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Abstract

This paper focuses on the blind separation of stationary colored sources using the

second order statistics of their instantaneous mixtures. We first start by presenting

a brief overview of existing contributions in that field. Then, we present necessary

and sufficient conditions for the identifiability and partial identifiability using a fi-

nite set of correlation matrices. These conditions depend on the autocorrelation

function of the unknown sources. However, it is shown here that they can be tested

directly from the observation through the decorrelator output. This issue is of prime

importance to decide whether the sources have been well separated. If that’s not

the case then, further treatments will be needed. We then propose an identifiability

testing based on resampling (jackknife) technique that is validated by simulation
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results. Secondly, we present an iterative blind source separation method using sec-

ond order statistics (SOS) and natural gradient technique. This algorithm has a

number of attractive properties including its simplicity and ‘easy’ generalization to

adaptive or convolutive schemes. Asymptotic performance analysis of this method

is performed. Several numerical simulations are presented, to assess the theoret-

ical results w.r.t the ‘separability’ testing, to demonstrate the effectiveness of the

gradient-type decorrelation method and to validate the theoretical expression of the

asymptotic performance index.

1 Introduction

Source separation aims to recover multiple sources from multiple observa-

tions (mixtures) received by a set of linear sensors. The problem is said to

be ‘blind’ when the observations have been linearly mixed by the transfer

medium, while having no a priori knowledge of the transfer medium or the

sources. Blind source separation (BSS) has applications in several areas, such

as communication, speech and audio processing, biomedical engineering, geo-

physical data processing, etc [1]. BSS of instantaneous mixtures has attracted

so far a lot of attention due to its many potential applications and its mathe-

matical tractability that leads to several nice and simple BSS solutions [1–5].

Assume thatm narrow band signals impinge on an array of n ≥ m sensors. The
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measured array output is a weighted superposition of the signals, corrupted

by additive noise, i.e.

x(t) = y(t) + η(t) = As(t) + η(t) , (1)

where s(t) = [s1(t), · · · , sm(t)]T is the m × 1 complex source vector, η(t) =

[η1(t), · · · , ηn(t)]T is the n×1 complex noise vector, A is the n×m full column

rank mixing matrix, and the superscript T denotes the transpose operator. The

source signal vector s(t) is assumed to be a multivariate stationary complex

stochastic process.

In this paper, we only consider the second order BSS methods. Hence, hence

the component processes si(t), 1 ≤ i ≤ m are assumed to be temporally co-

herent and mutually uncorrelated, with zero mean and second order moments:

S(τ)
def
= E (s(t+ τ)s?(t)) = diag[ρ1(τ), · · · , ρm(τ)] , (2)

where ρi(τ)
def
= E(si(t + τ)s∗i (t)), the expectation operator is E, and super-

scripts ∗ and ? denote the conjugate of a complex and the complex con-

jugate transpose of a vector, respectively. The additive noise η(t) is mod-

eled as a white stationary zero-mean complex random process of covari-

ance E(η(t)η?(t)) = σ2Q. The latter matrix is proportional to identity, (i.e.

E(η(t)η?(t)) = σ2I) when the noise is spatially white. Under these assump-

tions, the observed data correlation matrices are given by :

Rx(τ) = AS(τ)A? + δ(τ)σ2Q .

From this expression, one can observe that the noise free correlation matrices

are ‘diagonalizable’ under the linear transformation B = A# where the super-

script (·)# is the Moore-Penrose’s pseudo-inversion operator, i.e. BRx(τ)BH

are diagonal ∀τ 6= 0. Hence, the source separation is achieved by decorrelating
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the signals at different time lags.

Before all, note that complete blind identification of separating (demixing)

matrix B (or the equivalently mixing matrix A) is impossible in the blind

context, because the exchange of a fixed scalar between the source signal and

the corresponding column of A leaves the observations unaffected. Also note

that the signals numbering is immaterial. It follows that the best that can be

done is to determineB up to a permutation and scalar shifts of its columns [3],

i.e., B is a separating matrix if and only if :

By(t) = PΛs(t) (3)

where P is a permutation matrix and Λ a non-singular diagonal matrix.

