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Abstract

In this work, we prove the existence and the uniqueness of the strong solution of a low-Mach model,
for which the dynamic viscosity of the fluid is a given function of its temperature. The method is
based on the convergence study of a sequence towards the solution, for which the rates are also given.
The originality of the approach is to consider the system in terms of the temperature and the velocity,

leading to a non-linear temperature equation and the development of some specific tools and results.

Introduction

During the last three decades, many studies have been devoted to the Boussinesq model arising from a
zeroth-order approximation of the coupling between the Navier-Stokes and the thermodynamic equations.
Nevertheless, in many combustion processes as well as in convective—conductive heat transferts, the sound
waves speed can be much faster than the entropy or the vorticity ones. For such phenomena, the Boussi-
nesq incompressible approximation can become irrelevant when the compressibility effects can no more

be neglected because of large variations of temperature and density, even if pressure ones are much smaller.

Alternatively, the low Mach model allows to generate intermediate solutions between the compressible
Navier-Stokes model and the incompressible Navier-Stokes one. In [29], Majda and Sethian introduce a
limiting system which describes combustion processes at low Mach number in a confined region and solve
it numerically. These equations allow to treat large temperature and density variations, associated to
substantial interactions with the hydrodynamic flow field. However, these models are considerably simpler

than the complete system of compressible combustion equations because of the cancelation of the acoustic
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waves effects, removed from the set of equations.

The theoretical study of the low Mach number limit is a vast subject. The involved equations may be isen-
tropic or non-isentropic, the fluid may be viscous or inviscid, the temperature variations may be small or
large, the domain may be bounded or unbounded. Considering the compressible isentropic Navier-Stokes
equations, the reader may refer to the major breakthrough of Lions [26] where the global existence of
weak solutions with finite energy is considered. In [16], the authors present a survey of the mathematical
properties of solutions to the Navier-Stokes equations for compressible fluids: existence and regularity,
uniqueness without assumption on the initial data, as well as a counterexample which gives some evidence
for finite time blow-up for local smooth initial solutions. Many others results are devoted to the existence

of solutions for inviscid fluids: see for instance [2}22}30,31] and references therein.

The justification of the incompressible Navier-Stokes equations as the zero-Mach limit of the compressible
Navier-Stokes equation has been considered in |10-12}/14,/15,27]. In |3H5], the author performs a rigorous
analysis for the full Navier-Stokes system with large temperature variations in the Sobolev spaces H?,
with s large enough. In [7,23|, the authors investigate the problem of global existence in time of weak
solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids, where the

viscosity and conductivity coefficients depend on the density and the temperature.

To our knowledge, [17] and |13| are the only works dedicated to the theoretical study of the low Mach
number limit system ———. In |17], Emdid establishes the local-in-time existence of smooth so-
lutions in Sobolev spaces. In [13]|, Danchin and Liao study the well-posedness issue in the critical Besov
spaces, locally and globally, assuming that the initial density is close to a constant and that the initial
velocity is small enough. It was observed by Lions in |26 that a small perturbation of a constant initial
density provides a global existence of weak solutions in the case of two-dimensional domains. In a more
recent work [9], Bresch and co-authors introduce a new mathematical entropy and show the global ex-

istence of weak solutions in the three-dimensional case with no smallness assumption on the initial velocity.

In this work, we are interested in a specific low-Mach model proposed in [8], for which the dynamic
viscosity of the fluid is a specific function of the density. Here, the model is reformulated in terms of the
temperature and the velocity. Our goal is to prove the existence and the uniqueness of the strong solution of
the problem as a limit of a given sequence, and to obtain some results on the convergence rates. Let us note
that the paper follows a similar progression as the one proposed in [20,21]. The originality of the present
contribution is mainly based on the fact that we choose to consider the temperature unknown instead of the
density one in the set of equations. Consequently, the temperature equation becomes non-linear, and some

specific results need to be established. Throughout the paper, we will mainly focus on these particularities.

The sketch of the paper is the following. Section [If starts by deriving the low-Mach model under
consideration in term of the velocity v, the pressure p and the temperature 1. Then, some space functions
and norms are defined. The iterative scheme is given, as well as the main results of the paper (Theorems
and . Section [2|is devoted to some analytical tools needed to prove these results. Section |3[ gives some

existence and uniqueness results as well as a priori estimates on the sequence (v, p™,9") induced by the



iterative scheme. Finally, section [4 establishes the convergence of the sequence towards the strong solution

of the initial system, corresponding to the proofs of Theorems [I] and [2}

1 Preliminaries

1.1 Model derivation

Formally, a low Mach number model is obtained considering an asymptotic development of the pressure
with respect to the Mach number M, representing the ratio of the flow velocity to the local speed of sound.
Consequently, the conservation of momentum equation indicates that the pressure can be considered con-
stant in space up to a term of order M?. We assume moreover that the density and the temperature of

the fluid are linked by the ideal gaz law, so that the one can be deduced from the other.

Let ©Q C R? be a bounded regular open domain with a boundary I'. We denote by m the unit outward
normal on the boundary T and by [0,7] a given time interval, where T" > 0. We also introduce the
notations @, = (0,7) x Q and ¥ = (0,T") x I". The fluid is described by its density p(t,x) € R’ at point
(t,x) € Q,, its mean mass velocity u(t,x) € R3, its temperature J(t,x) € R* as well as its pressure

7(t,x) € R. Considering the full Navier-Stokes system and assuming that
w(t,x) = P(t) + M?q(t, x) + o(M?),

where the thermodynamic pressure P(t) = Py > 0 is constant for all ¢ > 0 (and not only independent of
x), we can deduce the following model in Q. by letting M go to 0 (see [13,25]):

dyp + div (pu) = 0, (1)

d(pu) + div (pu ® u) — div (2aD(u) + Adivul) + Vg = pf, (2)
yPydivu = (y — 1)div (kV1), (3)

Py = RpY. (4)

Here, D(u) = (Vu + V'u)/2 denotes the deformation tensor, I the identity matrix and f(¢,x) € R? the
external forces. Given a vector @ € R? and a matrix valued function A, the values of diva and div A are

respectively the scalar and the vector quantities defined by

diva = 23: Oz;a; and  (divA); = iaminj, 1<4¢<3.
j=1 j=1
The heat conductivity k and the viscosity coefficients i and A may depend smoothly on p and 1, and fulfill
k>0, a>0, 3\+2a>0.
Since we deal with ideal gas (see ), ~ is defined by

R
—14+—c(1
fy +C’U 6 ( 75/3]7
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where R and C, stand respectively for the ideal gas constant and the specific heat constant. We underline

that the non-standard constraint is easily deduced from the conservation of the energy.

