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ABSTRACT

Cadences, as breaths in music, are felt by the listener or
studied by the theorist by combining harmony, melody,
texture and possibly other musical aspects. We formalize
and discuss the significance of 44 cadential features, cor-
related with the occurrence of cadences in scores. These
features describe properties at the arrival beat of a cadence
and its surroundings, but also at other onsets heuristically
identified to pinpoint chords preparing the cadence. The
representation of each beat of the score as a vector of ca-
dential features makes it possible to reformulate cadence
detection as a classification task. An SVM classifier was
run on two corpora from Bach and Haydn totaling 162 per-
fect authentic cadences and 70 half cadences. In these cor-
pora, the classifier correctly identified more than 75% of
perfect authentic cadences and 50% of half cadences, with
low false positive rates. The experiment results are con-
sistent with common knowledge that classification is more
complex for half cadences than for authentic cadences.

1. INTRODUCTION

1.1 Cadences

Music, like all languages, is organized into structural units.
In Western tonal music, these units often end with strong
harmonic formulas called cadences, from the Latin cadere,
“to fall.” Despite their structural function, cadences are
hard to define. Based on a review of dozens of music the-
ory papers, Blombach defined the cadence as “any musi-
cal element or combination of musical elements, including
silence, that indicates relative relaxation or relative con-
clusion in music” [3]. This definition highlights the way
a listener (whether musically trained or not) can hear the
presence of a cadence by feeling that the music “breaths”.
A cadence is generally characterized by local musical el-
ements, such as a specific harmonic progression and a
falling melody. However, these elements do not necessar-
ily imply a cadence. A global or high-level structure such
as the sonata form may also induce the impression of a ca-
dence [10].

c© Louis Bigo, Laurent Feisthauer, Mathieu Giraud, Flo-
rence Levé. Licensed under a Creative Commons Attribution 4.0 In-
ternational License (CC BY 4.0). Attribution: Louis Bigo, Laurent
Feisthauer, Mathieu Giraud, Florence Levé. “Relevance of musical fea-
tures for cadence detection”, 19th International Society for Music Infor-
mation Retrieval Conference, Paris, France, 2018.

Cadences are usually classified by harmonic progres-
sion. The authentic cadence is characterized by a dominant
harmony (notated V) followed by a tonic harmony (no-
tated I). In the American terminology, when both chords
are in root position and the melody ends on the tonic, the
authentic cadence is said to be perfect (PAC), otherwise it
is imperfect (IAC). If the IAC is in root position (but the
melody does not end on the tonic), it is said to be a rooted
IAC (rIAC). The half cadence (HC) ends with a dominant
harmony, generally in root position. The deceptive cadence
(DC) is an authentic cadence where the expected final tonic
is replaced by another harmony (often VI). Some authors
theorize the evaded cadence as a particular IAC, while oth-
ers see it as a DC-like progression but including a melodic
break, for instance while repeating a phrase [19]. Some
scholars do not consider the plagal progression IV/I as a
cadence but rather as a post-cadential prolongation [4].

Each cadence type provide a different feeling of clo-
sure. The strongest cadence is the PAC, followed in turn by
the rIAC, IAC, HC, and the DC and related cadences [20].
Some traditions consider the rIAC to be very conclusive.
For instance, French music teachers refer to both PAC and
rIAC as cadence parfaite. Using a preparation chord be-
fore the dominant chord, generally a subdominant har-
mony (SD, that is II, IV, or V/V), strengthens the salience
of a PAC/rIAC. In contrast, DC and related cadences renew
tension, extending the musical phrase and delaying closure
until a more conclusive cadence is used.

1.2 Cadences, Musicology and MIR

Modeling cadences is a current challenge in musicol-
ogy [15]. Although cadence definitions found in music
education textbooks are often quite short, music theorists
agree on the difficulty to define cadences because of the
variety of their realizations observed in the repertoire [4].

Cadences are therefore usually studied within the frame
of one specific corpus – see for example Martin and
Pedneault-Deslauriers’s study of HC in Mozart’s piano
sonatas [14]. However, more systematic analyses of large
corpora would help to understand the evolution of compo-
sitional choices over time. Rohrmeier and Neuwirth sug-
gested a first characterization using grammars, based on
the degrees and the bass line [18].