Under the above assumptions, we provide a general framework for the BSS

including the study of the identifiability and its testing as well as the intro-

duction of a simple but efficient decorrelation method and its performance

analysis. The paper is organized as follows. Section 2 reviews the principal

contributions to the BSS problem using the second order statistics. Section

3 states the necessary and sufficient second order identifiability conditions.

We then propose an identifiability testing based on resampling technique in

section 4. Section 5 proposes a blind source separation algorithm using rela-

tive gradient technique. Section 6 is devoted to the performance analysis of

the considered decorrelation method and the validation of the identifiability

testing technique. Section 7 is for concluding remarks.
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2 Overview of related works

The work using the second order statistics to achieve the blind source sep-

aration was initiated by L. Féty et al. [6]. Féty’s method is based on the

simultaneous diagonalization of the correlation matrices Rx(0) and Rx(1). In-

dependently, L. Tong et al. proposed a similar technique, namely the AMUSE

technique (Algorithm for Multiple Unknown Signals Extraction) [7, 8], that

achieves the BSS by the simultaneous diagonalization of two symmetric ma-

trices Rx(0) and (Rx(τk) + R?
x(τk))/2 with τk 6= 0. This method has been

extended in [9] where a generalized eigenvalue decomposition of a matrix pen-

cil (Rx(τ1),Rx(τ2)) is considered.

Later on, A. Belouchrani et al. proposed the SOBI (Second-Order Blind Identi-

fication) algorithm [3] that generalizes the previous methods to the case where

more than two correlation matrices are used. In the SOBI algorithm, the sep-

aration is achieved in two steps; the first step is the whitening of the observed

signal vector by linear transformation. The second step consists of applying

a joint approximate diagonalization algorithm to a set of different time-lag

correlation matrices of the whitened signal vector. A variant of SOBI has

been presented by D. Nuzillard et al. in [10] allowing direct signal separation

from frequency domain data by exploiting the source correlation properties

expressed in the time domain. This algorithm is referred to as f-SOBI, stand-

ing for “frequency domain SOBI”.

Numerous approaches have been proposed in recent years both for the for-

mulation of the diagonalization criterion and for the algorithms considered

for its minimization. One of the most popular and computationally appealing

approach for the joint diagonalization of a set of matrices M1, · · · ,MK is the
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unitary Approximate Joint Diagonalization (J.F. Cardoso et al. [11]), which

minimizes the criterion

K∑
k=1

off(BMkB
?) (4)

with respect to B, subject to the unitary constraint B?B = I, where

off(P ) =
∑
i 6=j
|Pij|2 . (5)

The unitary constraint implies the assumption of a unitary mixing matrix.

Hence, in the general case, a pre-processing “spatial hard-whitening” stage is

required, in which the non-unitary factor of the overall demixing matrix is

found and applied to the data.

In [5, 12] an iterative algorithm using relative gradient technique has been

considered for the minimization of (4) without unitary constraint. An alter-

native approach for non-unitary Approximate Joint Diagonalization has been

proposed by Yeredor (the “AC-DC” algorithm [13]), which minimizes

K∑
k=1

‖Mk −ADkA
?‖2 (6)

without constraining A to be unitary. In (6), Dk, k = 1, · · · , K represent

diagonal matrices. While computationally efficient in small-scale problems,

this algorithm has been observed to exhibit extremely slow convergence in

large-scale problems. This criterion is also considered in [14] where a gradient

descent technique is used for its minimization and in [15] where quadratic op-

timization is used.

A computationally efficient unconstrained minimization algorithm was pro-

posed by D.T. Pham et al. [16], whose target criterion is the Kullback-Leibler

divergence between the n×n operand and the diagonal matrix with the same
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diagonal as the operand :

K∑
k=1

λk[log det diag(BMkB
?)− log det(BMkB

?)] (7)

where λk, k = 1, · · · , K are positive scalar factors. This approach requires all

the target matrices to be positive definite, which limits its applicability as a

generic BSS tool. Another class of BSS techniques based on the second order

statistics is the one using the maximum likelihood principle. This method uses

the Gaussian asymptotic property of the discrete Fourier transform of the sec-

ond order stationary observations [17–19].

There are multiple potential applications of blind source separation using sec-

ond order statistics. Among others, one may cite the work of G. Chabriel et

al. who suggest in [20] a method for the modeling and the identification of

mixtures of multiple propagating waves recorded by a compact set of sensors.