We remark that the system —— is of parabolic type, where the pressure term can be seen as a
Langrange multiplier corresponding to the non-standard constraint . In order to reduce the study to a
system more similar to the incompressible Navier-Stokes problem for the temperature and the momentum

equations, a solenoidal velocity v(¢,x) € R? is introduced and defined by
v =u-— VY, (5)

(v— 1k

where A =
7Py

> (0 is a fixed constant. Then becomes
divv = 0.

Following the idea introduced in |8] where a particular relation between the density and the viscosity in

the combustion model is introduced, we set 3\ + 2f1 = 0 and we assume morerover that

9) = 20 ()
with
w(9) = —AInd, (6)

so that the viscosity u(19) is strictly positive if and only if ¥ € (0,1). We can now introduce the model we

are going to work on.

Lemma 1. Using relations and @, the system ——— can be rewritten as the following one:

o) + v - VI 4+ 2| V9|2 — Mdiv (9VY) = 0, (7)
1 A 1

E(Ekv +v-Vv) —div (u(9)Vv) + E(VV ~ VW)V +Vp = 5f’ (8)
divv = 0, (9)

_

p - R’lg’

with the modified pressure p defined by
2\
p= gq + A2A0 — ?M(ﬁ)Av“ + A2 InvAY.
0

Proof. Using the state equation in the mass conservation , we obtain
Oy +u- V¥ —ddivu = 0,
and from the definition of the solenoidal velocity v in we get
o9 + v - VI + A VY2 — N divv =0,

or equivalently . Using now and in the momentum equation ({2)), we write

1 R R . R - ) f
5(atu +u-Vu)+ FOVQ — Fodw (2(9)D(u)) — B—P()V(Qu(ﬂ)dlv u) = 5 (10)
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Developping each term of by using yields

l(9t11 = l(?tv + éat(VI%

W ¥ W
1
= 50V + %v (MAY — v - VI — \|VI?)
1 A2 . A A2
= —9v 4+ Z=AIVI + N2VAY — ZV(v - Vi) — 2 (VI - V)V,
¥ I ¥ )
where
V(v -VY) = (VI-V)v+ (v V)V + (Vv — VvV,
Moreover,
L Vet Vvt 20 Vv + 2v- 9y + (v - v)ve
9 u u= 9 v A% 9 v 9 A% 9 .

For the viscosity terms, we have

—ﬁodiv (2(9)D(u)) = —div (W) Vv) — Adiv (u(9)VVY)

= —div (u(9)Vv) — A/ (9) (VI - V)VI — Au(9) AV,

and

55 VRO ) = 2V (u(0) M),

Then (|10) can be rewritten as
1 1 , A , (1 1
Eﬁtv + E(V -V)v —div (u(9)Vv) + E(Vv —V'v)VI + A 5A19V19 — E(Vﬁ -V)V9
, R 9 2\ 1
=M (9) (VO - V)VY — Au(9)AVYI + V ot ACAY — ?u(ﬁ)Aﬂ = Ef' (11)
0

Finally, by using @ we obtain

)\2
M\ (9)(VD - V)V — Au(9)AVY = 5 (V- V)V + M In9AVY
AQ AQ
= 5 (V- V)V + A2V (In9AY) — ATV

Introducing this expression in in and including all the gradient terms in the definition of Vp, we
obtain . O

The combustion model 77@ is completed with the following boundary and initial conditions (see
[17]):

%(t,x) —0, v(t,x)=0, V(,x) e, (12)
9(0,x) = Yo(x), v(0,x) = vp(x), VxeQ, (13)

where ¥y : Q = R and v : Q — R3 are given functions, with div v = 0.



1.2 Space functions and equivalent norms

We now introduce the standard functional spaces for the Navier-Stokes framework:

(Q

LQ — L2(Q)3,
H (92

)

) = Hy(Q),

V = {VED(Q)Q: divv =0 in Q},

V= {veH;Q): divv=0in Q},

H = {V€L2 Q): divv=01in , V‘n:OonF}7

(
1@ = {pe @ [ pe) ax=of.

We recall that V and H are the closures of V in H}(Q) and L?(2) respectively, and (.,.) will denote the
scalar product in L2(92) or L?(Q2). Let P be the orthogonal projection of L?(€2) onto H and A = —PA
the Stokes operator defined in D(A) = V NH2(Q). We denote by (wx)ken and (ax)ken respectively the
eigenvectors and eigenvalues of the Stokes operator. It is well known that the sequence (wy)ren is orthog-
onal with the inner products (-,-) and (V-, V+). The norms ||v||z: and ||Vv| 12 are equivalent in V, and
|Vl g2 and ||Av| 2 are equivalent in D(A). Moreover, ||p||g1 and ||Vp| 12 are equivalent in H*(Q)NLZ(£2).

Then, we introduce the spaces specifically needed for the temperature (k = 2, 3):

HY(Q) = {19 € H* Q) : 219 =0 on 89} :

n
H]’%’O(Q) = {19 e H*(Q): gi =0 on 0N and /Slﬁ(x) = O}.

If 9(t,.) € HY(Q) for all t € [0,T], then we define
_ _ 1
I(t,.) =9(t,.) —9(t) € HYy where 9(t) = |Q|/ I(t,x) dx. (14)
Q

Thanks to the H?(Q2) and H3(Q) regularity of the Poisson problem with Neumann boundary conditions
(see [19]), the norms ||6|| 2 and | Af|| ;2 are equivalent in HJQ\LO(Q), and ||0]| s and ||[VA®)|| 2 are equivalent
in H]?{,’O(Q). Consequently, thanks to (14), the norms ||V6|| g1 and ||Af)|z2 are equivalent in H% (), and
V0| g2 and ||[VAG| 12 are equivalent in H3,().

1.3 The iterative scheme

We follow the approach of F. Guillén-Gonzalez and his co-authors for Kazhikhov-Smagulov type models

with constant viscosity in |20] as well as with linear viscosity in |21]. It consists in building iteratively a

sequence (v, p™, 9™) of approximate solutions of 77@ and f as follows:

e Initialization:

— 90t ) =y, Vte[0,T],
- V(t,-) =vg, Vte[0,T).



e Then, given v*»~! and 97! :
— 9" is solution of

A" + v Vom 4 2 VYL v — Adiv (9" 1V9n) = 0,

(15)
9"(0,-) = Yo, VI -mn|spq =0.
— v™ and p™ are solutions of
1 ]. -1 .
ﬁ—natv" + W(v" -V)v? —div (u(9™)Vv™)
A 1
+ o (Vv = Vv VO™ + Vp' = ot (16)

divv® =0, v"(0,:)=vg, V"lsq=0.

