Marie-Pierre Béal 
email: beal@univ-mlv.fr
  
Michel Blockelet 
email: michel.blockelet@u-pec.fr
  
Catalin Dima 
email: catalin.dima@u-pec.fr
  
Cǎtǎlin Dima 
  
Sofic

Keywords: Dyck shift, Markov-Dyck shift, sofic-Dyck shift, sofic shift, symbolic dynamics, visibly pushdown automaton, visibly pushdown language, zeta function

come   L'archive ouverte pluridisciplinaire

Introduction

Shifts of sequences are defined as sets of bi-infinite sequences of symbols over a finite alphabet avoiding a given set of finite factors called forbidden factors. Well-known classes of shifts of sequences are the shifts of finite type which avoid a finite set of forbidden factors and the sofic shifts which avoid a regular set of forbidden factors. Sofic shifts may also be defined as labels of bi-infinite paths of a labeled directed graph.

Dyck shifts are shifts of sequences whose finite factors are factors of wellparenthesized words. They were introduced by Krieger in [START_REF] Krieger | On the uniqueness of the equilibrium state[END_REF]. In [START_REF] Inoue | The zeta function, periodic points and entropies of the Motzkin shift[END_REF], [START_REF] Krieger | Zeta functions and topological entropy of the Markov-Dyck shifts[END_REF], [START_REF] Inoue | Subshifts from sofic shifts and Dyck shifts, zeta functions and topological entropy[END_REF], Inoue, Krieger, and Matsumoto investigated generalizations of Dyck shifts called Markov-Dyck shifts. Their languages of factors are unambiguous context-free languages. Such shifts are presented by a finite-state directed graph equipped with a graph inverse semigroup. The graph can be considered as an automaton which operates on words over an alphabet which is partitioned into two disjoint sets, one for the left parentheses, the other one for the right parentheses. In [START_REF] Inoue | Subshifts from sofic shifts and Dyck shifts, zeta functions and topological entropy[END_REF], Inoue and Krieger introduced an extension of Markov-Dyck shifts by constructing shifts from sofic systems and Dyck shifts. Examples of shifts of this type are the Motzkin shifts. Dyck shifts and their extensions are in general not synchronized but Krieger and Matsumoto introduced weaker notions of synchronization suitable for Markov-Dyck or Motzkin shifts (see [START_REF] Krieger | On g-functions for subshifts[END_REF], [START_REF] Matsumoto | A certain synchronizing property of subshifts and flow equivalence[END_REF], [START_REF] Krieger | A notion of synchronization of symbolic dynamics and a class of C * -algebras[END_REF]). Flow invariants for these shifts are obtained in [START_REF] Matsumoto | A certain synchronizing property of subshifts and flow equivalence[END_REF] and [START_REF] Costa | A categorical invariant of flow equivalence of shifts[END_REF]. In [START_REF] Krieger | On subshift presentations[END_REF] (see also [START_REF] Hamachi | On certain subshifts and their associated monoids[END_REF] and [START_REF] Hamachi | A construction of subshifts and a class of semigroups[END_REF]), Krieger considers subshift presentations, called R-graphs, with word-labeled edges partitioned into two disjoint sets of positive and negative edges equipped with a relation R between positive and negative edges going backwards.

In this paper, we introduce a larger class of shifts. We consider shifts of sequences presented by a finite-state automaton (a labeled graph) equipped with a set of pairs of edges called matched edges. The matched edges may not be consecutive edges of the graph. We call such structures Dyck automata. They may be equipped with a graph semigroup which is no more an inverse semigroup. The automaton operates on words over an alphabet which is partitioned into three disjoint sets of symbols, the call symbols, the return symbols, and the internal symbols (for which no matching constraints are required).

We call the shifts presented by Dyck automata sofic-Dyck shifts. We prove that this class is exactly the class of shifts of sequences whose set of factors is a visibly pushdown language of finite words. Equivalently, they can be defined as the sets of sequences which avoid some visibly pushdown language of factors. So these shifts could also be called visibly pushdown shifts.

Visibly pushdown languages were introduced by Mehlhorn [START_REF] Mehlhorn | Pebbling moutain ranges and its application of dcfl-recognition[END_REF] and Alur et al. [START_REF] Alur | Visibly pushdown languages[END_REF][START_REF] Alur | Adding nesting structure to words[END_REF]. They form a natural and meaningful class inside the class of unambiguous context-free languages extending the parenthesis languages [START_REF] Mcnaughton | Parenthesis grammars[END_REF], [START_REF] Knuth | A characterization of parenthesis languages[END_REF], the bracketed languages [START_REF] Ginsburg | Bracketed context-free languages[END_REF], and the balanced languages [START_REF] Berstel | Balanced grammars and their languages[END_REF], [START_REF] Berstel | Formal properties of XML grammars and languages[END_REF]. These languages share many interesting properties with regular languages like stability by intersection and complementation. Visibly pushdown languages are used as models for structured data files like XML files.

We define also a subclass of sofic-Dyck shifts called finite-type-Dyck shifts. We prove that sofic-Dyck shifts are images of finite-type-Dyck shifts under proper block maps, i.e. block maps mapping call (resp. return, internal) symbols to call (resp. return, internal) symbols. The classes of sofic-Dyck shifts and finite-type-Dyck shifts are invariant by proper conjugacies.

In a second part of the paper, we address the problem of the computation of the zeta function of sofic-Dyck shift presented by a Dyck automaton. The zeta function allows to count the number of periodic points of a subshift. It is a conjugacy invariant of a class of shifts. Two subshifts which are conjugate (or isomorphic) have the same zeta functions. The invariant is not complete and it is not known, even for shifts of finite type, whether the conjugacy is a decidable property [START_REF] Lind | An Introduction to Symbolic Dynamics and Coding[END_REF].

The formula of the zeta function of a shift of finite type is due to Bowen and Lanford [START_REF] Bowen | Zeta functions of restrictions of the shift transformation[END_REF]. Formulas for the zeta function of a sofic shift were obtained by Manning [START_REF] Manning | Axiom A diffeomorphisms have rational zeta functions[END_REF] and Bowen [START_REF] Bowen | Symbolic dynamics[END_REF]. Proofs of Bowen's formula can be found in [START_REF] Lind | An Introduction to Symbolic Dynamics and Coding[END_REF] and [START_REF] Béal | Puissance extérieure d'un automate déterministe, application au calcul de la fonction zêta d'un système sofique[END_REF][START_REF] Béal | Codage symbolique[END_REF]. An N-rational expression of the zeta function of a sofic shift has been obtained by Reutenauer in [START_REF] Reutenauer | N-rationality of zeta functions[END_REF] (see also [START_REF] Berstel | Zeta functions of formal languages[END_REF]). Formulas for zeta functions of flip systems of finite type are given in [START_REF] Kim | A zeta function for flip systems[END_REF], and for sofic flip systems in [START_REF] Kim | On the number of fixed points of a sofic shift-flip system[END_REF]. The zeta functions of the Dyck shifts were determined by Keller in [START_REF] Keller | Circular codes, loop counting, and zeta-functions[END_REF]. For the Motzkin shift where some unconstrained symbols are added to the alphabet of a Dyck shift, the zeta function was determined by Inoue in [START_REF] Inoue | The zeta function, periodic points and entropies of the Motzkin shift[END_REF]. In [START_REF] Krieger | Zeta functions and topological entropy of the Markov-Dyck shifts[END_REF], Krieger and Matsumoto obtained an expression for the zeta function of a Markov-Dyck shift by applying a formula of Keller and with a clever encoding of periodic points of the shift.

In Section 6, we give an expression of the zeta function of a sofic-Dyck shift. The proof combines techniques used for computing the zeta function of a (non Dyck) sofic shift and of a Markov-Dyck shift. We implicitly use the fact that the intersection of two visibly pushdown languages is a visibly pushdown language. We give an example of the computation of the zeta function of a sofic-Dyck shift.

A short version of this paper appeared in [START_REF] Béal | Sofic-Dyck shifts[END_REF].

Shifts

We introduce below some basic notions of symbolic dynamics. We refer to [START_REF] Lind | An Introduction to Symbolic Dynamics and Coding[END_REF][START_REF] Kitchens | Symbolic Dynamics. Universitext[END_REF] for an introduction to this theory. Let A be a finite alphabet. The set of finite sequences or words over A is denoted by A * and the set of nonempty finite sequences or words over A is denoted by A + . The shift transformation σ on A Z is defined by σ((x i ) i∈Z ) = (x i+1 ) i∈Z , for (x i ) i∈Z ∈ A Z . A factor of a bi-infinite sequence x is a finite word x i ⋯x j for some i, j, the factor being the empty word if j < i.

A subshift (or shift) of A Z is a closed shift-invariant subset of A Z equipped with the product of the discrete topology. If X is a shift, a finite word is allowed for X (or is a block of X) if it appears as a factor of some bi-infinite sequence of X. We denote by B(X) the set of blocks of X and by B n (X) the set blocks of length n of X. Let F be a set of finite words over the alphabet A. We denote by X F the set of bi-infinite sequences of A Z avoiding all words of F , i.e. where no factor belongs to F . The set X F is a shift and any shift is the set of bi-infinite sequences avoiding all words of some set of finite words. When F can be chosen finite (resp. regular), the shift X F is called a shift of finite type (resp. sofic).

Let L be a language of finite words over a finite alphabet A. The language is extensible if for any u ∈ L, there are letters w, z ∈ A + such that wuz ∈ L. It is factorial if any factor of a word of the language belongs to the language.

If X is a subshift, B(X) is a factorial extensible language. Conversely, if L is a factorial extensible language, then the set B -1 (L) of bi-infinite sequences x such that any finite factor of x belongs to L is a subshift [START_REF] Lind | An Introduction to Symbolic Dynamics and Coding[END_REF].