Detecting cadences throughout the score requires a spe-
cific training to find clues pointing out to the breaths in mu-
sic. Can we algorithmically detect cadences from a score
encoded in symbolic notation? Some works in MIR have
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Figure 1. Haydn, op. 17/4, iv, PAC at measure 8 (off-
set Z). Compare to Figure 1 of [21]. Features describe
here the constitution of the Z chord (Z-in-perfect-triad, Z-
in-perfect-triad-or-sus4, Z-highest-is-1), voice leading to
Z (Z-1-comes-from-7 1©, Z-3-comes-from-4 2©), rests af-
ter Z (R-after-Z-rest-lowest, -middle 3©) and the metric
structure (R-Z-strong-beat). Features also describe rela-
tions with chord Y (Y-Z-bass-moves-compatible-V-I 4©, Y-
Z-bass-same-voice), and cadence preparation (X-Y-bass-
moves-2nd-Maj 5©).
Note that the heuristic choice of a single offset Y implies
here that the features Y-in-V7-3 and Y-has-7 are not true,
even if the dominant chord actually contain several pitches
3 and 7 (circled notes). Nevertheless, these pitches are
caught by the tonality features (Z-bass-compatible-with-I,
Z-bass-compatible-with-I-scale) and some of them are con-
sidered by the voice leading features ( 1©, 2©).
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Figure 2. Haydn, op. 17/5, i, HC at measure 8. Fea-
tures notably describe here a voice leading (Z-6-comes-
from-7, Z-4-comes-from-5, Z-1-comes-from-2 1©) contin-
ued by a 6/4 suspension (Z-6-moves-to-5, Z-4-moves-to-
3 2©). Other features also describe the tonality compatibil-
ity of an HC (bass-Z-compatible-with-V, circled notes, but
both Z-bass-compatible-with-I and Z-bass-compatible-with-
I-scale are also true due to the squared c#) as well as bass
movements (Y’-Y-bass-moves-chromatic, Y-Z-bass-moves-
2nd-Maj 3©) and the metric structure (R-Z-strong-beat).

focused on melodic cadences [25] and a few studies have
tackled the problem of the identification of harmonic pro-
gressions [16] or their representation as musical trajecto-
ries [1]. The authors of [7] took Rohrmeier’s works further,
extending it into a system deriving harmonic relations be-
tween chords, where grammars rules were inferred for jazz
harmony. Currently, only a few algorithms recognize sim-
ple cadences [12]. We previously suggested a rule-based
detection of PAC/rIAC in fugues [9] and used it in a study
on the sonata form [2]. Recently, Sears and colleagues [22]
used the software IDyOM [17] on a corpus of Haydn string
quartets to show that music predictability increases at ca-
dential points and decreases on the following note.

1.3 Contents

Our goal is to identify binary, musical, and local features
that coincide with cadences and that can be used to train a
model that detects new cadences, either PAC/rIAC or HC.
Rather than agnostically discovering cadential features on
the musical surface, we intend here to confirm and study
traditional music theory knowledge regarding cadences.
The proposed strategy avoids chord segmentation, which
is itself a difficult MIR problem. Section 2 details the se-
lected features and Section 3 describes the learning pro-
cess. Finally, Sections 4 and 5 discuss the application of
the method on Bach and Haydn corpora.

2. MUSICAL FEATURES AT THREE ONSETS

Each beat Z of the score is considered as the potential ar-
rival point of a cadence. A set of 44 binary features is com-
puted at each beat. These features are then used to train a
classifier whose aims to predict whether a beat corresponds
to the arrival point of a cadence or not. The features aim at
detecting cadences at a local level, i.e. the surroundings of
the cadential beat including its immediate past, presumably
corresponding to the preparation of the cadence. The idea
is to try and detect SD-V-I progressions for a PAC/rIAC,
and progressions ending with V for an HC.

What we propose here is a simple heuristic focusing on
three specific onsets: Z, Y (Z) and X(Z), or for short Z,
Y , and X . Most of the features describe sets of notes
sounding at these onsets (even when they begin before),
namely chord(Z), chord(Y), and chord(X). We therefore do
not start from a complete harmony analysis nor a chord
segmentation, that can be error-prone. Even when the
methods finding Y (Z) and X(Z) return approximate on-
sets, the computed features may be relevant.