1.4 Main results

The goal of the paper is to prove that the sequence (v, p™, 9™) converges towards the solution (v, p, ) of
problem 77@ and f for some norms, and to give some estimates of the convergence rates.
We assume that

Yo € HY(Q), voeV, feL*Q,), (17)

and that there exist two real numbers m and M such that
0<m<Y9<M<1ae zel (18)

Furthermore, we suppose that there exist some positive constants K; and K5 such that

T _
exp <A5 — (Iln M| 2K7 + AMK3 + X0 M4)> A | A3 < Ko, (19)
M* (A2 |In M[*m* + K3)
T In M| 2K? + \* K2
P (02 AT mt min (| 1In M]7, [1n M11) (1o MIT2EE + A1)

2 M
< ([ Vamivwl;, + 03 I, ) < 5 (20)

where C and Cj are constants only depending on the domain, respectively defined in Lemmas [9] and
Note that the smallness assumptions and are satisfied if the initial and source data ||Adyl| o,
IVvoll L2 and [[£]| 2o,y or if the final time T are small enough.

We give now the two main Theorems established in the paper.

Theorem 1. Let assume that the data satisfy assumptions ———. Then, the system 77@
associated to initial and boundary conditions f admits a unique strong solution (v,p, V) such that

9 € L*(0,T; HY () N L™(0,T; HY(R)), 9w € L*(0,T; H'(R)),
v € L*(0,T; D(A)) N L*(0,T; V), v € L*(0,T; H),
p € L*(0,T; L§(R)).



Moreover, (v,p,0) is obtained as the limit of (v",p"™,9") when n — oo, and for all t € [0,T], one has:

1
10" = )OI+ [ (10" = 0)(6) e + 100" = 232 ds < D[ - (21)
: 3
n n (B1)"
67 =)0l + [ I8 =) as < D] L] (22)
where B and D are some constants independent of n (but depending on the data and on \).
Without additional assumptions, we prove a second result.
Theorem 2. Under the assumptions of Theorem[]], we have:
2
" t " " Bt n—1
0" = 0O+ [ (16" =)+ @0 — a3 ) s < D|LZL | 2y
0 (n—1)!
1
I =) O + / (10" =)@ + @™ = a3 ) as < | ZL_| o)
0 (n—1)!
1
(B t)nfl 2
ds < D|——F—=] , 25
[ 16 - nee: — (25)

where B and D are some constants independent of n (but depending on the data and on ).

Note that the loss of convergence rates between Theorems [1| and [2] constitutes a difference compared
with the results given in [20]. This is a consequence of the non-linearity of the temperature equation, as

we will see below.

2 Useful tools

In this section, we state some results to be used in later sections. The first two Lemmas are estimates of

Gronwall’s type. Lemma is classical, and Lemma |3|is immediately adapted from Lemma 2.2 in [20].

Lemma 2. (Gronwall). Let a, b, ¢ and d be positive and L*(0,T) functions satisfying
a'(t) +b(t) <c(t)a(t)+d(t) ae.te(0,T).

Then, for any t € (0,T), one has:

alt) + /0 “b(s) ds < <a(0) + /0 t d(s)ds> exp < /0 ") ds>.

Lemma 3. (Gronwall with recurrence). Let (ay), (by), (¢n), (dyn) and (e,) be sequences of positive

functions such that
e (ayn), (by) and (e,) belongs to L1(0,T),

e (cn) and (dy) are respectively bounded in L*(0,T) and L*(0,T),



o There exists A € R such that a,(0) < A.

We assume
al (t) + bn(t) < cn(t) an(t) + dn(t) an—1(t) + en(t) a.e.t € (0,7).

Then, there ezist positive constants B and D independent on n (but depending on bounds of HCnHLl(o,T)

and ||dp|| 20, 1y) such that for any t € (0,T) and for any n > 1, one has:

1
t 2 Bt)" %
an(t) +/ bn(s) dS S D(A e% + + ||a0||L°°(0,t) |:( n') :| .
0 .

n B n—k
Zﬂ%ﬁwwLﬂgT
— Y (n—k)!

1
Bt k*l 2
Remark 1. In the following, we will have ||ek\|%1(07t) <D F(k:—)l)'} . In this case, one has:
t 172 3
s [ (BO- CDRE
n(t bo(s)ds < D[ A R 0o —_— .
a ()+/0 (s)ds < < ez + TR + llaoll (O,t)|: ol

The following result, due to J.-L. Lions [24], will be used to obtain the existence of the approximate

temperature.
Lemma 4. Let U and L be Hilbert spaces in the following configuration:
UcL=L cU,

each space being dense in the following one and the injections being continuous. Let a :]0, T[ xU x U — R
such that a(t,-,-) is bilinear a.e. t €]0,T[ and which satisfies:

o t — a(t,u,v) is measurable Vu,v € U,
e IM > 0 such that |a(t,u,v)| < M |lul|; |v||y a.e. t€[0,T], Vu,v € U,
e Ja> 0 and v > 0 such that a(t,u,u) > « ||uH%] — ||u|]2L a.e. t€1[0,T], VueU.

Let f € L2(0,T;U") and ug € U. Finally, let us consider the following problem:

< O, v >pry +a(t,u,v) =< fo >y ae t€]0,T[,VveU,
u(0) = up.

(26)

Then, problem ([26)) admits a unique solution u € C(0,T; L) N L%(0,T,U) such that O;u € L*(0,T;U").

The following result, which is proved in [28], gives estimates for the pressure associated to the Helmholtz

decomposition of the laplacian.
Lemma 5. Let v € D(A). We consider the Helmholtz decomposition of —Av, namely:
— Av = Av + Vg, (27)

where ¢ € H(Q) N L3(Q). Then, for all € > 0, there exists a positive constant C only depending on the

domain such that

1
ol < ellavie + (142 19wl 29

9



Finally, the following Lemma (see |18]) will be used to show the existence of the velocity.

Lemma 6. (Continuity method). Let X be a Banach space, and Y a normed linear space. Let Ly and Ly

be bounded linear operators from X into Y. For each « € [0;1], set Ly = (1 — a) Lo + a L1, and suppose

that there exists a constant C such that

wWeX, Vae[n:l, [vix<C [Lavly-

Then Ly is surjective onto Y if and only if Lo is surjective onto Y.