Let X ⊆ A Z be a shift and m, n be nonnegative integers. A map Φ ∶ X → B Z is called an (m, n)-block map with memory m and anticipation n if there exists a function φ ∶ B m+n+1 (X) → B such that, for all x ∈ X and any i ∈ Z, Φ(x) i = φ(x i-m ⋯x i-1 x i x i+1 ⋯x i+n ). A block map is a map which is an (m, n)-block map for some nonnegative integers m, n.

A conjugacy is a bijective block map from X to Y . A property of subshifts which is invariant by conjugacies is called a conjugacy invariant.

Sofic-Dyck shifts

In this section, we define the class of sofic-Dyck shifts which generalizes the class of Markov-Dyck shifts introduced in [START_REF] Krieger | On the uniqueness of the equilibrium state[END_REF] and [START_REF] Matsumoto | C * -algebras arising from Dyck systems of topological Markov chains[END_REF] (see also [START_REF] Krieger | Zeta functions and topological entropy of the Markov-Dyck shifts[END_REF]).

We consider an alphabet A which is a disjoint union of three finite sets of letters, the set A c of call letters, the set A r of return letters, and the set A i of internal letters. The set

A = A c ⊔ A r ⊔ A i is called a pushdown alphabet.
The two sets of call and return symbols may not have the same size. We assume that any call symbol may match any return symbol. We denote by MR(A) the set of all finite words over A where every return symbol is matched with a call symbol, i.e. u ∈ MR(A) if for every prefix u ′ of u, the number of call symbols of u ′ is greater than or equal to the number of return symbols of u ′ . These words are called matched-return. Similarly, MC(A) denotes the set of all words where every call symbol is matched with a return symbol, i.e. u ∈ MC(A) if for every suffix u ′ of u, the number of return symbols of u ′ is greater than or equal to the number of call symbols of u ′ . These words are called matched-call. We say that a word is a Dyck word if it belongs to the intersection of MC(A) and MR(A). Dyck words are well-parenthesized or well-formed words. Note that the empty word or all words over A i are Dyck words. The set of Dyck words over A is denoted by Dyck(A). For instance for A c = {(, [}, A r = {), ]}, A i = {i}, the word ( ( [ i ) is matched-return, the word ( ] i ] is matched-call and

( [ i ] ] ( ) is a Dyck word on A.
A (finite) Dyck automaton A over A is a pair (G, M ) of an automaton (or a directed labeled graph) G = (Q, E, A) over A where Q is the finite set of states, E ⊆ Q × A × Q is the set of edges, and with a set M of pairs of edges ((p, a, q), (r, b, s)) such that a ∈ A c and b ∈ A r . The edges labeled by call letters (resp. return, internal) letters are also called call (resp. return, internal ) edges and are denoted by E c (resp. E r , E i ). The set M is called the set of matched edges. If e is an edge we denote by s(e) its starting state and by t(e) its target state.

A finite path π of A is said to be an admissible path if for any factor (p, a, q)⋅ π 1 ⋅ (r, b, s) of π with a ∈ A c , b ∈ A r and the label of π 1 being a Dyck word on A, ((p, a, q), (r, b, s)) is a matched pair. Hence any path of length zero is admissible and factors of finite admissible paths are admissible. A bi-infinite path is admissible if all its finite factors are admissible.

The sofic-Dyck shift presented by A is the set of labels of bi-infinite admissible paths of A and A is called a presentation of the shift.

An equivalent semantics of Dyck automata is given in [START_REF] Béal | Sofic-Dyck shifts[END_REF] with a graph semigroup associated to A. This graph semigroup is no more an inverse semigroup as for presentations associated to Markov-Dyck shifts [START_REF] Krieger | On the uniqueness of the equilibrium state[END_REF].

Note that the label of a finite admissible path may not be a block of the presented shift since a finite admissible path may not be extensible to a biinfinite admissible path.

Lemma 1. The sofic-Dyck shift presented by a Dyck automaton is exactly the set of bi-infinite sequences x such that each finite factor of x is the label of a finite admissible path.

Proof. Let X be the sofic-Dyck shift presented by a Dyck automaton A. By definition, any finite factor of a bi-infinite sequence of X is the label of a finite admissible path.

The converse part is due to the following classical compacity argument. Let x be a bi-infinite sequence such that each finite factor of x is the label of a finite admissible path. Thus for any positive integer i, there is a path

p i,-i-1 x-i → p i,-i xi-1 → ⋯p i,-1 x0 → p i,0 x1 → p i,1 ⋯ xi → p i,i ,
which is admissible for A. For each nonnegative integer m, there is an infinite number of such paths sharing the states p k at all indices k for -m ≤ k ≤ m. Then π = ((p k-1 , x k , p k )) k∈Z is a bi-infinite path whose finite factors are admissible paths of A. Thus the label x of π belongs to X. Proposition 1. A sofic-Dyck shift is a subshift.

Proof. Let X be a sofic-Dyck shift defined by an automaton A. Let F be the set of finite words which are not the label of any finite admissible path of A. Then X = X F by Lemma 1 and thus X is a subshift.

We denote respectively by MR(X), MC(X) and Dyck(X), the intersections of MR(A), MC(A) and Dyck(A) with the set of blocks of X.

Example 1. Let

A = A c ⊔ A r ⊔ A i with A c = {a 1 , . . , a k }, A r = {b 1 , .
. , b k } and A i is the empty set. The Dyck shift of order k over the alphabet A is the set of all sequences accepted by the one-state Dyck automaton A = (G, M ) containing all loops (p, a, p) for a ∈ A, and where the edge (p, a i , p) is matched with the edge (p, b i , p) for 1 ≤ i ≤ k.

A Motzkin shift is the set of bi-infinite sequences presented by the automaton

A = A c ⊔ A r ⊔ A i with A c = {a 1 , . . , a k }, A r = {b 1 , .
. , b k }, the set A i being no more the empty set. A Motzkin shift is represented in the left part of Figure 1. It is shown in [START_REF] Inoue | The zeta function, periodic points and entropies of the Motzkin shift[END_REF] that the entropy of the Motzkin shift on this alphabet is log 4. Another example is the sofic-Dyck shift X is presented by the Dyck automaton in the right part of Figure 1. For instance, the bi-infinite sequences ⋯((

[ii][])⋯ and ⋯) ) ) ) )⋯ belong to X while the sequences ⋯( [ i ] [ ] )⋯ or ⋯( ]⋯ do not. We have ( i i ) ( ) ∈ Dyck(X) and ( ) ( [ i ∈ MR(X).
Note that a call symbol may match several return symbols and conversely although it is not the case in the above examples. 

1 i ) ( [ ] 1 2 i i ) ( [ ]

Finite-type-Dyck shifts

In this section we give a definition of a subclass of sofic-Dyck shifts called finite-type-Dyck shifts. We show that sofic-Dyck shifts are the images of finitetype-Dyck shifts by proper block maps.

Let A and B be two tri-partitioned alphabets. We say that a block-map

Φ ∶ A Z → B Z is proper if and only if Φ(x) i ∈ A c (resp. A r , A i ) whenever x i ∈ A c (resp. A r , A i ).
Let A be a tri-partitioned alphabet. If (u, v) and (u ′ , v ′ ) are two pairs of words over A, we note

(u, v) ⪯ (u ′ , v ′ ) if u is a suffix of u ′ and v is a prefix of v ′ . Let F ⊆ A * and U ⊆ (A * ×A c ×A * )×(A * ×A r ×A * ).
We say that a finite or biinfinite sequence x avoids F if, for each finite factor u of x, one has u ∉ F . We say that a finite or bi-infinite sequence x avoids U if for each finite factor u = vawbz of x with a ∈ A c , b ∈ A r , w ∈ Dyck(A), there is no pair

((u 1 , a, u 2 ), (v 1 , b, v 2 )) in U such that (u 1 , u 2 ) ⪯ (v, wbz) and (v 1 , v 2 ) ⪯ (vaw, z).
A finite-type-Dyck shift over A is a set of bi-infinite sequences X for which there are two finite sets

F ⊆ A * , U ⊆ (A * × A c × A * ) × (A * × A r × A * )
, such that X is the set of sequences avoiding F and U . Proposition 2. A finite-type-Dyck shift is a sofic-Dyck shift.

Proof. Let X be a finite-type-Dyck shift of bi-infinite sequences over A avoiding two finite sets F and U . Without loss of generality we may assume that there are positive integers m, n such that

F ⊆ A m+n+1 and U ⊆ (A m × A c × A n ) × (A m × A r × A n ).
We define the Dyck automaton A = (G, M ) over A as follows. Let us denote G = (Q, E). We set

• Q = {(u, v) u ∈ A m , v ∈ A n }, • E = {((bu, av), a, (ua, vc)) a, b, c ∈ A, u ∈ A m-1 , v ∈ A n-1 , buavc ∉ F },
• M is the set of pairs of edges ((du, av), a, (ua, vc)), ((

d ′ u ′ , bv ′ ), b, (u ′ b, v ′ c ′ )),
where

a ∈ A c , b ∈ A r , c, c ′ , d, d ′ ∈ A, u, u ′ ∈ A m-1 , v, v ′ ∈ A n-1 and such that ((du, a, vc), (d ′ u ′ , b, v ′ c ′ )) ∉ U .
The sofic-Dyck shift presented by A is X.

Proposition 3. Sofic-Dyck shifts are the images of finite-type-Dyck shifts by proper block maps.

Proof. We first show that any sofic-Dyck shift is the image of a finite-type-Dyck shift by a proper block map.