2.1 Features on the Arrival Point Z or around it

The arrival chord of a cadence is usually a perfect triad,
possibly with some suspensions. A first set of features de-
scribes this chord and its immediate neighborhood:

• Z-in-perfect-major-triad (respectively Z-in-perfect-
triad): chord(Z) is included in {1, 3M , 5} 1 (resp.
{1, 3m, 3M , 5})

1 Pitches in underlined figures (i.e. 1, 3, etc.) are here computed by the
interval modulo octave relative to the bass. As some chords are not in root
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Figure 3. Bach, fugue #15 in G major BWV860, PAC at
measure 83. Voice leading and highlighted notes as in the
Figures 1 and 2. To cope with the faster harmonic rhythm,
every eighth before Z is considered as a potential Y .

• Z-in-perfect-triad-or-sus4: chord(Z) is included in
{1, 3, 4, 5}

• Z-is-sus4: chord(Z) is exactly {1, 4, 5}

• Z-highest-is-1 (resp. Z-highest-is-3): The highest
note of chord(Z) is the tonic 1 (resp. the major or
minor third 3), as expected for a PAC (rIAC)

Another set of features describes voice leadings from
preceding notes (see list on Table 2). Z-β-comes-from-α
means that the note β in chord(Z) is an “immediate reso-
lution” of a note α (the interval being still relative to the
bass of Z) that is exactly before β (even if this note is not
at the onset Y that will be defined later). For example, Z-3-
comes-from-4 means that there is a 3 in chord(Z) that is an
immediate resolution of a 4 (dominant seventh in the case
of a PAC, see 2© on Figure 1).

There can also be a suspension at the arrival point, as on
the HC on Figure 2. We thus add symmetrical features Z-α-
moves-to-β (see list on Table 2). For example, Z-4-moves-
to-3 means that there is a suspended fourth 4 in chord(Z)
that is immediately resolved to the third 3.

Finally, features try to grasp the tonality in the neighbor-
hood of Z. We do not perform tonality estimation [13, 23]
because of the usual difficulty of algorithms to disam-
biguate adjacent tonalities in the circle of fifths.

• Z-bass-compatible-with-I (resp. Z-bass-compatible-
with-V ): Both notes 4 and 7 of the tonality that would
be implied if the bass of Z is I (resp. V) are present
in the four beats before Z

• Z-bass-compatible-with-I-scale: The 8 previous
beats exhibits the whole scale of the same implied
tonality – Temperley suggesting that such PACs with
SD before V-I feel more conclusive [24].

For example, on the PAC of Figure 1, Z-bass-
compatible-with-I and -with-I-scale are true (and not -with-
V ), and on the HC of Figure 2, Z-bass-compatible-with-
V is true. However, these features may be triggered by

position, these pitches may differ from the actual function. For example,
the top voice d on offset X on Figure 1 is the sixth 6 of the chord II6 but
is actually the tonic of the II chord.

other events close on the circle of fifths: Both Z-bass-
compatible-with-I and -with-I-scale may be triggered by a
previous V/V (as on Figure 2) or, in minor, when Z is ac-
tually a III in root position.

2.2 Rhythmic Features around the Arrival Point Z

These textural features intend to detect either breaks or
continuation in music.

• R-Z-strong-beat: Z is a strong beat (beat 1 and 3 for
4/4, and beat 1 for other time signatures)

• R-Z-same-rhythm-1 (resp. R-Z-same-rhythm-2):
There is exactly the same sequence of durations in
the one (resp. the two) beat(s) preceding Z than on
the one (resp. the two) beat(s) at onset Z

• R-Z-sustained-note: At least one note sounding at Z
started before Z

• R-after-Z-rest-highest, R-after-Z-rest-lowest, R-after-
Z-rest-middle: There is a rest in some voice right af-
ter the note at onset Z (see Figure 1)

• R-after-Z-one-voice-ends: Z is the last onset in at
least one voice (end of the piece)

2.3 Features on the Point Y or around it

For each arrival beat Z, we identify a point Y prior to Z
supposed to pinpoint the chord “preceding” Z. For ex-
ample, identifying chord(Y) as a dominant chord is a sign
indicating a potential PAC at Z. Although V chords gen-
erally span over more than one beat, associating Y with a
single beat eases the computation of features.