We end this section by listing some inequalities which will be frequently used in the sequel.
e Let f € HY(Q), then the following Gagliardo-Nirenberg’s interpolation inequalities hold (see [32]):

1/4 3/4
1£ll e < C AL IR,
1fllzs < C A1 A .

e Let f € H?(Q2), then the Agmon’s inequality holds (see [1]):

£l < C AN AN

As a consequence, if f € H'(Q) and g € H%(Q),

IV e < 1 gllin < C N F Mg lgllhrs gl - (29)

1 1
e Let a and b two positive real numbers and 1 < p, ¢ < oo such that — + — = 1. Then for any ¢ > 0
P q
the following Young inequality holds:
1

p q : _
ab<ed 4+ C.b? with Cgng/pr/pq.

n

1 1
o Let 1 <pi,...,pn, <00 and r defined as — = E —. Let suppose that fi € LPr(Q) for 1 < k < n.
r Pk
k=1

Then the generalized Holder inequality holds:

|11
=1

< i ().
L@ = 11:11 | fillLri (o)

3 Estimates for the approximate solutions

Using the results of the previous section, we are able to prove the following result for the sequence
(v p™, om).

Theorem 3. Let us assume that the data satisfy ---. Then, the sequence (v™,p™, ") is
uniquely defined and one has for alln > 1:

v € C(0,T; V)N L*0,T; D(A)), 9™ e L*(0,T; H); (30)
p" e L*(0,T; H' () N L§()); (31)
9" € C(0,T; H%(Q)) N LA0,T; Hy(Q)), 89" € L*(0,T; H'(Q)). (32)

10



Furthermore, for all n > 1, one has:

m < 9" < M, (33)

and there exist two constants K1 and Ko only depending on the domain and the data such that

Allao? (0,1;L2) T Xtm HVA’WLHB (0,1;L2) T 8M2 10:0™ 172 o.r:m) < K, (34)
|vumvv| T F AT <K (35)
H C(OjT;]LQ) t L0 T:H) T g L2(0,T;H) 1-

The proof of Theorem [3|is done by induction on n. We consequently assume that at iteration n — 1, we

have

9" e C(0,T; HZ (), v tec(0,T;V), (36)
m <9 t) < M ae.tel0,T], (37)
MAd" T (1)||5, < Koy ae.t € (0,7, (38)
|Vatm=Tvv=o) i <K, aete0,T]. (39)

Then, properties to will be established at iteration n. Consequently, properties to will
also occur at iteration n. Several steps have to be followed. First, the existence and uniqueness of the
temperature ¥ solution of are established in subsection (Lemma [7), as well as some a priori
estimates (Lemmas (8] and E[) Then, the existence and uniqueness as well as some a priori estimates are
proved for the velocity v™ solution of in subsection (Lemma . Consequently, the proof of
Theorem [3| can be easily obtained in subsection [3.3]

3.1 Existence, uniqueness and a priori estimates for the temperature

Existence and uniqueness We start by showing the existence of the temperature ¥". Note that we

will obtain existence only under the smallness induction hypothesis on 971,

Lemma 7. Let us consider the weak formulation of equation given by:

(O™ ) g g+ (VOL VO, ) o 4 20 (VORL VO, )
+A (9o, VU)LQ =0, aetel0,T], V¥ne& H(Q), (40)
9(0, -) = 9.

Under induction assumptions (36)-(37)~(38)), the system admits a unique solution 9™ € C(0,T; L*(Q))N
L2(0,T; HY(Q)) such that 8;9™ € L*(0,T; H()').

Proof. For a.e.t € [0,T] and V9,7 € H*(Q), we set:

a(t,9,n) —/ﬂnv”l-V19+2)\/Qv7V19"1-V19+)\/£219"1V19-V77. (41)

Then we consider the right-hand-side of . The first integral is zero because v*~! € V. Thanks to
, the second one verifies

/\/ VIR > Am [ V92 .
Q

11



For the third integral, we use Sobolev injections and a Gagliardo-Nirenberg inequality to obtain:

‘2)\/19%9” 1 w' < CA||av 1HL2 191377 1911}

A
< S 195 + HM" l7a 19112 -

Thanks to , we get:

Am CA 1114
a(t,9,9) = Am||VI| 72 — = 10l — 5 [|A0" 7|2 9]

)\m

C
> 2 00— (At 5o i3 101

Lemma M allows to conclude. O

Maximum principle. We now check the maximum principle for ¥”. Again, the induction hypothesis

of smallness of 9%~ 1 is crucial.

Lemma 8. Let us assume that ¥y satisfies . Under the smallness induction hypotheses f—,
9" wverifies (33)).

Proof. The equation satisfied par m — 9" is
< B(m — ") > +/ VLV (m — 9" + 2)\/ D VIV (m — 9"
Q Q
+ )\/ IV (m —9") -V =0, VYne HY(Q).
Q
We denote by 9" = max(0,m — 9") and choose n = 9". We get:
n n ,n—1 n n n—1 n n—1 n|2 _
e Pt /19 -Vq?_+2/\/gq9_w9 -Vﬂ_+)\/gq9 VOn 2 =0

The same arguments as those used in the proof of Lemma [7] show that

1d

n n C Am n
3 105+ 25 190 < (g + 20 ) 0m

Then, Gronwall’s Lemma gives

t C
om0, +)\m/0 V072, < [0 (O)|% exp ((WK22+)\m> T> aet € 0,7,

Since 9" (0) = 0, we deduce that ¥"(t) > m a.e.t € [0,T]. The upper bound is obtained in a similar
way. O

A priori estimates We now give some a priori estimates for 9" that will allow us to pass to the limit.

Lemma 9. Under the induction hypotheses ———, there exists a constant C1 > 0 only

depending on the domain such that

A* 1A |72 + A2 m [|VA"|[72 + =

Cl

0"

L (vl + A A0 7+ XE M) A A0™ s (42)
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Proof. Let § > 0 be a parameter introduced to conveniently balance the estimates. We multiply . by
%@19" to get a first equation. Then we take the gradient of and multiply it by 2V o,9™

- — AVAY"
to get a second equation. Summing these two equations and integrating by parts (the boundary terms
vanish because 9" € H%(12)), we get

/Aﬁ"@tAﬁ"Jr)\Q/ﬁ" Hyagn? 4 2 / o2+ 2 / Vo0 2
Q
:)\/ VM"-V(VH-wn)+A2/VM"-V(Vﬁn—l-vm)
Q Q

—\? / (VAY™ . V") Av™ + 2
Q

/ O v v 4+ oA
R

- / bR VAT L v L
Q
(a I 9T A + / Vo9" -V

S\
= / Vo - V(VInTL . vyn) — =
m Jo
_ oA I V9" - VAY™.

nfl . Vﬁn)

(V9™ - Vo~ H Ag"
m Jjo
Thank’s to Hélder and Young inequalities, we obtain

Ad

. 7 25 M7
2dt JA9" 22 + A2m (5 —

L2 IVAT I + o 0"

< S (vt w2, + HV(wn—l-w")HL2 2 ([T A0 s )

C
22 (V5 199 4+ X2 ([ 70 [ 90" 0+ 22 07 [ 189772

We now use Gagliardo-Nirenberg’s inequality and associated to the rough estimate

IVO" |74 < C A" 12 | VA" 12,
to get:

Ad n 7 20 M? " "
ST 7+ X2 m (o = = ) VA + o ||atz9 1
05 n 2 n n n— n n
< 22 (Vv e A9 o VA" 12 + A2 ]| A0 1HL2 A" 2 VA" 12
N2 M2 | A" 2 [V AV 2)

Using Young’s inequality yields:

3

Ad 3 25 M?