Let A = (G, M ) be a Dyck automaton accepting a sofic-Dyck shift

X over A with G = (Q, E). Let E = E c ⊔ E r ⊔ E i be the tri-partitioned alphabet of edges of A where E c (resp. E r , E i ) is the set of call (resp. return, internal) edges of A.
We define a Dyck automaton B over E as follows. The set of states of B is the set of states Q of A. There is an edge (p, e, q) ∈ B if and only if e is an edge of A starting at p and ending in q. A pair of edges ((p, e, q), (r, f, s)

) of B is matched if (e, f ) is a matched pair of A.
Let Y be the sofic-Dyck shift presented by B. It is the set of sequences avoiding

• F = {ef ∈ E 2 t(e) ≠ s(f )}, • U = {((p, e, q), (r, f, s)) ∈ E c × E r (e, f ) ∉ M },
Since F and U are finite, the shift Y is a finite-type-Dyck shift.

Let Φ ∶ E Z → A Z be the (0, 0)-block map defined by φ ∶ B 1 (Y ) → A as follows. We set φ(e) = a where a is the label of the edge e of A. The map Φ is clearly a proper block map sending each bi-infinite admissible path of A to its label. As a consequence X = Φ(Y ).

We now prove that the image of a finite-type-Dyck shift by a proper block map is a sofic-Dyck shift.

Let Φ ∶ A Z → B Z be a proper block map and X be a finite-type-Dyck shift of sequences over A. Without loss of generality we may assume that there are positive integers m, n such that Φ is a proper (m, n)-block map and X is the set of sequences avoiding two finite sets F and U with F ⊆ A m+n+1 and U

⊆ (A m × A c × A n ) × (A m × A r × A n ).
Let φ ∶ A m+n+1 → B be the function defining Φ. We define the Dyck automaton A(φ, F, U ) = (G, M ) over A × B as follows. Let us denote G = (Q, E). We set

• Q = {(u, v) u ∈ A m , v ∈ A n }, • E = {((bu, av), (a, φ(buavc)), (ua, vc)) a, b, c ∈ A, u ∈ A m-1 , v ∈ A n-1 and buavc ∉ F },
• M is the set of pairs of edges (e, f ) with e = ((bu, av), (a, φ(buavc)),

(ua, vc)), f = ((b ′ u ′ , a ′ v ′ ), (a ′ , φ(b ′ u ′ a ′ v ′ c ′ )), (u ′ a ′ , v ′ c ′ )), where a ∈ A c , a ′ ∈ A r , b, b ′ , c, c ′ ∈ A, u, u ′ ∈ A m-1 , v, v ′ ∈ A n-1 and the pair (bu, a, vc), (b ′ u ′ , a ′ , v ′ c ′ ) ∉ U .
Let A 1 (resp. A 2 ) be the Dyck automaton obtained by removing the second (resp. first) components of the labels of the edges. The Dyck automaton A 1 is a presentation of X. Further, if x ∈ X, there is a unique admissible path of A 1 labeled by x. Indeed, each factor of a bi-infinite path of A 1 labeled by uv with u ∈ A m , v ∈ A n , goes through the state (u, v) after reading u. A pair of biinfinite sequences (x, y) is the label of a bi-infinite admissible path of A(φ, F, U ) if and only if x ∈ X and Φ(x) = y. Hence A 2 is a presentation of Φ(X) which is thus sofic-Dyck. The following corollary is a direct consequence of Proposition 4.

Corollary 1. The class of sofic-Dyck shifts is invariant by proper conjugacy.

We prove below that the same result holds for finite-type-Dyck shifts.

Proposition 5. The class of finite-type-Dyck shifts is invariant by proper conjugacy.

Proof. Let X be a finite-type-Dyck shift over A which is properly conjugate to a shift Y over B. Let Φ be a proper block map from A Z to B Z that induces a conjugacy from X to Y . Without loss of generality we may assume that there are positive integers m, n such that Φ is a proper (m, n)-block map and X is the set of sequences avoiding two finite sets F and U with

F ⊆ A m+n+1 and U ⊆ (A m × A c × A n ) × (A m × A r × A n ). Let Ψ = Φ -1 ∶ Y → X be the proper (m ′ , n ′ )-block map inverse of Φ and ψ the block function of Ψ. It induces a map (still denoted by ψ) from B m ′ +m+1+n+n ′ to A m+1+n . We set d = m ′ + m, k = n ′ + n, r = d + 1 + k. Let F ′ = B 5r ∖ B 5r (Y ) and let U ′ ⊆ (B d × B c × B k ) × (B d × B r × B k ) be the set of pairs (u ′ , v ′ ) such that (ψ(u ′ ), ψ(v ′ )) ∈ U . Let us show that Y is the set Z of sequences avoiding F ′ and U ′ .
By construction, Y ⊆ Z. Let now z ∈ Z. We prove by induction that each factor of length jr belong to B(Y ) for j ≥ 5. We first have by definition of Z that each factor of length 5r belongs to B(Y ). Assume now that each factor of z of length jr belongs to B(Y ) for some j ≥ 5. Let z ′ be a factor of z of length 2(j-1)r decomposed as

z ′ = u ′ 1 u ′ 2 u ′ 3 w ′ v ′ 3 v ′ 2 v ′ 1 with u ′ 1 = u ′ 2 = v ′ 1 = v ′ 2 = r, w ′ = 2r and u ′ 3 = v 3 = (j -4)r. The factors u ′ = u ′ 1 u ′ 2 u ′ 3 w ′ and v ′ = w ′ v ′ 3 v ′ 2 v ′ 1 of z ′ are of length jr and are assumed to be blocks of Y . We set u = u 1 u 2 u 3 w 1 = ψ(u ′ ), where u 1 = u ′ 1 -m ′ and w 1 = w ′ -n ′ and v = w 2 v 3 v 2 v 1 = ψ(v ′ ), where w 2 = w ′ -m ′ and v 1 = v 1 -n ′ . Note that w 1 [m ′ , w 1 -1] = w 2 [0, w 2 -n ′ ]. Hence w 1 and w 2 overlap on a part w of length at least w ′ -m ′ -n ′ = 2r -m ′ -n ′ ≥ m + n. Since u ′ , v ′ ∈ B(Y ), we have u, v ∈ B(X).
Let A(φ, F, U ) be the Dyck automaton defined in the proof of Proposition 3. A pair of bi-infinite sequences (x, y) is the label of a bi-infinite admissible path of A(φ, F, U ) if and only if x ∈ X and Φ(x) = y. Further, all finite paths of the input Dyck automaton A 1 of A(φ, F, U ) which are labeled by a given block x 1 x 2 ∈ B(X) with x 1 = m and x 2 = n go through the same state after reading x 1 . As a consequence, since w ≥ m + n, there is a path in A 1 labeled by

x ′ = u 1 u 2 u 3 w 1 tv 3 v 2 v 1 = ψ(z ′ ), where w 2 = wt. Since z ′ avoid U ′ , we have x ′ avoids U . Hence x ′ ∈ B(X), implying φ(x ′ ) = u ′ 0 u ′ 2 u ′ 3 w ′ v ′ 3 v ′ 2 v ′ 0 , where u ′ 0 is the suffix of u ′ 1 of length u ′ 1 -m ′ -m and v ′ 0 is the prefix of v ′ 1 of length v ′ 1 -n ′ -n. We obtain that u ′ 2 u ′ 3 w ′ v ′ 3 v ′ 2 ∈ B(Y ).
Hence each factor of length 2(j -2)r of z belongs to B(Y ) and 2(j -2)r ≥ (j + 1)r for j ≥ 5. This proves that each factor of z belongs to B(Y ). We get Z = Y and Y is a finite-type-Dyck shift.

Presentations of sofic-Dyck shifts

In this section we define several particular presentations of sofic-Dyck shifts which will be useful for the computation of zeta function.

A Dyck automaton is deterministic1 if there is at most one edge starting in a given state and with a given label. Sofic shifts (see [START_REF] Lind | An Introduction to Symbolic Dynamics and Coding[END_REF]) always have a deterministic presentation. Although visibly pushdown languages are accepted by deterministic visibly pushdown automata [START_REF] Alur | Adding nesting structure to words[END_REF], sofic-Dyck shifts may not be presented by any deterministic Dyck automaton as is shown in Example 3. Indeed, the two notions of determinism do not match. The notion of determinism for visibly pushdown languages includes the stack symbol as input for return transitions of visibly pushdown automata.

Let A be a Dyck automaton. We define the left reduction of A as the Dyck automaton obtained through some determinization process. The process is an adaptation to Dyck automata of the determinization of visibly pushdown automata [START_REF] Alur | Visibly pushdown languages[END_REF]. It is sketched in [START_REF] Béal | Zeta functions of finite-type-Dyck shifts are N-algebraic[END_REF] and we detail it here.

Let A = (G, M ) with G = (Q, E) be a Dyck automaton over A. We define a Dyck automaton D = (H, N ) over A, where H = (Q ′ , E ′ ) with Q ′ = P(Q × Q) × P(Q) and P(Q) is the set of subsets of Q. States are pairs (S, R) where S is called the summary2 of the state and R is a nonempty subset of Q. The state I = (∅, Q) is called the initial state. For each state (S, R), the set S is empty if and only the admissible paths going from I to (S, R) are labeled by a matched-call word. It is nonempty if all admissible paths going from I to (S, R) are of the form

I u → (S", R") a → (T, U ) w → (S, R),
where a ∈ A c and w is a Dyck word. If there is such a path, the summary S of the state (S, R) is the set of pairs (p, q) in U ×R such that there is an admissible path of A labeled by the Dyck word w from p to q. In both cases, if there is a path labeled by v in D from I to (S, R), then R is the set of states q such that there is an admissible path in A labeled by v ending in q.

For a subset R of Q, we denote by Diag(R) the set of all pairs (p, p) for p ∈ R. The edges of D are defined as follows.