We thus propose to identify the point Y as the latest beat
preceding Z for which the bass voice includes a sounding
note, limited to one measure in the past. If the bass in-
cludes a rest just before Z, we look just before. The usual
time span corresponding to the preparation of a cadence
depends on the harmonic rhythm and varies among musi-
cal styles. The beat resolution to search the Y point should
therefore depend on the corpus.

• Y-Z-offsets-at-most-1: Y is at most one quarter note
before Z

Some features are concerned with chord(Y) :

• Y-has-7 (resp. Y-has-9): chord(Y) contains 7 (resp.
9), that is the leading tone (resp. the dominant sev-
enth or the dominant ninth) in the case of a candidate
PAC

• Y-in-V7 : chord(Y) is included within a dominant
seventh chord

• Y-in-V7-3 : chord(Y) is included within a dominant
seventh chord and contains a third

Other features focus on bass moves:

• Y’-Y-bass-moves-8ve: The bass note preceding Y is
at the same pitch but with an octave jump (expected
on some V or V64 chords)



pieces voices beats PAC (final) rIAC HC
haydn-quartets Haydn string quartets [22] 42 expositions 4 7173 99 (21) (8) 70
bach-wtc-i Bach fugues [9] 24 fugues 2 to 5 4739 63 (23) 24 (5)

Table 1. Corpora with manual annotations of cadences. Cadences are labeled at about 2% of the beats. We narrow to sets
with significant number of cadences (PAC and HC for the Haydn corpus, PAC and PAC+rIAC for the Bach corpus).

• Y’-Y-bass-moves-chromatic: The bass note preced-
ing Y is at a distance of one semitone (HC)

• Y-Z-bass-moves-2nd-min (resp. Y-Z-bass-moves-
2nd-Maj)

• Y-Z-bass-same-voice: Bass notes of both chords are
on the same voice

• Y-Z-bass-moves-compatible-V-I (resp. Y-Z-bass-
moves-compatible-I-V ): The bass moves by an as-
cending fourth or descending fifth (PAC) (resp. as-
cending fifth or descending fourth, HC I-V)

2.4 Features on the Cadence Preparation (Point X)

We identify the onset X as the latest beat before Y whose
lowest sounding note has a different pitch (modulo octave)
than the lowest note of Y. Features focus on this bass move:

• X-Y-bass-moves-2nd-min (V/V-V-I)

• X-Y-bass-moves-2nd-Maj (IV-V-I or II6-V-I)

• X-Y-bass-moves-4th (expected in II-V-I)

3. CLASSIFICATION PROCESS

A model is built in order to reflect the correlation between
the features listed in Section 2 and the occurrences of ca-
dences in corpora. These corpora bear manual annotations
indicating the position of PAC, rIAC and HC. Assuming
that the arrival points of cadences do not fall between beats,
each beat (quarter note, or three eights depending on the
time signature) of each piece is described by:

• a vector of boolean values corresponding to the set
of features and computed from the musical score,

• a boolean class specifying whether the beat is anno-
tated in the reference as a PAC/rIAC/HC or not.

This way of representing data enables us to reformu-
late cadence detection as a classification task. To avoid
overfitting, each dataset is randomly divided into two sub-
sets: a training set used to train a classifier and a test
set left to evaluate the classifier performance at the end.
The classifier and the value of its hyper-parameters have
been selected by performing Leave-One-Piece-Out cross-
validation over the training set. This is done by evaluat-
ing the classification on each piece of the training set by
a classifier trained on the remaining pieces of the training
set. Indeed, the traditional Leave-One-Out (LOO) cross-
validation approach that would consist in leaving only one
beat of one piece out of the training set would result here
in overfitting due to intra-piece musical repetitions.

4. EXPERIMENTS AND DISCUSSION

4.1 Corpora and Implementations

Table 1 shows the corpora which was used in this study.
The corpus bach-wtc-i includes the 24 fugues of the
first book of the Well-Tempered-Clavier by J.-S. Bach. Ca-
dence annotations were taken from our previous work [9].
The corpus haydn-quartets includes 42 expositions
from movements of Haydn string quartets in sonata form,
annotated with cadences by Sears and colleagues [22].
Even if these annotated corpora model cadences in the light
of a global analysis of the form, we have used them as a
benchmark on our local feature-based detection. Only a
minority of annotated PAC are final in the sense that they
are included in the last four measures of the piece (or of
the exposition).