These mixtures, depending on attenuation coefficients and propagating delays,

are represented as instantaneous mixtures of different temporal derivatives of

sources generating the waves. It is shown that separation can be achieved by

a second-order statistical analysis of the recordings, when a sufficient number

of sensors is available. A. Ziehe et al. in [21] use second order BSS technique

for cleaning biomagnetic measurements of evoked responses in the peripheral

nervous system. M. Valkama et al. [22] present an application to BSS using

second order statistics in radio communications where antenna arrays receive

mixtures of different communication signals.

Besides the methodology studies, the algorithmic derivations and the differ-

ent BSS applications, many authors focused on the second order identifiability

problem. L. Tong et al. have proved in [8] that the sources are blindly sep-

arable using all correlation matrices, i.e. {Rx(τ)|τ ∈ Z} only if they have

different spectral shapes. Now, in practice, one uses only few (finite set) cor-
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relation matrices for the source separation. For the method in [6] (resp. [7,8])

the source separation is possible only if the non-zero generalized eigenvalues

of {Rx(0), Rx(1)} (resp. {Rx(0), (Rx(τk) +R?
x(τk))/2}) are all distinct.

In [3], the authors have shown that BSS using SOBI algorithm with the

correlation matrix set {Rx(τ1), · · · ,Rx(τK)} is possible only if the vectors

ρi = [ρi(τ1), · · · , ρi(τK)], i = 1, · · · ,m are pairwise linearly independent. This

result has been generalized in [23] to establish a necessary and sufficient iden-

tifiability condition with a finite set of correlation matrices. It is recalled and

further developed in section 3.

3 Second Order Identifiability

3.1 Necessary and sufficient conditions of identifiability

In [8], Tong et al. showed that sources are blindly separable based on (the

whole set) of second order statistics only if they have different spectral density

functions. In practice we achieve the BSS using only a finite set of correlation

matrices. Therefore, the previous identifiability result was generalized to that

case in [3, 23] leading to the necessary and sufficient identifiability conditions

given by the following theorem :

Theorem 1 Let τ1 < τ2 < · · · < τK be K ≥ 1 time lags, and define ρi =

[ρi(τ1), ρi(τ2), · · · , ρi(τK)] and ρ̃i = [<e(ρi),=m(ρi)] where <e(x) and =m(x)

denote the real part and imaginary part of x, respectively. Taking advantage

of the indetermination, we assume without loss of generality that the sources

are scaled such that ‖ρi‖ = ‖ρ̃i‖ = 1, for all i 1 . Then, BSS can be achieved

1 We implicitly assume here that ρi 6= 0, otherwise the source signal could not
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using the output correlation matrices at time lags τ1, τ2, · · · , τK if and only if

for all 1 ≤ i 6= j ≤ m :

ρ̃i and ρ̃j are (pairwise) linearly independent (8)

Proof: The proof of sufficiency is given in Appendix A. Here we here only prove

that (8) is necessary to achieve BSS using correlation functions Rx(τk)
def
=

E(x(t + τk)x
?(t)), k = 1, · · · , K. In fact, if two sources, say s1 and s2, have

correlation coefficients such that ρ̃1 = ερ̃2 where ε = ±1, then any ‘virtual’

signal of the form x̃(t) = Ãs̃(t) + w(t) where Ã = [ã1, ã2,a3, · · · ,am] and

s̃(t) = [s̃1(t), s̃2(t), s3(t), · · · , sm(t)]T with

[ã1, ã2] = [a1,a2]T

and


s̃1(t)

s̃2(t)

 = T−1


s1(t)

s2(t)

 (9)

with

T =


cos θ sin θ

− sin θ cos θ

 , if ε = +1

T =


cosh θ sinh θ

sinh θ cosh θ

 , if ε = −1

be detected (and a fortiori could not be estimated) from the considered set of

correlation matrices. This hypothesis will be held in the sequel.
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verifies Rx̃(τk) = Rx(τk) and S(τk) = S̃(τk) for k = 1, · · · , K, where S̃(τk)
def
=

E(s̃(t+ τk)s̃
?(t)). 2

Interestingly, we can see from condition (8) that BSS can be achieved

from only one correlation matrix Rx(τk) provided that the vectors

[<e(ρi(τk)),=m(ρi(τk))] and [<e(ρj(τk)),=m(ρj(τk))] are pairwise linearly in-

dependent for all i 6= j.