• For every ℓ ∈ A i , ((S, R), ℓ, (S ′ , R ′ )) ∈ E ′ if S ′ = {(p, q) ∃r ∈ Q, (p, r) ∈ S, (r, ℓ, q) ∈ E} and R ′ = {q ∃p ∈ R, (p, ℓ, q) ∈ E} is nonempty. • For every a ∈ A c , ((S, R), a, (Diag(R ′ ), R ′ )) ∈ E ′ if R ′ = {q ∃p ∈ R, (p, a, q) ∈ E} is nonempty.
• For every b ∈ A r , the edges stating from (S, R) with S ≠ ∅ labeled by b are defined as follows. For any edge ((S ′′ , R ′′ ), a, (T, U )) with a ∈ A c we define

-Update = {(p, p ′ ) ∃p 1 , p 2 ∶ (p, a, p 1 ) ∈ E, (p 1 , p 2 ) ∈ S, (p 2 , b, p ′ ) ∈ E, ((p, a, p 1 ), (p 2 , b, p ′ )) ∈ M }, -S ′ = {(p, q) ∃p ′ , (p, p ′ ) ∈ S", (p ′ , q) ∈ Update}, -R ′ = {q ∃p ∈ R", (p, q) ∈ Update}.
If R ′ is not empty, we define an edge ((S, R), b, (S ′ , R ′ )) ∈ E ′ and set this edge matched with ((S", R"), a, (T, U )).

• For every b ∈ A r , we define an edge ((∅, R), b, (∅, V )) ∈ E ′ where V = {q ∃p ∈ R, (p, b, q) ∈ E} is nonempty. This return edge is not matched with any call edge.

We only keep in D the states reachable from I.

Proposition 6. The left reduction of a Dyck automaton A presents the same sofic-Dyck shift as A.

Proof. Let X be the sofic-Dyck presented by A and D be the left reduction of A. Let v be the label of an admissible path of A going from p to q. By construction there is an admissible path of D labeled by v going from I to some state (S, R) with q ∈ R. Thus labels of finite admissible paths of A are labels of finite admissible paths of D.

Conversely, let v be the label of some finite admissible path π of D. We claim that v is the label of an admissible path of A.

We prove the claim by recurrence on the length of v. It is true if v is the empty word. Let v = uc where c ∈ A and π

= (S 1 , R 1 ) u → (S, R) c → (S ′ , R ′ ).
By induction hypothesis, we assume that for any state r ∈ R there is an admissible path labeled by u from some state q ∈ R 1 to r. If the edge ((S, R), c, (S ′ , R ′ )) is a call or internal edge or is a return edge not matched with a call edge of π, the result holds by construction for uc. Let us assume that

π = (S 1 , R 1 ) u → (S", R") a → (T, U ) w → (S, R) b → (S ′ , R ′ ),
where w is a Dyck word over A, a ∈ A c , and b ∈ A r . By induction hypothesis, we assume that for any state p ∈ R" there is an admissible path q u → p in A for some q ∈ R 1 .

For any r ∈ R ′ there are p ∈ R ′′ and (p 1 , p 2 ) ∈ S such that (p, a, p 1 ) and (p 2 , b, r) are matched in A. Further, S is the set of pairs (s, s ′ ) ∈ U × R such that there is an admissible path in A labeled by w from s to s ′ . It follows that there is in A an admissible path labeled by w from p 1 to p 2 and thus an admissible path q Note that since the label of an admissible path of D is the label of an admissible path of A, each label of an admissible path of D is the label of an admissible path of D starting at I.

We similarly define the right reduction of A with a co-determinization of A and an exchange of roles played by call and return edges. Note the left reduction of A may have more states than A.

Let L be a language of finite words. A Dyck automaton is L-deterministic if there is at most one admissible path starting in a given state and with a given label in L.

By construction the left reduction of a Dyck automaton is A c -deterministic and A i -deterministic.

A Dyck automaton is weak-deterministic if there is a state I such that for any word u there is at most one admissible path labeled by u starting at I.

Proposition 7. The left reduction of a Dyck automaton is weak-deterministic.

Proof. Let D be the left reduction of a Dyck automaton A and let I be the initial state of D. Let us suppose that the property is false. We consider two minimal-length distinct admissible paths starting at I and sharing the same label.

I u → (S, R) b → (T, U ), I u → (S ′ , R ′ ) b → (T ′ , U ′ ),
with b ∈ A and (T, U ) ≠ (T ′ , U ′ ). We may assume (S, R) = (S ′ , R ′ ) since these paths are of minimal length. Since D is A c -deterministic and A i -deterministic, we may assume that b ∈ A r . By definition, we have U = U ′ . If ub is matched-call, T and T ′ are empty, hence (T, U ) = (T ′ , U ′ ). If ub = u ′ awb, where w is a Dyck word and a ∈ A c , the two above paths are

I u ′ → (S 1 , R 1 ) a → (S 2 , R 2 ) w → (S, R) b → (T, U ), I u ′ → (S 1 , R 1 ) a → (S 2 , R 2 ) w → (S, R) b → (T ′ , U ).
Since the paths are admissible, ((S, R), b, (T, U )) is matched with ((S 1 , R 1 ), a, (S 2 , R 2 )) and ((S, R), b, (T ′ , U )) is matched with ((S 1 , R 1 ), a, (S 2 , R 2 )). By definition of the summary we get T = T ′ , a contradiction.

Corollary 2. The left reduction of a Dyck automaton over

A is Dyck(A)- deterministic.
Proof. Let (S, R) be a state of the left reduction of a Dyck automaton over A and w be a Dyck word over A. Let us assume that there are two admissible paths π 1 and π 2 labeled by w starting at (S, R). Since there is an admissible path π from I to (S, R), the paths ππ 1 and ππ 2 are two admissible paths starting at I. They are then equal by Proposition 7. of this fact. Let B be a deterministic Dyck automaton over A accepting the same shift X. For any positive integers n, m, r, the words (a n+m ib n j) r (ib m j) r (ib m k) r are blocks of X and are thus factors of labels of admissible paths in B, the edges labeled by b of the path labeling (ib m j) r being matched with the edges labeled by a of the path labeling (a n+m ib n j). If B is finite and deterministic, this implies that there are m, r, s > 0 and n ′ > n > 0 such that (a n ′ +n+m ib n j) r (ib m j) r (ib m k) r is a block of X, a contradiction.

Visibly pushdown shifts

In this section we show that the class of sofic-Dyck shifts is the class of visibly pushdown shifts, i.e. the subshifts whose set of blocks are factorial extensible visibly pushdown languages.

The class of visibly pushdown languages of finite words can be described either by pushdown automata or by context-free grammars.

A visibly pushdown automaton on finite words over

A = A c ⊔ A r ⊔ A i is a tuple M = (Q, I, Γ, ∆, F ) where Q is a finite set of states, I ⊆ Q is a set of initial states, Γ is a finite stack alphabet that contains a special bottom-of-stack symbol , ∆ ⊆ (Q × A c × Q × (Γ ∖ { })) ∪ (Q × A r × Γ × Q) ∪ (Q × A i × Q), and F ⊆ Q is a set of final states.
A transition (p, a, q, γ), where a ∈ A c and γ ≠ , is a push-transition. On reading a, the stack symbol γ is pushed onto the stack and the control changes from state p to q. A transition (p, a, γ, q) is a pop-transition. The symbol γ is read from the top of the stack and popped. If γ = , the symbol is read but not popped. A transition (p, a, q) is a local action.

A stack is a nonempty finite sequence over Γ starting with . A run of M labeled by w = a 1 . . a k is a sequence

(p 0 , σ 0 )⋯(p k , σ k ) where p i ∈ Q, σ 0 = , σ i ∈ (Γ ∖ { }) for 1 ≤ i ≤ k,
and such that:

• If a i is call symbol, then there are γ i ∈ Γ and (p i-1 , a i , p i , γ i ) ∈ ∆ with σ i = σ i-1 ⋅ γ i .
• If a i is a return symbol, then there are γ i ∈ Γ and (p i-1 , a i , γ i , p i ) ∈ ∆ with either γ i ≠ and σ i ⋅ γ i = σ i-1 or γ i = and σ i = σ i-1 = .

• If a i is an internal symbol, then (p i-1 , a i , p i ) ∈ ∆ and σ i = σ i-1 .

A run is accepting if p 0 ∈ I, σ 0 = , and the last state is final, i.e. p k ∈ F . A word over A is accepted if it is the label of an accepting run. The language of words accepted by M is denoted by L(M ). The language accepted by a visibly pushdown automaton is called a visibly pushdown language. We will use also the following grammar-based characterization (see [START_REF] Alur | Adding nesting structure to words[END_REF]). A context-free grammar over an alphabet A is a tuple G = (V, S, P ), where V is a finite set of variables, S ∈ V is a start variable and P is a finite set of rules of the form X → α such that X ∈ V and α ∈ (V ∪ A) * . The semantics of the grammar G is defined by the derivation relation → over (V ∪ A) * . If X → α is a rule and β, β ′ are words of (V ∪ A) * , then βXβ ′ → βαβ ′ holds. The language accepted by the grammar G, denoted L(G) is the set of words u in B * such that S * ⇒ u, where * ⇒ is the transitive closure of the relation →.

Let A be a tri-partitioned alphabet. A context-free grammar G = (V, S, P ) over A is a visibly pushdown grammar with respect to A if the set V of variables is partitioned into two disjoint sets V 0 and V 1 , such that all rules in P are of one of the following forms

• X → ε; • X → aY , such that if X ∈ V 0 , then a ∈ A i and Y ∈ V 0 ; • X → aY bZ, such that a ∈ A c , b ∈ A r , Y ∈ V 0 , and if X ∈ V 0 , then Z ∈ V 0 .
The variables in V 0 derive only Dyck words. The variables in V 1 derive words that may contain unmatched call letters as well as unmatched return letters. In the rule X → aY , if a is a call it is unmatched and the variable X must be in V 1 if a is a call or return. In the rule X → aY bZ, the symbols a and b are the matching call and return. The words generated by Y belong to V 0 and thus are Dyck words. Furthermore, if X is required to generate Dyck words, then Z also.