Pieces were downloaded as voice-separated .krn files
from kern.ccarh.org [11]. Note that the features pro-
posed here could also apply to non-separated files, except
for after-Z-rest-* and Y-Z-bass-same-voice. In this case,
features on voice leading would only check that the com-
ing note or the suspended note is found at the right place
in the polyphonic texture.

For each beat Z (and their related onsetsX , Y ), the fea-
tures described in Section 2 are extracted using code based
on the Python framework music21 [6]. Points Y and X
are searched at a beat resolution of a quarter note (Haydn)
or eight note (Bach, see Figure 3). Classifiers were com-
puted thanks to the scikit-learn framework [8].

4.2 Discussion on Feature Statistics

Table 2 shows tallies of features, their correlation with
cadences as well as an estimation of their significance.
Many features are significant in both corpora, despite dif-
ferences in musical style. Unsurprisingly, features R-
Z-strong-beat, Y-Z-bass-moves-compatible-V-I, Z-perfect-
triad-or-sus4 and Z-highest-note-is-1 are activated nearly
for every PAC. Note that PAC lacking the fifth leap are the
ones where the bass passes by another note before tonic
resolution. Rhythmic and break features are also quite sig-
nificant. Some features differ between corpora. For exam-
ple, R-Z-sustained-note is absent in nearly all PACs in the
Haydn corpus, whereas it can be found in some PACs in
Bach fugues due to the contrapuntal writing.

We were expecting to find more suspensions for both
PAC and HC as a way to retain tension before the ultimate
resolution but they do not appear significantly in these cor-
pora. We also notably lack strong significant features for
HC. Indeed, the Y-Z bass move in a HC is variable (it is
typically similar to X-Y moves in PAC).



bach-wtc-i haydn-quartets

Features beats PAC rIAC beats PAC HC

R
yt
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R R-Z-strong-beat 1920 60∗ / 25 24∗ / 9 3126 98∗ / 43 70∗ / 30