Note also that from (8), BSS can be achieved if at most one temporally white

source signal exists. Similarly, recall that when using higher order statistics,

BSS can only be achieved if at most one Gaussian source signal exists.

Under the condition of Theorem 1, the BSS can be achieved by decorrelation

according to the following result:

Theorem 2 Let τ1, τ2, · · · , τK be K time lags and z(t) = [z1(t), · · · , zm(t)]T

be an m×1 vector given by z(t) = Bx(t). Define rij(τk)
def
= E(zi(t+τk)z

∗
j (t)). If

the identifiability condition holds, then B is a separating matrix (i.e. By(t) =

PΛs(t) for a given permutation matrix P and a non-singular diagonal matrix

Λ) if and only if

rij(τk) = 0 and
K∑
k=1

|rii(τk)| > 0 (10)

for all 1 ≤ i 6= j ≤ m and k = 1, 2, · · · , K.

Proof: see the proof of Theorem 3 in Appendix A.

Note that, if one of the time lags is zero, the result of Theorem 2 holds only

under the noiseless assumption. In that case, we can replace the condition∑K
k=1 |rii(τk)| > 0 by rii(0) > 0, for i = 1, · · · ,m. On the other hand, if all the

time lags are non-zero and if the noise is temporally white (but can be spatially

colored with unknown spatial covariance matrix) then the above result holds
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without the noiseless assumption.

3.2 Partial Identifiability

It is generally believed that when the identifiability conditions are not met, the

BSS cannot be achieved. This is only half the truth as it is possible to partially

separate the sources in the sense that we can extract those which satisfy the

identifiability conditions. More precisely, the sources can be separated in blocks

each of them containing a mixture of sources that are not separable using

the considered set of statistics. For example, consider a mixture of 3 sources

such that ρ̃1 = ρ̃2 while ρ̃1 and ρ̃3 are linearly independent. In that case,

source s3 can be extracted while sources s1 and s2 cannot. In other words,

by decorrelating the observed signal at the considered time lags, one obtain 3

signals one of them being s3 (up to a scalar constant) and the two others are

linear mixtures of s1 and s2.

This result can be mathematically formulated as follows: assume there are d

distinct groups of sources each of them containing di source signals with same

(up to a sign) correlation vector ρ̃i, i = 1, · · · , d (clearly, m = d1 + · · · + dd).

The correlation vectors ρ̃1, · · · , ρ̃d are pairwise linearly independent. We write

s(t) = [sT1 (t), · · · , sTd (t)]T where each sub-vector si(t) contains the di source

signals with correlation vector ρ̃i.

Theorem 3 Let z(t) = Bx(t) be an m×1 random vector satisfying equation

(10) for all 1 ≤ i 6= j ≤ m and k = 1, · · · , K. Then, there exists a permutation

matrix P such that z(t)
def
= Pz(t) = [zT1 (t), · · · , zTd (t)]T where zi(t) = Uisi(t),

Ui being a di × di non-singular matrix. Moreover, sources belonging to the

same group, i.e., having same (up to a sign) correlation vector ρ̃i can not be
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separated using only the correlation matrices Rx(τk), k = 1, · · · , K.

This result shows that when some of the sources have same (up to a sign)

correlation vectors then the best that can be done is to separate them per

blocks and this can be achieved by decorrelation. However, this result would

be useless if we cannot check the linear dependency of the correlation vectors

ρ̃i and partition the signals per groups (as shown above) according to their

correlation vectors. This leads us to the important problem of testing the

identifiability condition that is discussed next.

4 Identifiability testing

4.1 Theoretical result

The necessary and sufficient identifiability condition (8) depends on the corre-

lation coefficients of the source signals. The latter being unknown, it is there-

fore impossible to a priori check whether the sources are ‘separable’ or not

from a given set of output correlation matrices. However, it is possible to check

a posteriori whether the sources have been ‘separated’ or not. We have the

following result:

Theorem 4 Let τ1 < τ2 < · · · < τK be K distinct time lags and z(t) = Bx(t).