§d—HA19"H%2+)\2m(4 7)
Cs

A2 (HV " AT e + A A0 ||A19n||L2+/\4M4||A19n”L2>

2

IV A9 |72 t5- Hatﬁ”HHl
<

We finally choose § = %(< 1) to obtain (42).
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3.2 [Existence, uniqueness and a priori estimates for the velocity

To our knowledge, there is no existence result of a solution to the equation in the literature. We
therefore follow the method of [6] to establish the existence of a solution in addition to a priori estimates.
We are looking for v € L?(0,T; D(A)) N L>°(0,T, V) such that 9,v"* € L?(0,T;H) and satisfying
a.e.t€[0,T], YweV,

1 n—1
< Opv" w) +5b (Vﬁn ,v",w> + (u(™)VV", VW) 2
L2

rl?n

—i—)\c( n_gn. ﬂ—n) - (ﬁf”’w>p’

with

= 1 (Vv = Viv) Vi - w,
919

where 9" € C(0,T; H%(2)) N L?(0,T; H3,()) is the solution of and especially satisfies (33)).

Lemma 10. Under the induction hypotheses ———, equation admits a unique solution
v™ such that

vt € C(0,T; V)N L*0,T; D(A)) ; 9™ e L*(0,T, H).

Furthermore, v"™ is bounded in these spaces and there exists a positive constant Cy such that:

d
dt
4 4,,4
e " (A2 [ 1n M|* m +K§)
ATmM min (| In M|7, |In M|1)

m2 \?|1In M|?

a2

(19")\VV"!2 Hf)tV”Hiz +

(I MK+ X KD) [ (o) ov

M
+ oy Il } (44)

Proof. We will apply the continuity method. We first set:

X = {v e L*0,T;D(A)); ov € L*(0,T,H)},
Y = L%(0,T;H) x V,

equipped with the following norms:

vl = ||V

2m?|In M ?

2 2
coriy T HatV”LQ(OvT?H) s WVleerm

and

2 M
(€ v0) Iy = ||V vvo|| |, + =5 11320, -

14



It is well known that X < C(0,7; V). We also set

m+ M
2 )
and define for «a € [0, 1], the operators L, : X — Y by

1/9\:

bav = <P <<1_5a * 5) O + = (v V) — din(u(0")VV) + -

g ﬁ—n(VV - V%)Vﬂ”) ,v|t:0) .

First of all, we prove that Ly maps X onto Y by using a Faeedo-Galerkin approach. For each N > 1,

we set Vy =< wi,--- ,wy > and consider vy the unique solution of

a.e.t €10, T], VYw € Vy,

1 n—1
<A8tvN,w> +b (V,VN,W> + (L") Vvn, VW) 2
9 L2 un

+Ac (VN,19”, ;%) = (1;;17W>L2 )

vn(0,-) = vo.

(46)

To show that the sequence (vy) converges toward v as N goes to infinity, we will prove an a priori
estimate by choosing w = dyvy + d Avy in . As in the proof of Lemma |§|7 the positive parameter §

will allow us to balance the estimates. We thus obtain:
1 ) 0 1 n—1
5 OvnllTe + =, vy - Avy + i ﬂ—n(v V)VN - Ovy

1
+ 5/ o (v Vv - Avy +/ p(")Vvy - Voyvy — 5/ div (u(v")Vvy) - Avy
Q Q Q
1

on (VVN — VtVN)V’ﬁn . AVN

19"

f f
= ‘8VN+(5/-AVN.
/919” ' oo

On the one hand, we observe that with :

1d
2dt

1
+ )\/ —(Vvy — VtVN)Vﬁn - OyVN + (5)\/
Q Q

1
/ W) Vv - Vv = / p()Vvnl? + / WV T V2
Q Q Q

2

_ )‘/ M/(ﬁn)ﬁnflAﬂn‘vaF
Q

A
+/u’(19”)v19"1-v19"|va?
Q

2
On the other hand, using the Helmholtz decomposition , we have:

—/ div (u(9")Vvy) - Avy :/ w()Avy - Avy —|—/ w(")Vgn - Avy
Q Q Q
- / W (™) (VI - V)vy - Avy.
Q
Note that because Avy € V, an integration by parts gives:

/ p(")Van - Avy = —/ W (97) qn VI™ - Avy.
Q Q

15



Then, we obtain:

1d
2dt Jo
5 1 n—I1 1 n—1
=—= [ vy -Avy — —(v V)V -Ovy =0 [ — (v -V)vy - Avy
9 Ja QU o U"

1 A
—/;/(ﬁn)vnl-Vﬁ”\VvNF—/u’(ﬁ")Vﬁ”l-VWL]VVNF
2 Q 2 Q

1
H(O")IVVL? + = ool + 6 /Q (") Av

A
5 [0 A0 P 5 [ ) an 9O v
Q Q
1

on (VVN — VtVN)Vﬁn . 8tVN

+5/,u’(19") (Vﬁ”V)vN‘AVN—)\/
Q Q

1 f f
— 0N [ — (Vvy — Vivy)VI" - A — -0 § | — - Avy.
/Q g (Vv VN) VN + /Q g OvN + /Q g Avw
To obtain the wanted estimates, we notice that with the particular choice of the viscosity @, we have:

AMIn M| < p(9™) < Alnm],

We detail in particular the estimate of § [, 1/(9") qn VO™ - Avyy, the other ones are classical and can be
obtained involving Holder, Gagliardo-Nirenberg, Sobolev and Young inequalities. Let € > 0 be a small
parameter and note that [|[Vql||;» < C||Av| ;.. Using Lemma 5 we have:

CA
5 [ w0y 9o ] <6E2 a2 a2 100" vl

<6 A M vl + 5o A0 s vl
<deA|In M| |[Avy7= + Ciif | 'I'HA Jiﬂgi
. (W |AvalPs +C (1 + m) uvm%)
<26\ In M| |Avyl?,
0 j"l'f%!i? (1 ¥ m> I9vlZ (47)
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Thus for € small enough, we obtain:

1d/ , 1 ) 3 25 )
- 9" VVN + = aVN +6)\ In M - T = AVN
51 | BTN+ S0+ 0 r<4 T ) vl

92 5 1 -,
< .
_C{ <5m4)\lnM| + /\3!1I1M|3m4 + /\5|lnM|m2> HVV HL2
A3 2o M4
<5m2|1HM! Jr53m4|lnM|3

5\ |AD"(|72 A3 2 A
+\lnM\3m4 ( +\lnM\4m4 +(5\lnM]m4 1A 22

+ )\73 HAﬁn—lH‘1 HVVNH22
dm?|In M]| L2 L

9 5 )
—+—— | |If .
+QM+MmMmJHM%

We now choose § = W%w. In order to reorder the terms and to have a simplified expression, thanks to
the fact that m < 0 < M, we have:

@ Mt _ M
m#

< < <
mA 93 m7

m2 9

Then, we obtain:

1d N 1 9 A2m |In M |? 9
2dt (9 )|VVN\2 + M [0rvN 72 + 16 AV N |7
4 n||4
- _oM L4 A
A2m7 min(|In M|?; | In M|5) |In M |* m*

< (199 + A A0 e + X A0 1,) IV

CM
— IIfllZ-

With the induction hypotheses (38]) and and the previous estimate , by noting that ||Vvy H%z <
,\\1nM| fQM )|[Vv|?, we obtain:

1d

A2m |1n M|?
[ nmievat + 53 L o + 2 ME

2
o Al

2 dt
CM* (A2 |In M[*m* +K22)
“ATmll min(|lnM|7, |In M|11)

C’M

(1| 2K} 4 A K) [ o[
Q

Finally, we deduce from Gronwall’s Lemma that (vy) is bounded in L2(0,T; D(A))NL>(0,T; V) and that
(0yvy) is bounded in L?(0,T;H). Then, standard limit arguments prove that (vy) converges towards v
the solution of the problem Lyv = (f,v(). This shows that L is surjective onto Y.

17



Now, we consider v € X and « € [0, 1]. We multiply the equation of the Cauchy problem L,v = (f, v()

by 9yv 4+ dAv. The same calculations as those made previously allow us to obtain:

m? A% |1In M|?

2
AV

1d 1

- 29% 2 - 2
5t . HOMIVYE + ol +
_ M* (X |In M|*m* + K3)

— A"mM min (|In M|7, | In M|1)

CM
o IEIs (48)

(1M 2K 4 A K) [ o)
Q

+

We now apply Gronwall’s Lemma and get:

M* (A2 [In M[*m?* + K3)
ATm! min (| In M|7, |In M |1)

IvII% < exp (CzT (I M|72KF + X K§)> < Lavly,  (49)

where Cy is a constant only depending on the domain. From Lemma [6] we obtain the existence of the
velocity v™ solution of and the estimate . The proof of uniqueness is classical.

O

3.3 Proof of Theorem [3|

Using the previous results, we can now easily prove Theorem Lemma |§| implies and Lemma
implies . Then, Lemma@ associated to and and Gronwall’s Lemma implies . Lemma
implies (30) and . Finally, De Rham’s theorem allows to obtain the existence of the pressure as well
as . The proof is complete.

4 Convergence of the approximate solutions towards the strong solution

We established in section [3| a priori estimates on the sequence (v, p", 9¥"). We now show that it converges
towards the unique strong solution (v, p, ) of 77@ and we exhibit convergence rates. We show in
particular that (v, p™,9") is a Cauchy sequence in appropriate spaces. For that, for a generic variable a,
we define a(™®) = "+ — ¢". Starting from and , we write the problems satisfied by 9(™*) and
(V(n,s) , p(n,s));

atﬁ(n,s) + v(n=Ls) vynts 4 ynl. Vﬁ(n,s) — \9(n—Ls) Aggnts
N LAYs) L AT Ls) L ggnts 4 vyl vglns) = g, (50)

9™)(0,-) = 0,

18



and

(n,s)
opv\" _ div ( (ﬂn)vv(n’s)) +vp(n7s) —_
9 s)
Watvn+s + div ((M(ﬁnJrs) _ N(ﬁn))vvn+s)
(n,s)
_|_Q;:+S T (Vn+s—1 . v)vn+s _ %(V(n—l,s) . v)vn+s _ ﬁin(vn—l . v)v(n,s)
(n.s) (51)
_1_)\19134_8 5 (an—i-s _ Vtvn—l—s) vynts %(Vv(n,s) _ vtv(n,s)) V197H_5
A (wyn — wiyny g = O
L v v Pnts gn =’
v(9)(0,.) = 0.
4.1 Proof of Theorem [1]
We first have to prove that:
(TARIC] Py /t s H o CIAIE )H as < p| Y : (52)
H o ‘ 12) 0= n! ’
1
2

/H ns) SD[(BJ)HI . (53)

For that, we will obtain a priori estimates for the sequences (9("*)) and (v(™*)) from equations and
and then apply Gronwall’s Lemma with recurrence.
We start by multiplying equation by n = %8,519("78) + X)) — AAY(™S) with § > 0. After
_|_ _ ‘ (n 5)

integration by parts, we have:
2
2dt 2 dt HV L2 A /Q
:)\/ g1 Aﬁ(n,s) (5at,l9(n,s) + )\ﬁ(n,s)> - / v(n—l,s) . vﬁn—i-sn o / vl v,ﬂ(n,s)n
Q m Q Q

+A / 9L Ay — A / Vo) gty — / Vot vyl g,
Q Q Q

9, 9

= Ha 9 8)

Usual calculations allow to obtain:

2 2
+)\2m<3 35M>HM"S §

2 1977,8
Jﬁ*’ 4

2dt

vy’
L2

(n—1,s)

2 112
v,

Cs
+nl@AW“hAWAW“sz

V,ﬁ(nfl,s) 2
.2

+A2 | AL [ VAT

= I

+ A2 [vaent 3, vars)

2
2]’

vﬁ(nfl,s) 2
L2

+)\2 HAﬁm+s HvAﬁnJrs

= .2
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By choosing § = 12M2’ we get:
(ns 7‘ (ns) 7HA (ns)
24M2 H@ NPT R P LA %
2
n+s n+s n—1,s 2 n—1,s)
< {llaor),, ey (v, + 2 o) 54