R-Z-same-rhythm-1 394 1 / 5 · / 1 1254 2∗ / 17 2∗ / 12

R-Z-same-rhythm-2 176 · / 2 · / 0 448 0 / 6 1 / 4

R-Z-sustained-note 2341 14∗ / 31 5 / 11 2521 1∗ / 34 8∗ / 24

R-after-Z-rest-highest 166 14∗ / 2 1 / 0 501 56∗ / 6 10 / 4

R-after-Z-rest-middle 477 22∗ / 6 9∗ / 2 1227 72∗ / 16 35∗ / 11

R-after-Z-rest-lowest 194 15∗ / 2 13∗ / 0 1130 59∗ / 15 34∗ / 11

R-after-Z-one-voice-ends 180 19∗ / 2 2 / 0 · · / 0 · / 0

A
rr

iv
al

po
in

tZ

Z-in-perfect-major-triad 1167 43∗ / 15 12 / 5 2760 94∗ / 38 53∗ / 26

Z-in-perfect-triad 1819 56∗ / 24 19∗ / 9 3256 97∗ / 44 53∗ / 31

Z-in-perfect-triad-or-sus4 2078 62∗ / 27 20∗ / 10 3434 97∗ / 47 55∗ / 33

Z-is-sus4 680 20∗ / 9 1 / 3 1308 14 / 18 4 / 12

Z-highest-is-1 592 55∗ / 7 1 / 2 1765 96∗ / 24 19 / 17

Z-highest-is-3 1488 1∗ / 19 21∗ / 7 1596 1∗ / 22 28∗ / 15

Z-bass-compatible-with-I 1724 63∗ / 22 23∗ / 8 2279 98∗ / 31 56∗ / 22

Z-bass-compatible-with-V 1265 8 / 16 4 / 6 1616 3∗ / 22 44∗ / 15

Z-bass-compatible-with-I-scale 1902 63∗ / 25 22∗ / 9 2104 91∗ / 29 46∗ / 20

Z-1-comes-from-7 663 52∗ / 8 15∗ / 3 1016 89∗ / 14 30∗ / 9

Z-1-comes-from-1 180 13∗ / 2 1 / 0 828 9 / 11 0∗ / 8

Z-1-comes-from-2 523 23∗ / 6 7 / 2 893 65∗ / 12 27∗ / 8

Z-3-comes-from-4 1078 25 / 14 16∗ / 5 1488 72∗ / 20 45∗ / 14

Z-4-comes-from-5 197 4 / 2 · / 0 291 · / 4 9 / 2

Z-5-comes-from-5 153 9∗ / 2 · / 0 769 2 / 10 13 / 7

Z-5-comes-from-6 510 1 / 6 2 / 2 495 0 / 6 9 / 4

Z-6-comes-from-7 200 · / 2 · / 1 130 · / 1 · / 1

Z-2-moves-to-1 57 · / 0 · / 0 90 2 / 1 1 / 0

Z-4-moves-to-3 160 2 / 2 1 / 0 340 2 / 4 11∗ / 3

Z-6-moves-to-5 138 1 / 1 · / 0 180 · / 2 8∗ / 1

Z-7-moves-to-1 7 · / 0 · / 0 105 2 / 1 1 / 1

Po
in

tY

Y-in-V7 1267 52∗ / 16 17∗ / 6 3290 81∗ / 45 15∗ / 32

Y-in-V7-3 721 44∗ / 9 14∗ / 3 2413 69∗ / 33 14 / 23

Y-has-7 554 22∗ / 7 7 / 2 767 66∗ / 10 8 / 7

Y-has-9 607 1 / 8 4 / 3 486 2 / 6 5 / 4

Y-Z-offsets-at-most-1 4525 63 / 60 24 / 22 5668 90 / 78 66∗ / 55

Y-Z-bass-same-voice 4270 63 / 56 24 / 21 5297 98∗ / 73 70∗ / 51

Y-Z-bass-moves-2nd-min 1313 0∗ / 17 0∗ / 6 1328 1∗ / 18 35∗ / 12

Y-Z-bass-moves-2nd-Maj 880 0∗ / 11 · / 4 559 0∗ / 7 28∗ / 5

Y-Z-bass-moves-compatible-I-V 125 1 / 1 · / 0 448 2 / 6 6 / 4

Y-Z-bass-moves-compatible-V-I 512 62∗ / 6 23∗ / 2 578 95∗ / 7 6 / 5

Y’-Y-bass-moves-chromatic 1139 6 / 15 2 / 5 2050 10∗ / 28 33 / 20

Y’-Y-bass-moves-8ve 193 29∗ / 2 7∗ / 0 522 22∗ / 7 6 / 5

Po
in

tX X-Y-bass-moves-2nd-min 433 2 / 5 1 / 2 1060 10 / 14 10 / 10

X-Y-bass-moves-2nd-Maj 568 25∗ / 7 12∗ / 2 803 65∗ / 11 5 / 7

X-Y-bass-moves-4th 670 11 / 8 4 / 3 1626 4∗ / 22 9 / 15

Total 4739 63 24 7173 99 70

Table 2. Feature tallies for PAC (both corpora), rIAC (Bach corpus) and HC (Haydn corpus). The table shows, for
each feature, the number of beats where this feature occurs (all beats, cadential points or not), followed by its number
of occurrences on beats labeled as cadences in the reference annotation, as well as, in small, its expected number should
the feature be random and uniformly distributed across the beats. (· means 0, and not significant). For example, there
are 70 HC out of 7173 beats in the Haydn quartets corpus. There are 35 beats corresponding to a HC with the feature
Y-Z-bass-2nd-min, out of 1328 beats with this feature, and compared to only 12 beats should this feature be random.

For each feature and each cadence type, p-values are estimated by an exact Fisher test computed by the Python scipy
package. Fisher tests are computed independently. To account for the large number of tests, only features with p-values
under .001 (bold, ∗) can be considered as significant, either by their absence (italic) or their presence. For example, the
feature Y-Z-bass-2nd-min is significantly absent in PACs of both corpora (p < 10−7) and significantly present in HCs of
the Haydn corpus (p < 10−8).
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Figure 4. Haydn, op. 55/3, i, potential PACs at m67 and
m71. The PAC at m67 is hard to detect with the silence
at the bass. In their global analysis of the form, Sears et.
al see the end of the secondary theme (called the EEC, for
Essential Expositional Closure by [10]) at m67 and discard
any further PAC in the following concluding section [22]:
The PAC candidate at m71, found by the proposed strategy,
is thus counted here as a FP. It could be debated whether
the EEC is indeed at m67 (first cadential I, but weakened by
the bass rest) or rather at m71 (cadential feeling augmented
by the following rests and bass note on upbeat, m67 con-
sidered as an evaded cadence).