Assume that B is a matrix such that z(t) satisfies 2 equation (10) for all

1 ≤ i 6= j ≤ m and k = 1, · · · , K. Then there exists a permutation matrix P

2 Because of the inherent indetermination of the BSS problem, we assume without

loss of generality that the exact and estimated sources are similarly scaled, i.e.,

‖ρ̃i‖ = 1.

12



such that for k = 1, · · · , K.

E(z(t+ τk)z
?(t)) = P TS(k)P (11)

In other words the entries of z(t)
def
= Pz(t) have the same correlation coeffi-

cients as those of s(t) at time lags τ1, · · · , τK, i.e. E(zi(t+ τk)z
∗
i (t)) = ρi(τk)

for k = 1, · · · , K and i = 1, · · · ,m.

Proof: see Appendix B.

From Theorem 4, the existence of condition (8) can be checked by using the

approximate correlation coefficients rii(τk)
def
= E(zi(t+τk)z

∗
i (t)). It is important

to point out that even if equation (10) holds, it does not mean that the source

signals have been separated. Three situations may happen:

(1) For all pairs (i, j), ρ̃i and ρ̃j (computed from z(t)) are pairwise linearly

independent. Then we are sure that the sources have been separated and

that z(t) = s(t) up to the inherent indeterminacies of the BSS problem. In

fact, testing the identifiability condition is equivalent to pairwise testing

the angles between ρ̃i and ρ̃j for all 1 ≤ i 6= j ≤ m. The larger the

angle between ρ̃i and ρ̃j, the better the quality of source separation (see

performance analysis in [3]).

(2) For all pairs (i, j), ρ̃i and ρ̃j are linearly dependent. Thus, the sources

haven’t been separated and z(t) is still a linear combination of s(t).

(3) A few pairs (i, j) out of all pairs satisfy ρ̃i and ρ̃j linearly dependent.

Therefore the sources have been separated in blocks.

Now, having only one signal realization at hand, we propose to use a resam-

pling technique to evaluate the statistics needed for the testing.
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4.2 Testing using resampling techniques

Note that in practice the source correlation coefficients are calculated from

noisy finite sample data. Due to the joint effects of noise and finite sample size,

it is impossible to obtain the exact source correlation coefficients to test the

identifiability condition. The identifiability condition should be tested using

a certain threshold α, i.e., decide that ρ̃i and ρ̃j are linearly independent if∣∣∣|ρ̃iρ̃Tj | − 1
∣∣∣ > α.

To find α we use the fact that the estimation error of ρ̃iρ̃
T
j is asymptotically

Gaussian 3 and hence one can build the confidence interval of such a variable

according to its variance. This algorithm can be summarized as follows:

(1) Estimate a demixing matrix B and z(t)
def
= Bx(t) using an existing

second order decorrelation algorithm (e.g. SOBI [3]).

(2) For each component zi(t), estimate the corresponding normalized vector

ρ̃i.

(3) Calculate the scalar product R̂(i, j) = |ρ̃iρ̃Tj | for each pair (i, j).

(4) Estimate σ̂(i,j) the standard deviation of R̂(i, j) using resampling tech-

nique (see section 4.3).

(5) Choose α(i,j) according to the confidence interval. e.g. to have a confidence

interval equal to 99.7% we choose α(i,j) = 3σ̂(i,j), and compare |R̂(i, j)−1|

to α(i,j) to test whether sources i and j have been separated or not.

3 More precisely, one can prove that the estimation error
√
Tδ(ρ̃iρ̃Tj ) is asymptot-

ically, i.e. for large sample size T , Gaussian with zero mean and finite variance.
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4.3 Resampling techniques

In many signal processing applications one is interested in forming estimates

of a certain number of unknown parameters of a random process, using a set of

sample values. Further, one is interested in finding the sampling distribution

of the estimators, so that the respective means, variances, and cumulants can

be calculated, or in making some kind of probability statements with respect

to the unknown true values of the parameters.

The bootstrap [24] was introduced by Efron [25] as an approach to calculate

confidence intervals for parameters in circumstances where standard methods

cannot be applied. The bootstrap has subsequently been used to solve many

other problems that would be too complicated for traditional statistical anal-

ysis.

In simple words, the bootstrap does with a computer what the experimenter

would do in practice, i.e. if it were possible: he or she would repeat the ex-

periment. With the bootstrap, the observations are randomly reassigned, and

the estimates recomputed. These assignments and recomputations are done

hundreds or thousands of times and treated as repeated experiments.