It is shown in [START_REF] Alur | Adding nesting structure to words[END_REF] that a language is visibly pushdown language if and only if it is accepted by a visibly pushdown grammar.

Proposition 8. The set of labels of finite admissible paths of a Dyck automaton is a visibly pushdown language.

Proof. Let A = (G, M ) be a Dyck automaton over A, where G = (Q, E).

We define a visibly pushdown automaton V = (Q, I, Γ, ∆, F ) over A, where I = F = Q and Γ is the set of edges of A. The set of transitions ∆ is obtained as follows.

• If (p, a, q) ∈ E with a ∈ A c , then (p, a, q, (p, a, q)) ∈ ∆.

• If (p, b, q) ∈ E with b ∈ A r , then (p, b, γ, q) ∈ ∆ for each call edge γ which is matched with the return edge (p, b, q).

• If (p, ℓ, q) ∈ E with ℓ ∈ A i , then (p, ℓ, q) ∈ ∆.

Let w be a finite word over A. There is run (p 0 , σ 0 )⋯(p k , σ k ) in V labeled by w such that σ 0 = , p 0 = p and p k = q if and only if w be the label of an admissible path π of A going from p to q. Thus w is the label of an admissible path of A if and only if it is the label of an accepting run of V , which proves the proposition.

In order to prove that the set of blocks of sofic-Dyck shift is a visibly pushdown language, we have to prove that the subset of words labeling a finite admissible path which are extensible to labels of bi-infinite admissible paths is also a visibly pushdown language.

Let L be a language of finite words over A. We denote by E(L) the set words w ∈ L such that, for any integer n, there are words u, v of length greater than n such that uwv ∈ L. Note that E(L) is a factorial language when L is factorial. This set is called in [START_REF] Culik | Cellular automata, ωω-regular sets, and sofic systems[END_REF] the bi-extensible subset of L.

We show below that the bi-extensible subset of a factorial visibly pushdown language is a visibly pushdown language. It is shown in [START_REF] Culik | Cellular automata, ωω-regular sets, and sofic systems[END_REF] that it is not true that the bi-extensible subset of a context-free language is a context-free language but the result holds for factorial context-free languages. We prove a similar result for factorial visibly pushdown languages.

We first recall the following pumping lemma (see [START_REF] Culik | Cellular automata, ωω-regular sets, and sofic systems[END_REF]Lemma 5.6]).

Lemma 2. Let G = (V, S, P ) be a context-free grammar and L = L(G). Then for any integer t > 0, there exists an integer p(t) such that for each z ∈ L and any set K of distinguished positions in z, if K ≥ p(t), then there is a decomposition z = ux 1 ⋯x t wy 1 ⋯y t v such that

• There exists a variable X ∈ V such that

S * → uXv * → ux 1 Xy 1 v * → ⋯ * → ux 1 ⋯x t Xy t ⋯y 1 v *
→ ux 1 ⋯x t wy t ⋯y 1 v.

• For any i 1 , . . , i t , we have ux i1 1 ⋯x it t wy it t ⋯y i1 1 v ∈ L.

• If K(x) denotes the distinguished positions of K in a word x, then either K(u), K(x 1 ), . . K(x t ), K(w) ≠ ∅, or K(w), K(y t ), . . K(y 1 ), K(v) ≠ ∅.

We also have K(x 1 ) ∪ . . K(x t ) ∪ K(w) ∪ K(y t ) ∪ . . K(y 1 ) ≤ p(t).

Proposition 9. If L is a factorial visibly pushdown language, then E(L) is a factorial visibly pushdown language.

Proof. Let G = (V, S, P ) be a visibly pushdown grammar over A accepting L.

We define a grammar

G ′ = (V ∪ {X i }, S, P ′ ) over A ′ = (A c ∪ {$ 1 }, A r ∪ {$ 1 }, A i ∪ {$ 0 }
) obtained by adding the following rules to G:

• X → $ 1 X$ 1 X 1 and X 1 → ε, for each X ∈ V 0 such that X * → G uXv with u, v ∈ A + , • X → $ 0 X, for each X ∈ V such that X * → G uX with u ∈ A + .
Note that it is not possible to have a rule X ∈ V such that X * → Xu with u ∈ A + . The grammar G ′ is a visibly pushdown grammar over A ′ .

Let

L 1 = {w ∈ A * ∃w i ∈ A * , w 1 $w 2 ww 3 $ ′ w 4 ∈ L(G ′ ), $ = $ 0 or $ 1 , $ ′ = $ 0 or $ 1 }, L 2 = {w ∈ A * ∃w i ∈ A * , w 1 $ 1 w 2 ww 3 $ 1 w 4 , ∈ L(G ′ )} and L 3 = L 1 ∪ L 2 .
Let us prove that L 3 ⊆ E(L). We first consider a word w ∈ L 2 such that w 1 $ 1 w 2 ww 3 $ 1 w 4 ∈ L(G ′ ). Then w 2 ww 3 is generated in G by some variable X ∈ V 0 such that X * → uXv, for u, v ∈ A + . Thus, for any integer n, we have u n w 2 ww 3 v n ∈ L. Thus w ∈ E(L).

Let us consider a word w ∈ L 1 such that w 1 $ 1 w 2 ww 3 $ 1 w 4 ∈ L(G ′ ). Thus there are words u 1 , u 2 , u 3 , u 4 such that u 1 $ 1 u 2 $ 1 w 2 ww 3 $ 1 u 3 $ 1 u 4 ∈ L(G ′ ). It follows that there are words x, y, z, t ∈ A + such that u 1 x n u 2 y n w 2 ww 3 z n u 3 t n v 4 ∈ L, for any positive integer n. Thus w ∈ E(L).

We now consider the case where w ∈ L 1 with w 1 $ 0 w 2 ww 3 $ 0 w 4 ∈ L(G ′ ). Then there are variables X, Y such that X * → uX for some u ∈ A + , Y * → vY with v ∈ A + , such that S * → αXβY γ and Xβ * → w 2 ww 3 . It follows that, for any positive integer n, we have u n w 2 ww 3 v n ∈ L. Hence w ∈ E(L). The remaining cases are proved similarly.

We now prove that E(L) ⊆ L 3 . Let z ∈ E(L) of length t. We choose z 1 , z 2 ∈ A + of length greater than p(t), where p(t) is defined in Lemma 2, such that z ′ = z 1 zz 2 ∈ L. For technical reasons that will appear below, we also choose

z 2 > 4 K ( z 1 + z ).
We consider a set of distinguished positions in z 1 . By Lemma 2, there is a variable X in V such that

S * → uXv * → ux 1 Xy 1 v * → ⋯ux 1 ⋯x t Xy t ⋯y 1 v * → ux 1 ⋯x t wy t ⋯y 1 v = z ′ .
Let T be the induced derivation tree and T ′ be the subtree of T (labeled by X) generating w. Let π be the path going from the root of T to the parent of the root of T ′ . The length ℓ of π is at most ux 1 ⋯x t since all rules of G produce either the empty word or a non empty word over V ∪ A with a terminal symbol on the left.

At least one of two following cases holds.

• K(u), K(x 1 ), . . , K(x t ), K(w) ≠ ∅.

-If z is a factor of wy t ⋯y 1 and

X → $ 1 X$ 1 X 1 is a rule of G ′ , then u$ 1 x 1 ⋯x t wy t ⋯y 1 $ 1 v ∈ L(G ′ ) and thus z ∈ L 3 .
-If z is a factor of wy t ⋯y 1 and X → $ 1 X$ 1 X 1 is not a rule of G ′ . Then y t ⋯y 1 = ε and X → $ 0 X is a rule of G ′ . Thus the word ẑ obtained after inserting $ 0 between u and x 1 is still in L(G ′ ). Furthermore, z is a factor of w. We set w = w

1 zw 2 . If w 2 < K , y t ⋯y 1 v = z 2 -w 2 > 4 K × z 1 z -K ≥ 3 K × ux 1 ⋯x t ≥ 3ℓ K .
We denote by R the set of nodes in T which are children of nodes of π on the right of π and thus generate y t ⋯y 1 v. The size of the set R is at most 3ℓ since all rules of G have an arity at most 4. At most 3ℓ variables generating a sequence of length greater than 3ℓ K , there is a variable Y in R such that Y generates a factor of length at least K of y t ⋯y 1 v which is a factor of z 2 . We do a second pumping for words generated by Y using distinguished positions on y t ⋯y 1 v and get that the word obtained from ẑ after inserting either

$ 0 or $ 1 in y t ⋯y 1 v is still in L(G ′ ).
If w 2 ≥ K , we do a second pumping for words generated by X using distinguished positions on w 2 and get that the word obtained from ẑ after inserting either $ 0 or $ 1 in w 2 is still in L(G ′ ).

-If z is a factor of y t ⋯y 1 v, then w can be replaced either by $ 1 w or by $ 0 w and gives a word ẑ. A similar argument as above for a second pumping still holds. We have this time

z 2 > 4 K × z 1 z ≥ 4 K × ux 1 ⋯x t ≥ 3ℓ K . Hence there is a variable Y in R such that
Y generates a factor of length at least K of z 2 . We do a second pumping for words generated by Y using distinguished positions on z 2 and get that the word obtained from ẑ after inserting either

$ 0 or $ 1 in z 2 is still in L(G ′ ).
-Otherwise z is a factor of wy t ⋯y 1 v and z crosses w, y t ⋯y 1 and v. Then y t ⋯y 1 < z = t. Thus there is 1 ≤ i ≤ t such that y i = ε. So we can replace x i by $ 0 x i obtaining ẑ. Again here there is a variable Y in R such that Y generates a factor of length at least K of z 2 . We do a second pumping for words generated by Y using distinguished positions on z 2 and get that the word obtained from ẑ after inserting either $ 0 or $ 1 in z 2 is still in L(G ′ ).