4.3 Learning Process

A linear Support Vector Machine (SVM) classifier was
trained on each training set as explained in Section 3,
splitting the feature space with a hyperplane [5]. As
datasets are unbalanced (about 98% of the beats are “non-
cadential”), we assigned stronger weights to data belong-
ing to the under-represented class, here the cadential beats.
Other classifying algorithms such as k-nearest-neighbor or
decision trees were tested and turned out to provide com-
parable or inferior results.

4.4 Discussion on Detection Results

Table 3 shows the comparison between the predictions of
each classifier on the test set of each corpus and the ref-
erence annotations. The detection of PAC is good, with
more than 75% PAC detected and a low false positive rate
(< 1%). Note that we previously reported 82% of PAC de-
tection in fugues [9] but with manual hard-coded rules that
may have resulted in overfitting.

False positives (FP) beats may still have many cadential
features. An inspection of the 28 PAC reported as FP in the
Haydn corpus shows that at least 5 FP can be seen as actual
cadences, for example measure 71 in Haydn op. 55/3, i,
shown on Figure 4. Other notable sources of FP are tonic
chords following actual HC cadences activating significant
features for PAC. The same Figure 4 shows an example of
FN, where a silence in the bass makes the computation of
many features fail.

Adding rIAC (Bach corpus) lowers the results, but there
may be too few such cadences to efficiently build the
model. The detection of HC is difficult (Haydn corpus),
as there is not a single feature applicable to every case.
Half of them are detected, with about 2% FP.

beats ref TP FP FN F1

haydn-quartets PAC 3583 51 42 28 9 0.69
(21 quatuors) HC 3583 32 18 73 14 0.29
bach-wtc-i PAC 2357 36 26 3 10 0.80

(12 fugues) PAC+rIAC 2357 46 30 12 16 0.68

Table 3. Detection of cadences on the test sets of both cor-
pora using all features: Number of beats annotated in the
reference annotation (ref), true positives (TP), false posi-
tives (FP), false negatives (FN), and F1 measure (harmonic
mean of the recall and the precision).

haydn-quartets bach-wtc-i

PAC HC PAC PAC+rIAC
All features XYZR 0.69 0.29 0.80 0.68

Features YZR 0.69 0.27 0.71 0.68
Features ZR 0.59 0.24 0.52 0.34

Features XYZ 0.72 0.25 0.74 0.54

Table 4. F1 measure while detecting cadences on the test
sets of both corpora with different sets of features.

Table 4 further studies these results while varying the
set of considered features. Some features in Z already
consider the past. Nevertheless, the features around Y are
essential to improve the overall detection. Features on X
bring a small but significant gain for PAC. Rhythmic fea-
tures (R) bring an improvement especially for HC, in par-
ticular with R-Z-strong-beat that correctly filters out more
than half of the beats.

5. CONCLUSION

Different musical clues give the cadential impression of a
“breath in music”. We evaluated cadential features on and
around three onsets at the arrival and in the preparation
of cadences. Without performing any chord segmentation,
these features describe the underlying harmony, the voice
leading as well as structural aspects of the music.

These features reflect common knowledge of music: we
have shown that some of them are specific to cadential
points. They make it possible to learn how to predict ca-
dences – PAC/rIAC, and, to a lesser extent, HC – in corpora
with reference annotations. Such features may also be used
in other systematic musicology approaches.

Perspectives include the extension of our set of features
to cadential and non-cadential positions. Some features
could be not necessarily theory driven and could possi-
bly have metric values. Coupled with automatic selection,
this could lead to the discovery of significant but unex-
pected features. More generally, the method used to iden-
tify points X and Y could be compared to other heuris-
tics. Cadence preparations could for example be described
by features regarding contiguous “spans” of onsets rather
than single onsets X and Y, in order to improve the har-
mony relevance of the model. Research along these lines
could significantly improve HC detection.
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