The jackknife [26] is another resampling technique for estimating the stan-

dard deviation. As an alternative to the bootstrap, the jackknife method can

be thought of as drawing T samples of size (T − 1) each without replacement

from the original sample of size T [26].

Suppose we are given the sample X = {X1, X2, . . . , XT} and an estimate, ϑ̂,

from X . The jackknife method is based on the sample delete-one observation

at a time,

X (i) = {X1, X2, . . . , Xi−1, Xi+1, . . . , XT}
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for i = 1, 2, . . . , T , called the jackknife sample. This ith jackknife sample con-

sists of the data set with the ith observation removed. For each ith jackknife

sample, we calculate the ith jackknife estimate, ϑ̂(i) of ϑ, i = 1, 2, . . . , T . The

jackknife estimate of the standard deviation of ϑ̂ is defined by

σ̂ =

√√√√√T − 1

T

T∑
i=1

ϑ̂(i) − 1

T

T∑
j=1

ϑ̂(j)

2

(12)

The jackknife is computationally less expensive if T is less than the number

of replicates used by the bootstrap for standard deviation estimation because

it requires computation of ϑ̂ only for the n jackknife data sets. For example,

if L = 25 resamples are necessary for standard deviation estimation with the

bootstrap, and the sample size is T = 10, then clearly the jackknife would be

computationally less expensive than the bootstrap. In order to test the sepa-

rability of the estimated signals, we have used a jackknife method to estimate

the variance of the scalar product quantities R(i, j) for i, j = 1, 2, . . . ,m. This

is done according to the following steps:

(1) From each signal zi = [zi(0), . . . , zi(T − 1)]T , generate T vectors such as

z
(j)
i = [zi(0), . . . , zi(j−1), zi(j+1), . . . , zi(T−1)]T and j = 0, 1, . . . , T−1.

(2) For each vector z
(j)
i , estimate the corresponding vector ρ̃

(j)
i .

(3) Estimate R̂ such as its (i, j)th entry is

R̂(i, j) =
1

T

T−1∑
k=0

〈ρ̃(k)
i , ρ̃

(k)
j 〉

‖ρ̃(k)
i ‖‖ρ̃

(k)
j ‖

where 〈·, ·〉 denotes the scalar product and ‖ · ‖ is the euclidian norm.

(4) Estimate the standard deviation of R̂(i, j) by:

σ̂(i,j) =

√√√√√T − 1

T

T−1∑
k=0

 〈ρ̃(k)
i , ρ̃

(k)
j 〉

‖ρ̃(k)
i ‖‖ρ̃

(k)
j ‖
− 1

T

T−1∑
l=0

〈ρ̃(l)
i , ρ̃

(l)
j 〉

‖ρ̃(l)
i ‖‖ρ̃

(l)
j ‖

2
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4.4 Discussion

Some useful comments are provided here to get more insight onto the consid-

ered testing method and its potential applications and extensions.

• The asymptotic performance analysis of SOBI derived in [3], shows that

the separation performance of two sources si and sj depends on the angle

between their respective correlation vectors ρ̃i and ρ̃j. Hence, measuring this

angle gives a hint on the interference rejection level of the two considered

sources.

As a consequence, one can use the measure of this angle not only to test the

separability of the two sources but also to guarantee a target (minimum)

separation quality. Choosing the threshold α(i,j) accordingly is an important

issue that deserves further investigation.

• The testing method can be incorporated into a two stage separation proce-

dure where the first stage consists in a second order decorrelation method

(e.g. SOBI). The second stage would be an HOS-based separation method

applied only when the testing indicates a failure of separation at the first

step.

• In many practical situations, one might be interested in only one or few

source signals. This is the case for example in the interference mitigation

problem in [27] or in the power plants monitoring applications [28]. In this

situation, the partial identifiability result is of high interest as it proves that

the desired source signal can still be extracted even if a complete source

separation cannot be achieved.
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5 Separation algorithm using relative gradient

5.1 SOS-based separation criteria

Based on Theorem 2, we can define different objective functions for signal

decorrelation. In [29], the following criterion 4 was used

G(z) =
K∑
k=1

log det (diag(Rz(τk)))− log det (Rz(τk)) (13)

where diag(A) is the diagonal matrix obtained by zeroing the off diagonal

entries of A. Another criterion used in [5] is

G(z) =
K∑
k=1

∑
1≤i<j≤m

[|rij(τk)+rji(τk)|2+|rij(τk)−rji(τk)|2]+
m∑
i=1

|
K∑
k=1

|rii(τk)|−1|2.