+ ([[av=tf7s + 22 Va0, + 22 a2 [0

2
H |

Multiplying equation by v we have:

v ||

1d / )
1d () [Ty ()
1 9(nss)
== / AV [ oy = [ () - ()T v
g N 1
n+s—1 n+s  (n,s) _ = ((n—1.s) . n+s . (n,s)
+ == ﬂn(v V)v v(ms) /Qﬁn(v ). V)v \%
9(m,3)

(V nts _ iy n—l—s) vonts . V(n,s)

[ Lt oy | s
/Q 19” (V V)V v + )\ Q 19n—i—s 7911

1 1
o )\/ 7(vv(n,s) o vtv(n,s)) v,ﬂn—l-s . v(n,s) - )\/ 7(vvn - vtvn) vﬁ(n,s) . v(n,s)
QU QU

91,5
_ £ v
/Q ,,9n+s ﬂn

The mean value theorem associated with the particular expression of u give:

[ 0a07%) = (gt gy
Q

<A / ’st) Vvt gy )|
m Jjo

Using standard estimations, we obtain:

2
1d ||v) Al In M| (n.5)
—— HVV
2d \/19” 1.2
c n||2 n,s c n+s||2 n,s 2
é)\\lnM|m4 ”3“9 I ||V ) NI mA e[l [0 .
C>‘ n+s||2 7,8 2
+ | In M| m2 [Av [ 9 = (55)

N Hmw)
L2

C n—+—s— n—-—s n,s
5 994 974 s ([

2
H1

v ke A P e R o M P el
b Sl a0 (v, + 2 Hﬂ 1)

+11r1z\04;A3n¢HM"+sHig v |1n§47 vz o]

T el 1 2 L]
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We now multiply by 2 A, by 2 M and we sum. Since

2

2 (n,5)
HV( ” LQSM ‘:/W LZ,

we thus obtain

ap, () +n(t) < en(t) an(t) + dn(t) an-1(t)

with
2 (ns) ||
an = N2 [0+ M ‘:/W R
by = T Ham("vs) L i Nm HMW) L AM|In M| HVV(n’S) .
12 M? L2 L2 2

n = g{i [AVPH 2, + A [ VAT |2, + A M2 + N [in M| m? 1029 1771
+ sz 10 i+ s 1A
s 19V v+ s 199 s
o A0+ A
+ 3T VY5 + e 1 }

= e M 920" e 199 s s}

Thanks to Therorem [3| (¢,) is bounded in L'(0,T) and (d,) is bounded in L?(0,T). We thus can apply
Lemma 3| As a,(0) =0, we get:

t
onlt) + [ 80(0) < Dl o) [ !

with B and D some positive constants, which proves and . Consequently, (v™) is a Cauchy
sequence in L*(0,T; H) N L%(0,T; V). Thanks to the estimates of Theorem |3} it converges towards v €
L>®(0,T; V)N L*0,T; D(A)). Similarly, (9") converges towards 9 € L>(0,T; H3(2) N L*(0,T; H3(12)).
We easily show with a limit argument in f that (v, p, ) is solution of 77@ and 7,
p being obtained thanks to De Rham’s theorem. The rates given by formulas and are obtained
from and by passing to the limit for s (the bounds being uniform with respect to s).

It remains the question of uniqueness. We proceed in a classical way and suppose that (vi,pi, 1)
and (v, p2,¥2) are both solutions of 77@ and f. We note ¢ = 91 — 92, v = vi — vy and
p = p1 — p2. The system of equations satisfied by (v, p, ) writes:

09 +v1 - VO + v - Vg + AV(91 + 02) - VI — A1 AY — WA, = 0,
9(0,-)=0, V9-n=0,

(56)

21



1 ¥ 1 1 U
0—18tv o 1928tV2 + — o (vi-V)v+ ﬁ—l(v V)va . = 910, ——(v2 - V)va
—div (u(91)Vv) —div ((u(01) — p(92)Vva)) + E(V‘H — Vivy) VY
)\ ; A0 ; v
_ _ _ - f
’191 — (Vv = V'v)Viy 9195 (Vvy — Vivy)Vis + Vp 9105
divv =0, vo(0,) =0, vl|g, =0.

We multiply by A2(—Ad + ) and by M v. Thanks to standard inequalities, we obtain:
d(8) + b(t) < a(t) e(t),
with

2
alt) = M\ I T
2

b(t) = X3 m [|AY||22 + AM |In M| | Vv,

C M3 A2 m?
o(t) =

2 2 4 4
S T A7 s | a2 190 + 10l + 19wl + Vvl

+ | AYL| 72 + (| AVl + |!in2> + CA([[AY1 ]| 2 + | AV 2 +m) .

As a(0) = 0, the Gronwall’s Lemma implies that a(t) = 0 for any ¢ € [0,7]. We thus deduce that 1,

and v; = va. With De Rham’s theorem, uniqueness of p at zero average is straightforward.

4.2 Proof of Theorem [2]

In order to get , and , we only need to prove the following estimates:

N

A A A e A
o (ol ol Jor <o 285

N A

=1y

(60)

Taking the gradient of multiplied by n = %V@t'ﬁ(”’s) — AVAY™3) with § a positive parameter, we

get:

+)\2

—Hvaw@
L2

6/\
m Jjq

+ )\/ V(ﬂ n—l,s)Aﬁn+s) n+ )\/ A’L9 n,s) vyrl. n— )\/ V(Vﬂ (n—1,s) v,ﬂn—‘rS) n
Q Q Q

Ad ) Agms]
+ 5l

9= 1VAQ9(HS) Va,ﬂ(ns /v (n—1,s) . 1971-"-8 . /v n—1 Vﬂns))

—A / V(VonTt. vy g
Q

22



From (36) and usual inequalities, we obtain

- A,ﬁ’ns
ot 25

<G {Hv(vm_l,s) gt
m

2 3 T7T5M? 2
2 2 AY(ms)
L2+)\ m<4 2m? )HV v L2

) LQ-i—HV(Vn_l-Vﬁ(n’S)) i

£22 || (@01 Ayt ; + 22| agts gt

L2

22| V(T gt ; 2 [V (Tt )

2
2]’

< L 20 [0 s o
o e 7Aoo
a2 [|vagnts|2, ot » Hﬁ(n—l,s) H2+)‘2HVA7971_1H; g
2 05 o e s o)

With § = 14M2’ we obtain:

I 7o 2 +§& A QL? = [vaee iz
gf;;{(\>Avn-1\\L2+A2HVM-IHL2) a2,

+ | A9 VA9 L (v (Al

)
HQ}. (61)