• K(w), K(y t ), . . , K(y 1 ), K(v) ≠ ∅. Then z is a factor of v since the distinguished positions are on z 1 . Then w can be replaced either by $ 1 w or by $ 0 w. The second pumping is done as the in the last item of the previous case.

We obtain that for any z ∈ E(L), there is in L(G ′ ) either a word of the form w 1 $w 2 zw 3 $ ′ w 4 with $ = $ 0 or $ 1 , $ ′ = $ 0 or $ 1 or a word of the form

w 1 $ 1 w 2 zw 3 $ 1 w 4 . Thus z ∈ L 3 . Hence L 3 = E(L).
We now show that L 3 is a visibly pushdown language. Indeed, let us show that

L $$ ′ = {w ∈ A * w 1 $w 2 ww 3 $ ′ w 4 ∈ L(G ′ )} is visibly pushdown. Let L ′ = Fact(L(G ′ ))∩$A * $
′ , where Fact(L(G ′ )) denotes the set of factors of L(G ′ ), and let L" = Fact(L ′ )∩A * . Since the class of visibly pushdown languages is closed by prefix and suffix, it is closed by factor. Hence the languages L ′ and L" are visibly pushdown. We have

L $$ ′ = L".
As a consequence, L $$ ′ is visibly pushdown. The class of visibly pushdown languages being closed by union, we get that L 3 is visibly pushdown.

Note that that G ′ can be constructed in an effective way since it is decidable whether X * → uXv or X * → uX for some words u, v ∈ A + . Theorem 1. Let X be a sofic-Dyck shift. Then B(X) is a visibly pushdown language. Conversely, if L is a factorial extensible visibly pushdown language, then B -1 (L) is a sofic-Dyck shift.

Proof. Let X be the sofic-Dyck shift presented by a Dyck automaton A. By Propositions 8, the set L of labels of finite admissible paths of A is a visibly pushdown language. By 9, the language E(L) also. By Lemma 1, we have B(X) = E(L) and thus B(X) is a visibly pushdown language.

Conversely, let L be a factorial extensible visibly pushdown language. Let G = (V, S, P ) be a visibly pushdown grammar over A accepting L. We may assume that variables that do not generate any word are discarded. We define a Dyck automaton

A = (G, M ) with G = (V ∪ (V × ({$} ∪ (A × V )), E) as follows.
We denote below by (X, ○) any state which is either X or (X, $), or (X, (a, Y )).

• If X → ℓY ∈ P with ℓ ∈ A i , then ((X, ○), ℓ, Y ) ∈ E. • If X → aY ∈ P with a ∈ A c , then ((X, ○), a, (Y, $)) ∈ E. • If X → aY bZ ∈ P , then ((X, ○), a, (Y, (b, Z))) ∈ E. • If X → bY ∈ P with b ∈ A r , then ((X, ○), b, Y ) ∈ E. • If b ∈ A r , Z → ε and Z ∈ V 0 , then ((Z, ○), b, T ) ∈ E for any T ∈ V .
Each of these edges is also matched with each edge of the form ((X, ○)), a, (Y, (b, T ))).

Note that all states (X, ○) have the same outgoing edges. A state (X, ○) is nullable if X generates the empty word. We claim that if w is a word generated by X in G, there is an admissible path in A labeled by w from X to some nullable state T or (T, $).

The proof is by induction on the size of w. Let us first consider the case w = ε. If w is generated by Z, then Z → ε is a rule of G. Thus the claim is true.

If w is nonempty, since w is generated by X, then either X → aY ∈ P , w = aw 1 with w 1 is generated by Y and a is not matched with symbols of w 1 , or X → aY bZ ∈ P , w = aw 1 bw 2 and w 1 , w 2 are generated by Y and Z respectively, with Y ∈ V 0 .

In the first case, there is an edge (X, a, (Y, $)). By induction, there is an admissible path in A from Y to some nullable state T or (T, $). Thus there is an admissible path labeled by w 1 from (Y, $) to some nullable state T or (T, $) and thus there is an admissible path labeled by w from X to some nullable state T or (T, $).

In the second case, there is an edge (X, a, (Y, (b, Z))). By induction, there is an admissible path labeled by w 1 from (Y, (b, Z)) to some nullable state T or (T, $). There is also an admissible path labeled by w 2 from (Z, ○) to some nullable state U or (U, $) and an edge ((T, ○), b, Z). Thus we obtain the path

X a → (Y, (b, Z)) w1 → T (or (T, $)) b → Z w2 → U (or (U, $)).
Since T is nullable and in V 0 , any edge ((T, ○), b, Z) is matched with (X, a, (Y, (b, Z))), this path is an admissible path labeled by w going from X to either U or (U, $). Thus L is included in the set of labels of admissible paths of A.

Conversely, let w be the label of an admissible path π in A starting at a state (X, ○). Then w is a prefix of a word generated by X in G. If w is moreover a Dyck word and X is nullable, then w is generated by X.

The proof is again by induction on the size of w. Note that it holds for the empty word. We first decompose π into one of the following paths: In Cases (1) to (3), by induction, w 1 is a prefix of a word generated by Y and there is a rule X → aY in G. Thus aw 1 is a prefix of a word generated by X. If w is a Dyck word and U is nullable, then w = aw 1 , where w 1 is a Dyck word a ∈ A i . By induction hypothesis, the word w 1 is generated by Y and thus w is generated by X.

1. (X, ○) a → Y w1 → (U, ○), with a ∈ A i , 2. (X, ○) a → (Y, $) w1 → (U, ○), a ∈ A c not
In Case (4), by induction, w 1 is a prefix of a word generated by Y and there is a rule X → aY bZ in G. Thus aw 1 is a prefix of a word generated by X. The word w is never a Dyck word.

In Case [START_REF] Béal | Codage symbolique[END_REF], there is a rule X → aY bZ in G and the edges ((X, ○), a, (Y, (b, Z)) and ((T, ○), b, Z) are matched Thus T is nullable and in V 0 . By induction w 2 is a prefix of a word generated by Z. Since w 1 is a Dyck word, by induction again, w 1 is generated by Y . It follows that w is a prefix of a word generated by X. If w is a Dyck word, then w 2 is a Dyck word and thus w 2 is generated by Z. As a consequence, w is generated by X.

Thus labels of admissible paths of A are prefixes of words of L. Since L is factorial, they belong to L. As a consequence L is the set of labels of finite admissible paths of A. By definition, B -1 (L) is the set of infinite sequences whose finite factors belong to L and thus A presents B -1 (L).

This gives the following characterization of sofic-Dyck shifts.

Theorem 2. Sofic-Dyck shifts over A are shifts X F where F is a visibly pushdown language over A.

Proof. If X is a sofic-Dyck shift over A, then Theorem 1 says that B(X) is a visibly pushdown language over A. Let F = A * ∖ B(X). Since visibly pushdown languages are closed y complementation, F is visibly pushdown and X = X F .

Conversely, if X = X F where F is a visibly pushdown language. Let L = A * ∖ F which is a factorial visibly pushdown language. The set B(X) is the set of extensible words of L and is thus visibly pushdown. Thus X sofic-Dyck.

Proposition 10. It is decidable whether a sofic-Dyck shift is empty.

Proof. Let X be a sofic-Dyck shift. By Theorem 1, the set of blocks of X is generated by a context-free grammar which is furthermore computable from some Dyck automaton accepting the sofic-Dyck shift. Since the emptiness is decidable for a language generated by a context-free grammar, the emptiness of X is decidable. Indeed, X is nonempty if and only if its set of blocks is nonempty.

Zeta function of sofic-Dyck shifts

Zeta functions count the periodic orbits of subshifts and constitute stronger invariants by conjugacies than the entropy (see [START_REF] Lind | An Introduction to Symbolic Dynamics and Coding[END_REF]).

In this section, we give an expression of the zeta function of a sofic-Dyck shift which extends the formula obtained by Krieger and Matsumoto in [START_REF] Krieger | Zeta functions and topological entropy of the Markov-Dyck shifts[END_REF] for Markov-Dyck shifts. The proof of Krieger and Matsumoto is based on Markov-Dyck codes which encode periodic sequences. We use a similar encoding to compute the zeta function of sofic-Dyck shifts.

As counting periodic points for sofic shifts is trickier than for shifts of finite type, counting periodic points of sofic-Dyck shifts is also trickier than for Markov-Dyck of finite-type-Dyck shifts.

Let (m 1 , m 2 ) two such indices with moreover bal(v 0 . . v m1 ) = bal(v 0 . . v m2 ) minimal. Let w = v m1 ⋯v n-1 v 0 ⋯v m1-1 . The word w is again a conjugate of v and u.

Let j 1 be the largest integer less than or equal to n -1 such that w 0 ⋯w j1 has a suffix in Prime(X) and i 1 be the smallest integer such that w i1 ⋯w j1 ∈ Prime(X) * . Then w i1 ⋯w n-1 ∈ Prime(X) + A * c and w 0 ⋯w i1-1 is a positive word. We define indices i 2 , j 2 similarly for the word w 0 ⋯w i1-1 and thus iteratively decompose w into a product of words in Prime(X)A * c . It follows that x belongs to X CM * c . • If bal(u) < 0, we denote by ũ the word u n-1 ⋯u 0 . By exchanging the roles played by call and return symbols, we have bal(ũ) > 0 and thus either ũ is conjugate to a word in A + r or ũ is conjugate to a word in ( P A * r ) + , where P = {c c ∈ Prime(X)}. We thus get that u is conjugate to a word in (A * r Prime(X)) + and x belongs to

X M * r C .
As a consequence, we obtain the following expression of the zeta function of a sofic-Dyck shift.