(14)

The last term in (14) is introduced to avoid trivial (zero-valued) solutions.

Equations (13) and (14) are non-negative functions which are zero if and only

if Rz(τk) = E(z(t+ τk)z
?(t)) are diagonal for k = 1, · · · , K or equivalently if

(10) is met. Hence, one can achieve the BSS through signal decorrelation by

minimizing one of the previous cost functions.

5.2 Iterative Decorrelation Algorithm (IDA)

The separation criteria we have presented take the form:

B is a separating matrix⇐⇒ G(z(t)) = 0 (15)

where z(t) = Bx(t) and G is a given objective function. An efficient approach

to solve (15) is the one proposed in [5, 18]. It is a block technique based on

4 In that paper, only the case where τ1 = 0 was considered.

18



the processing of T received samples and consists of searching the zeros of the

sample version of (15). Solutions are obtained iteratively in the form:

B(p+1) = (I + ε(p))B(p) (16)

z(p+1)(t) = (I + ε(p))z(p)(t) (17)

At iteration p, a matrix ε(p) is determined from a local linearization of

G(Bx(t)). It is an approximate Newton technique with the benefit that ε(p)

can be very simply computed (no Hessian inversion) under the additional

assumption that B(p) is close to a separating matrix. This procedure is illus-

trated as follows:

Using (17), we have:

r
(p+1)
ij (τk) = r

(p)
ij (τk)+

m∑
q=1

ε
∗(p)
jq r

(p)
iq (τk)+

m∑
l=1

ε
(p)
il r

(p)
lj (τk)+

m∑
l,q=1

ε
(p)
il ε
∗(p)
jq r

(p)
lq (τk) (18)

where

r
(p)
ij (τk)

def
= E

(
z

(p)
i (t+ τk)z

∗(p)
j (t)

)
(19)

≈ 1

T − τk

T−τk∑
t=1

z
(p)
i (t+ τk)z

∗(p)
j (t) (20)

Under the assumption that B(p) is close to a separating matrix, it follows that

|ε(p)ij | � 1

and

|r(p)
ij (τk)| � 1 for i 6= j

and thus, a first order approximation of r
(p+1)
ij (τk) is given by:

r
(p+1)
ij (τk) ≈ r

(p)
ij (τk) + ε

∗(p)
ji r

(p)
ii (τk) + ε

(p)
ij r

(p)
jj (τk) (21)

similarly, we have:

r
(p+1)
ji (τk) ≈ r

(p)
ji (τk) + ε

∗(p)
ij r

(p)
jj (τk) + ε

(p)
ji r

(p)
ii (τk) (22)
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From (21) and (22), we have:

r
(p+1)
ij (τk)+r

(p+1)
ji (τk) ≈ 2r

(p)
jj (τk)<e(ε(p)ij )+2r

(p)
ii (τk)<e(ε(p)ji )+(r

(p)
ij (τk)+r

(p)
ji (τk))

r
(p+1)
ij (τk)−r(p+1)

ji (τk) ≈ 2r
(p)
jj (τk)=m(ε

(p)
ij )−2r

(p)
ii (τk)=m(ε

(p)
ji )+(r

(p)
ij (τk)−r(p)

ji (τk))

with  =
√
−1. By replacing the previous equation into (14), we obtain the

following least squares (LS) minimization problem

min

∥∥∥∥∥[r(p)
jj , r

(p)
ii

]
E

(p)
ij +

[
1

2
(r

(p)
ij + r

(p)
ji ),

1

2
(r

(p)
ij − r

(p)
ji )

]∥∥∥∥∥
where

E
(p)
ij

def
=


<e(ε(p)ij ) =m(ε

(p)
ij )

<e(ε(p)ji ) −=m(ε
(p)
ji )

 (23)

r
(p)
ij = [r

(p)
ij (τ1), · · · , r(p)

ij (τK)]T (24)