We now multiply by w = 9yv(™9) 4 §Av(™3) with § a positive parameter. We obtain:

(n,s)|2
/ ‘8tV | / (ﬁﬂ),vv(n,s)Z_i_(s/ N(ﬂn)‘AV(n7S)|2
2dt o

(n.9)
— / L.Awnsul / W (0) 09" [V P 46 / W (9" ™) V9 Av )

A2 Va2, Hﬁ("—l,s) §n—1)

H1

s [ ) (Ton v a4 [ P g ke
Q a Q PJn+s gyn t
9(n,s)
/ div (( (9"+s) — (ﬂn))anJrs) W +/ (Vn+571 VWS L w
Q ﬁn—i—s ﬁm
/ ﬁn (n—1,s) . n+s W — /Q ﬁin(vn—l . v)v(n,s) W
(n,s)
" 19”+5 g (VYT SV VT w - A/Q qgin(Vst) — Vi) vyt
L S St Lo
)\/Qﬁn(vv Vv )Vﬂ w Qﬁn-i-sﬁnf w,

where for n > 1, ¢" € L>®(HY(Q) N L3(Q)) is such that —Av™ = Av" + V¢". Let ¢ be a small positive
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parameter. Similarly to , we get:
‘5/ M/(ﬁn) q(n,s) v . Av(n,s)
Q

2 SA[J A9 7. |AY" | 72 (ns)||?
LZ—i_C6 m? | In M3 1+\1n]\4|4m4 va L2’

<2e6A|In M| HAV(n’S)

Furthermore, one has:

Hatv(n78)Hi2 (n,s) 2
207M+€6)\|IHM|HAV 12

[ div () = oy wve) -w‘ <
Q
6 n-r—s n n—-+s 2
+Cg (M+)\|h1]\4|> Hle 19+)—[,L(19 ))VV +)HLQ,

and the mean value theorem and allow us to obtain:

n-+s n n-s 2 n-s n—+s
[ div ((p(9""*) = p(9 ))Vv+)HL2§H (™) = (™) Vv
< 72 Hﬁ(n,s)vvnﬁ-s < C)\Q HA n+5H Hﬁ(n,s) )
m H? H?
With e small enough, we thus obtain:
o7, 14 3 50M
MY ez 2@ [ ) wveo)2 4 (2 20 Vs jmMm HA (n.9)
oM +2dt/9“( IV AT~ X mar oz ) O M ||AY
A 2 PN PN 1A9" |7 2
< A gn (n,s) L 1 L H (n,s)
_C{5m2|lnM| 1009 s ||V L2Jr m*|In M|? + | In M|* m4 vy L2
P 4 2
A" (n,s)
+ m4|In M |3 | Iz Vv L2 }
5 1 n+s||2 n,s 2 )‘2 n+s||2 n,s 2
o (a0 syim) v Do oo, 2 e oo,
1 n+s—1][2 n+s||2 n,s 2
+ IV AV 0
1 n+s n+s n—1,s 2
S 1oV v o [T
M + A\16M| 1114 2
_ AlmM] n— (n,s)
TS A I M| IVl vt
)‘2 n+s||2 n+s||2 n,s 2
+ g 189 [JAv e 0
(M+ X 1f1M) N 2
n : | \ HAﬁnJrsH; vy ()
m* 6| In M| L2
)\2 n n,s 2 1 n,s 2
A a0t | e o H}
Alln M|m m?
We choose § = %. To simplify the expression, we note that thanks to U < M, then M +
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SNITYT| < C M. We also use that |9 g2 ~ [|9]| g1 + [|AD]| ;2 on H%(Q) in order to get:
n

[ov™l}: 14

1d A [In M2 m?
2 M 2 dt

m
Av(s)
40 M H v

M A2 (| A9"|7, 1A9"|7, M 2
< 9 L L n+s
_C{m4|1nM|2 190" V7 + m2 M |In M|? + | In M|* m* vy v 22

M M3 14
g [lAv s + m Vv

POV 2+

L2

+&|
mS| In M|?

X (HVV("’S) ’
2

M n+s n+s
+C S IV Jave|

4 M
P P A }

2
L2

Vv(n—l,s) 2
L2

+ A2 HMW)

)\M

M
S AV [V A

M n-+s 2
+c{m4 o2, + .

)\ M n4s n+s M 2 n,s
95 AV + 1 } |
2
We multiply by 2 A and by W and we sum. By using
n
ns) H n n,s)
Hv" )\|1an Va@mvve|
we obtain
A (1) + b (t) < en(t) an(t) + dn(t) an-1(t) + en(t),
with:

an =A2[| 20

3 | 1111M| | Vitmwv

L2

12072 At M[m
MMM | 200

A
AmA|In M |3

M AD" 72 1A9"| 72 M 2
— = |1 o n+s
m2 M MP \ " T Tmarftmd ) T 3 M| m? [Bev™ |2

M3 )
+ ez 1AVl + 16 75 [ In MJP (A

S

Hvat (ns) 12 +

+23m HVAﬁ(”’S)

" 14M2

1 n—1||2 A n—1]|2 n
C":C{mum Y+ 2 feaot2, + 00"

M3\ 4 M M
A'ﬂnJrS Av" 2 f 2
+ 3” HL2+)\|1nM\m2 lAv |’L2+)\3|lnM\m4 I£1z2
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A n-r+s n—-+s M n-+s n-—r+s
o =0f 2 P [93  + 5 fo ave,

A3 n+s||2 (n—1,s) (n—1,s)
en =CZ- || VAT, [t it
m H? H!
M ns||2 AM ns||2
ol o+ e
M n+s— 2 n-rs 2
b I e
AM n+s||2 M 2 (n,s) 2
+m4\lnM| las HL2+)\|1nM]m4 HfHLz}Hl9 H!

Thanks to Theorem [3| (c,) is bounded in L'(0,T), (dy) is bounded in L?*(0,T) and (e,) € L'(0,T).
Moreover, (e,,) satisfies

(B t)"l] : (63)

2
lenlZ10 < D [(n_l),

because of (52). We now apply Gronwall’s Lemma and note that a,(0) = 0 to get for ¢ € (0,7):

1
2

(B t)nfl
(n—1)!

ol By r’
(n—1)!

an(t) + /Ot bn(s)ds < D

(B?f)">2

ol (5

where B > 0 et D > 0 are constants not depending on n. This shows estimates and . We
obtain by multiplying by Vp(s),

Remark 2. Note that the loss of convergence between estimates of Theorem [1] and Theorem [] is due to
the estimation of the term V"LV AY™ S This is a consequence of the non-linearity of the temperature

equation.
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