Proposition 12. Let X be a sofic-Dyck shift presented by a Dyck automaton A and C, M r , M c defined as above from A. The zeta function of X is

ζ X (z) = ζ X CMc * (z)ζ X Mr * C (z)ζ X Mc (z)ζ X Mr (z) ζ X C (z) (1) 
Proof. The formula is a direct consequence of Proposition 11 and of the definition of the zeta function.

We recall below the notion of circular codes (see for instance [START_REF] Berstel | Codes and Automata[END_REF]). We say that a subset S of nonempty words over A * is a circular code if for all n, m ≥ 1 and x 1 , x 2 , . . . , x n ∈ S, y 1 , y 2 , . . . , y m ∈ S and p ∈ A * and s ∈ A + , the equalities

sx 2 x 3 ⋯x n p = y 1 y 2 ⋯y m , (2) 
x 1 = ps (3) 
implies

n = m p = ε and x i = y i (1 ≤ i ≤ n).
Proposition 13. Let A be a tri-partitioned alphabet. The sets Prime(A) and Prime(A)A c * are circular codes.

Proof. We prove that Prime(A)A c * is circular. This implies that its subset Prime(A) is circular.

Let us suppose that Equations 2 and 3 imply n = m and x i = y i for n+m < N . Assume that Equations 2 and 3 hold for some n, m with n + m = N .

Let us assume that s ≠ x 1 . Since s is a prefix of some y 1 y 2 ⋯y j and a suffix of x 1 , we have s ∈ Prime(A) or s ∈ A c + . As ps ∈ Prime(A)A c * , we get that p ∈ Prime(A) and s ∈ A c + . It implies that the balance of each nonempty prefix of sx 2 x 3 ⋯x n p is positive, in contradiction with y 1 prefix of sx 2 x 3 ⋯x n p. Hence s = x 1 and p = ε. If y 1 ≠ x 1 , one of these two words is a prefix of the other. Let us assume that x 1 = y 1 z with z ∈ A * c . Then zx 2 x 3 ⋯x n is positive, a contradiction with that fact that it has y 2 as prefix. Thus x 1 = y 1 . By iteration of this process, we get n = m and x i = y i .

The notion of circular matrix below extends the classical notion of circular codes. We say that the matrix (H pq ) p,q∈Q , where each H pq is a set of nonempty words over A is circular if for all n, m ≥ 1 and x 1 ∈ H p0,p1 , x 2 ∈ H p1,p2 , . . . , x n ∈ H pn-1p0 , y 1 ∈ H q0,q1 , y 2 ∈ H q1,q2 , . . . , y m ∈ H qm-1q0 and p ∈ A * and s ∈ A + , the equalities

sx 2 x 3 ⋯x n p = y 1 y 2 ⋯y m , (4) 
x 1 = ps

implies We say that A is left reduced (resp. right reduced ) it is the left (resp. right) reduction of some Dyck automaton.

n = m p = ε and x i = y i (1 ≤ i ≤ n).
We say that A is H-deterministic if and only if for any two (admissible) H-paths sharing the same start and label are equal.

Proposition 15. If A is left reduced, it is H-deterministic when H is M c , C or CM c * .
Proof. The Dyck automaton A is M c -deterministic by construction. It is Cdeterministic by Proposition 2.

One proves similarly that

Proposition 16. If A is right reduced, it is H-codeterministic for H is M r , C or M r * C.
In order to count periodic sequences of sofic-Dyck shifts, we need some machinery similar to the one used to count the periodic sequences of sofic shifts (see for instance [START_REF] Lind | An Introduction to Symbolic Dynamics and Coding[END_REF]).

Let A be a Dyck automaton over A where A = (G, M ) with G = (Q, E). Let ℓ be a positive integer. We fix an ordering on the states Q. We define the Dyck automaton A ⊗ℓ = (G ⊗ℓ , M ⊗ℓ ) over a new alphabet A ′ where G ⊗ℓ = (Q ⊗ℓ , E ⊗ℓ ) as follows. of length n with x i ∈ H, x 1 = uv ∈ H, and v ≠ ε. Let j = x 1 . The sequences x, σ(x), . . . , σ j-1 (x) are all distinct by circularity of the matrix H. Since π(w) = uvx 2 . . x k = x 1 . . x k , we get that

πP n (X H ) = 1≤j≤n k≥1 jE n,j,k = 1≤j≤n jE n,j ,
where E n,j,k is the H-path labels of length n which are concatenation of k words x 1 . . x k of H with x 1 = j, and E n,j is the union of the E n,j,k . The sets E n,j,k and E n,j ′ ,k ′ are disjoint for k ≠ k ′ or for j ≠ j ′ .

Let us denote by D n,j,k and D n,j the matrices

D n,j,k = [H] j [H k-1 ] n-j , D n,j = k≥1 D n,j,k .
Then E n,j,k (resp. E n,j ) is the set of labels of D n,j,k -paths (resp. D n,k -paths).

Let j be a fixed integer between 1 and n. Let us show that w∈En,j w = Q ℓ=1 (-1) ℓ+1 trace((D n,j ) ⊗ℓ ).

Note that w appears in trace((D n,j ) ⊗ℓ ) for some integer ℓ with 1

≤ ℓ ≤ Q only if w ∈ E n,j .
Thus we can write

Q ℓ=1 (-1) ℓ+1 trace((D n,j ) ⊗ℓ ) = w∈En,j c(w) w, (6) 
where c(w) ∈ Z.

We will show that c(w) = 1 for every word w such that w ∈ E n,j .

Let w be such a word. Since A is H-deterministic, the coefficient of each word in H k pq for k ≥ 1 and fixed states p, q, is at most one since there is at most one H-path in A going from p to q and labeling a given word. Hence the coefficient of w in each (D n,j ) pq is at most one for fixed states p, q.

If w ∈ E n,j there must be at least one nonempty subset R of Q (of cardinal m) on which w acts as a permutation µ w of R induced by D n,j , i.e. such that the coefficient of w in (D n,j ) pµw(p) is one for each p ∈ R. If two subsets have this property, then does the union. Hence there is a largest subset P ⊆ Q on which w acts as a permutation. At this point we need a combinatorial lemma used in [START_REF] Lind | An Introduction to Symbolic Dynamics and Coding[END_REF]Lemma 6.4.9]. We recall its proof for the sake of completeness.

In the following lemma, the notation µ R means the restriction of a permutation µ to a set of states R and ε(µ) is the signature of the permutation µ. Lemma 3. [33, Lemma 6.4.9] Let µ be a permutation of a finite set P and let

P = {R ⊆ P R ≠ ∅, µ(R) = R}. Then R∈P (-1) R +1 ε(µ R ) = 1.
Proof of Lemma 3. Recall that P decomposes under µ into disjoint cycles, say P 1 , ⋯ , P d . Thus each µ Pi is a cyclic permutation and so

ε(µ Pi ) = (-1) 1+ Pi .
The nonempty sets R ⊆ P for which µ(R) = R are exactly the nonempty unions of sub-collections of {P 1 , ⋯ , P d }.

Thus R∈P (-1) R +1 ε(µ R ) = ∅≠K⊆{1,...,d} (-1) 1+ ∪ k∈K P k ε(µ ∪ k∈K P k ), = ∅≠K⊆{1,...,d} (-1) 1+∑ k∈K P k k∈K (-1) 1+ P k , = ∅≠K⊆{1,...,d} (-1) K +1+2 ∑ k∈K P k , = d i=1 (-1) i+1 d i = 1 -(1 -1) d = 1.
Returning to the computation of the coefficient c(w) in Equation 6, let P be the largest subset of Q on which w acts as a permutation. The coefficient c(w) is by definition of (D n,j ) ⊗ℓ , c(w) = 

We get πP n (X H ) = det(I -θπH ⊗ℓ ) (-1) ℓ .

Computation of the zeta function of X

The previous computations allow us to obtain directly the following general formula for the zeta function of a sofic-Dyck shift X. -z -z 1

-1 , = 1 + z 1 -z 2 -1-z 2 - √ 1-10z 2 +z 4 2
.

For H = M c , M r , we have )

(1 -2z -z 2 -1-z 2 - √ 1-10z 2 +z 4 2
) 2 .

The above formula shows that the zeta function of a sofic-Dyck shift is a Z-algebraic series. It is proved in [START_REF] Béal | Zeta functions of finite-type-Dyck shifts are N-algebraic[END_REF] that the zeta function of a finite-type-Dyck shifts is the generating series of an unambiguous context-free language, i.e. is an N-algebraic function. We conjecture that the result also holds for sofic-Dyck shifts.

There is no known criterion for a Z-algebraic series with coefficients in N to be N-algebraic but there are some necessary conditions on the asymptotic behavior of the coefficients (see the Drmota-Lalley-Woods Theorem in [17, VII.6.1] and recent insights from Banderier and Drmota in [START_REF] Banderier | Coefficients of algebraic functions: formulae and asymptotics[END_REF][START_REF] Banderier | Formulae and asymptotics for coefficients of algebraic functions[END_REF]).

Figure 1 :

 1 Figure 1: A Motzkin shift (on the left) over A = Ac ⊔ Ar ⊔ A i with Ac = {(, [}, Ar = {), ]} and A i = {i}. A sofic-Dyck shift (on the right) over the same tri-partitioned alphabet. Matched edges are linked with a dotted line.

Proposition 4 .

 4 The image of a sofic-Dyck shift by a proper block map is a sofic-Dyck shift.Proof. Let Φ a proper block map from a sofic-Dyck shift X onto Y . By Proposition 3, X is the image of a finite-type-Dyck shift S by a proper block map Ψ. The map Φ ○ Ψ ∶ S → Y is a proper block map and thus its image Y is a sofic-Dyck shift by Proposition 3.

1 w → p 2 b→

 12 r in A which concludes the proof of the claim.

