

1 − z2 − 1−z2−
√
1−10z2+z4

2

.

For H =Mc,Mr, we have

2

∏
ℓ=1

det(I −H⊗ℓ(z))(−1)ℓ = 1

1 − 2z
.

We also have

CMc
∗ = [C11 i

i 0
] [{a, a′}∗ 0

0 ε
] = [C11{a, a′}∗ i

i{a, a′}∗ 0
] ,

Mr
∗C = [{b, b′}∗ 0

0 ε
] [C11 i

i 0
] = [{b, b′}∗C11 {b, b′}∗i

i 0
] .

2

∏
ℓ=1

det(I − (CMc
∗)⊗ℓ(z))(−1)ℓ = (1 + z) ∣1 − C11(z)

(1−2z) −z

−
z

1−2z 1
∣
−1

=
(1 + z)(1 − 2z)

1 − 2z − z2 −C11(z) .
The same equality holds for Mr

∗C. We finally get

ζX(z) = (1 + z)(1 − z2 −C11(z))(1 − 2z − z2 −C11(z))2 ,

=
(1 + z)(1 − z2 − 1−z2−

√
1−10z2+z4

2
)

(1 − 2z − z2 − 1−z2−
√
1−10z2+z4

2
)2 .

The above formula shows that the zeta function of a sofic-Dyck shift is a
Z-algebraic series. It is proved in [8] that the zeta function of a finite-type-Dyck
shifts is the generating series of an unambiguous context-free language, i.e. is
an N-algebraic function. We conjecture that the result also holds for sofic-Dyck
shifts.

There is no known criterion for a Z-algebraic series with coefficients in N to be
N-algebraic but there are some necessary conditions on the asymptotic behavior
of the coefficients (see the Drmota-Lalley-Woods Theorem in [17, VII.6.1] and
recent insights from Banderier and Drmota in [3, 4]).
Acknowledgements The authors would like to thank Arnaud Carayol for
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