Example 2 .Figure 2 :Example 3 .Figure 3 :

 2233 Figure 2: A Dyck automaton A (on the left) over A = Ac ⊔ Ar ⊔ A i with Ac = {a, a ′ }, Ar = {b} and A i = {i, j, k}. The left reduction of A (on the right) over the same tri-partitioned alphabet. Matched edges are linked with a dotted line and each state is represented by its summary set S of pairs of edges and the set R.

  matched with letters of w1 3. (X, ○) a → Y w1 → (U, ○), with a ∈ A r , 4. (X, ○) a → (Y, (b, Z)) w1 → (U, ○), a not matched with letters of w 1 , 5. (X, ○) a → (Y, (b, Z)) w1 → (T, ○) b → Z w2 → (U, ○), with a ∈ A c , b ∈ A r ,and w 1 is a Dyck word.

Proposition 14 .

 14 Let A be a Dyck automaton. The matrices C, M c and CM c * defined from A are circular matrices. Proof. It is a direct consequence of the fact that Prime(A), A and Prime(A)A * c are circular codes.

R∈P(- 1 )(- 1 )

 11 R +1 ε(µ w R ) = 1.Hence Q ℓ=1 ℓ+1 trace((D n,j ) ⊗ℓ ) = w∈En,j w, .

j[(- 1 )(- 1 )(- 1 )

 111 trace(π(D n,j ) ⊗ℓ ), H] j [H k ] n-j ) ⊗ℓ , ⊗ℓ ] j [πH k ⊗ℓ ] n-j ), ⊗ℓ ] j [(1 -πH ⊗ℓ ) -1 ] n-j .Proposition 18. Let A be a left reduced Dyck automaton. The zeta function of X H , where H is one of the matrices C, CM c * , M c defined from A, isζ X H (z) = Q ℓ=1 det(I -H ⊗ℓ (z)) (-1) ℓ ,where H ⊗ℓ (z) = θπH ⊗ℓ .The same formula holds for X H when H is equal to C, M r * C or M r when A be a right reduced.Proof. We get from Proposition 17n≥1 θπP n (X H ) n ⊗ℓ ] j [(I -θπH ⊗ℓ ) -1 ] n-j , 1)[θπH ⊗ℓ ] j+1 [(I -θπH ⊗ℓ ) -1 ] n-j-1 , dθπH ⊗ℓ ] j [(I -θπH ⊗ℓ ) -1 ] n-j-1 , dθπH ⊗ℓ )(I -θπH ⊗ℓ ) -1 ] n-1 , d log(I -θπH ⊗ℓ )] n-1 , log(I -θπH ⊗ℓ )] n , ℓ+1 trace(-log(I -θπH ⊗ℓ )),where d denotes the derivative with respect to the variable z. Thus, using Jacobi's formula, we obtain ζ(X H )(z) = exp trace( Q ℓ=1 ℓ+1 (log(I -θπH ⊗ℓ ))), = det exp( Q ℓ=1 ℓ log(I -θπH ⊗ℓ ))), = Q ℓ=1

Theorem 3 .Corollary 3 . 4 Figure 4 : 1 -z 2 - √ 1 -10z 2 + z 4 4z 2 . 1 -z 2 - √ 1 -10z 2 + z 4 2 .√ 1 -10z 2 +z 4 2

 334411211212 Figure 4: A Dyck automaton A (on the left) over A = Ac⊔Ar ⊔A i with Ac = {a, a ′ }, Ar = {b, b ′ } and A i = {i} and the Dyck automaton A ⊗2 (on the right). Matched edges are linked with a dotted line.us compute the zeta function of X C for this automaton. LetC = C 11 C 12 C 21 C 22 , C ⊗2 = C (1,2),(1,2) .We haveC 11 = aD 11 b + a ′ D 11 b ′ , C 22 = 0, C 12 = i, C 21 = i, with D 11 = aD 11 bD 11 + a ′ D 11 b ′ D 11 + iiD 11 + ε. Hence 2z 2 D 2 11 (z) -(1 -z 2 )D 11 (z) + 1 = 0 Since the coefficient of z 0 in D 11 (z) is 1, we get D 11 (z) = 1 -z 2 -√ 1 -10z 2 + z 4 4z 2 .

2 ℓ=1. 2 ℓ=1 1 = ( 1

 2211 det(I -H ⊗ℓ (z)) (-1) ℓ = 1 1 -2z .We also haveCM c * = C 11 i i 0 {a, a ′ } * 0 0 ε = C 11 {a, a ′ } * i i{a, a ′ } * 0 , M r * C = {b, b ′ } * 0 0 ε C 11 i i 0 = {b, b ′ } * C 11 {b, b ′ } * i i 0 det(I -(CM c * ) ⊗ℓ (z)) (-1) ℓ = (1 + z) 1 -C11(z) + z)(1 -2z) 1 -2z -z 2 -C 11 (z) .The same equality holds for M r * C. We finally getζ X (z) = (1 + z)(1 -z 2 -C 11 (z)) (1 -2z -z 2 -C 11 (z)) 2 , = (1 + z)(1 -z 2 -1-z 2 - √ 1-10z 2 +z 4 2

Deterministic presentations are also called right-resolving in[START_REF] Lind | An Introduction to Symbolic Dynamics and Coding[END_REF].

The definition of summaries differs slightly from the one given in[START_REF] Alur | Visibly pushdown languages[END_REF].

Acknowledgements The authors would like to thank Arnaud Carayol for pointing us some mistakes in a preliminary version of this paper and Pavel Heller and Wolfgang Krieger for helpful comments.

✩ This work is supported by the French National Agency (ANR) through "Programme d'Investissements d'Avenir" (Project ACRONYME n ○ ANR-10-LABX-58) and through the ANR EQINOCS.

Definition and general formula

The zeta function ζ X (z) of the shift X is defined as the zeta function of its set of periodic patterns, i.e.

where p n the number of sequences of X of period n, i.e. of sequences x such that σ n (x) = x. Note that n may not be the smallest period of x.

Call periodic pattern of X a word u such that the bi-infinite concatenation of u belongs to X and denote P (X) the set of periodic patterns of X. These definitions are extended to σ-invariant sets of bi-infinite sequences which may not be shifts (i.e. which may not be closed subsets of sequences).

Let A be a Dyck automaton over a tri-partitioned alphabet A.

We say that a Dyck word w over A is prime if it is nonempty and any Dyck word prefix of w is w or the empty word. We denote by Prime(A) the set of prime Dyck words over A and by Prime(X) the set of prime Dyck words which are blocks of a shift X.

We define the following matrices where Q is the set of states of A.

• C = (C pq ) p,q∈Q where C pq is the set of prime Dyck words labeling an admissible path from p to q in A.

• M c = (M c,pq ), (resp. M r ) where M c,pq is the sum of call (resp. return) letters labeling an edge from p to q in A.

Let H be one of the matrices C, CM c * , M c , M r * C or M r . We call H-path a path (p i , c i , p i+1 ) i∈I in A, where I is Z or an interval and c i ∈ H pipi+1 . Note that an H-path is admissible. We denote by X H be the σ-invariant set containing all of sequences labeling a bi-infinite H-path of A.

Proposition 11. Let X be a the sofic-Dyck shift accepted by a Dyck automaton A. We have P (X) = P (X Mc ) ⊔ P (X Mr ) ⊔ ((P (X CMc * ) ∪ p(X Mr * C ))), and P (X C ) = P (X CMc * ) ∩ P (X Mr * C ), where ⊔ denotes a disjoint union.

For a finite word u, we denote the balance of u by bal(u). It is the difference between the number of letters of u in A c and the number of letters of u in A r . A word u is positive if bal(u) > 0 and bal(v) ≥ 0 for any prefix v of u. We say that u and v are conjugate if they are words w, t such that u = wt and v = tw.

Proof. Let us assume that a sequence x of X is equal to u ∞ = ⋯uu ⋅ uu⋯ . Let u = u 0 u 1 ⋯u n-1 where u i are letters. We consider the following three cases.

• If bal(u) = 0, then u is conjugate to a word in Prime(X) * and thus x is a periodic point of X C .

• We denote by Q ⊗ℓ the set of ordered ℓ-uples of distinct states of Q.

• Let P = (p 1 , . . . , p ℓ ), R = (r 1 , . . . , r ℓ ), be two elements of Q ⊗ℓ . Thus p 1 < ⋯ < p ℓ and r 1 < ⋯ < r ℓ . There is an edge labeled by a from P to R in A ⊗ℓ if and only if there are edges labeled by a from p i to p ′ i for 1 ≤ i ≤ ℓ and R is an even permutation of (p ′ 1 , . . . , p ′ ℓ ). If the permutation is odd we assign the label -a. Otherwise, there is no edge with label a or -a from P to R.

• We define M ⊗ℓ as the set of pairs of edges ((p 1 , . . . , p ℓ ), a, (p ′ 1 , . . . , p ′ ℓ )), and

We say that a path of A ⊗ℓ is admissible if it is admissible when the signs of the labels are omitted, the sign of the label of a path being the product of the signs of the labels of the edges of the path.

We denote by C ⊗ℓ,P P ′ the set of signed prime Dyck words c labeling an admissible path in A ⊗ℓ from P to P ′ . We denote by C ⊗ℓ the matrix (C ⊗ℓ,P P ′ ) P,P ′ ∈Q ⊗ℓ whose coefficients are sums of signed words of A + . More generally, if H denotes one of the matrices C, CM c * , M c , M r * C, M r defined from A, we denote by H ⊗ℓ the matrix defined from A ⊗ℓ similarly.

Computation of the zeta function of X H

Denote Z⟪A⟫ the set of noncommutative formal power series over the alphabet A with coefficients in Z. where P n (X H ) is the set of periodic pattern of X H of length n.

Proof. With a slight abuse of notations, we will say that a word u belongs to H if u is belongs to some H pq . Let x be a periodic sequence of X H of period n ≥ 1. We have σ n (x) = x if and only if x is a two-sided infinite concatenation of a word w = vx 2 ⋯x k u