A solution to the LS minimization problem is given by:

E
(p)
ij = −

[
r

(p)
jj , r

(p)
ii

]# [1

2
(r

(p)
ij + r

(p)
ji ),

1

2
(r

(p)
ij − r

(p)
ji )

]
(25)

where A# denotes the pseudo-inverse of matrix A. Equations (23) and (25)

provide the explicit expression of ε
(p)
ij for i 6= j. For i = j, the minimization

of (14) using the first order approximation leads to :

∣∣∣∣∣
K∑
k=1

r
(p)
ii (τk)

(
1 + 2<e(ε(p)ii )

)∣∣∣∣∣− 1 = 0. (26)

Without loss of generality, we take advantage of the phase indeterminacy to

assume that εii are real-valued and hence <e(εii) = εii. Consequently, we

obtain :

ε
(p)
ii =

1−
K∑
k=1
|r(p)
ii (τk)|

2
K∑
k=1
|r(p)
ii (τk)|

(27)
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In the case of real-valued signals, the LS minimization becomes :

min
∥∥∥H(p)

ij e
(p)
ij +ψ

(p)
ij

∥∥∥
where

H
(p)
ij =


1

1

⊗
[
r

(p)
jj , r

(p)
ii

]
(28)

e
(p)
ij =

[
ε
(p)
ij , ε

(p)
ji

]T
(29)

ψ
(p)
ij =


r

(p)
ij

r
(p)
ji

 (30)

and ⊗ denotes the Kronecker product. A solution to the LS minimization

problem is given by:

e
(p)
ij = −H(p)#

ij ψ
(p)
ij (31)

Remark: A main advantage of the above algorithm is its flexibility and easy

implementation in the adaptive case. This is the focus of the next subsection.

This algorithm can Also be extended to deal with BSS of convolutive mixtures

as shown in [30].

5.3 Adaptive implementation

To derive an adaptive version of the above batch algorithm, we replace in

the above formulae the iteration index p by the time index t and estimate

adaptively the correlation coefficients r
(t)
ij (τk). The adaptive algorithm can be

summarized as follows : At time instant t

• Update the correlation matrices, i.e., Rz(τk), k = 1, . . . , K, using the fol-
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lowing averaging technique :

z(t) = B(t−1)x(t)

R(t)
z (τk) = λR(t−1)

z (τk) + (1− λ)z(t)z?(t− τk)

where 0 < λ < 1 is a positive forgetting factor. Note that r
(t)
ij (τk) is the

(i, j)-th entry of R(t)
z (τk).

• Estimate ε(t) using equations (25) and (27) and the updated correlation

coefficients r
(t)
ij (τk).

• Update the value of the separating matrix, the correlation matrices

Rz(τk), k = 1, . . . , K, and the estimated sources z(t+1−τk), k = 1, . . . , K

:

B(t) = (I + ε(t))B(t−1)

R(t)
z (τk) = (I + ε(t))R(t)

z (τk)(I + ε(t))?

z(t+ 1− τk) = (I + ε(t))z(t+ 1− τk).

Besides its computational simplicity, this algorithm has the advantage of uni-

form performance (i.e. it has, in noiseless case, the same asymptotic perfor-

mance whatever the mixing matrix is) and stability [31].

6 Performance analysis

6.1 Theoretical performance analysis

In this section, asymptotic (i.e. for large sample sizes) performance analysis

results of the previous separation method is given. We consider the case of

instantaneous mixture with i.i.d complex-valued sources satisfying, in addition
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to the identifiability condition
∑
k∈Z |ρi(τk)| < +∞ for i = 1, . . . ,m. The

noise is assumed Gaussian with variance σ2I. Assuming that the permutation

indeterminacy is P = I, one can write:

BA = I + δ (32)

and hence, the separation quality is measured in our simulations from the

mixing matrix A and the decorrelation matrix B using the mean rejection

level criterion [3] defined as:

Iperf def
=

∑
1≤p 6=q≤m

E (|(BA)pq|2) ρq(0)

E (|(BA)pp|2) ρp(0)
(33)

=
∑

1≤p 6=q≤m
E
(
|δpq|2

) ρq(0)

ρp(0)
(34)

Our performance analysis consists in deriving the closed-form expression of

the asymptotical variance errors:

lim
T→+∞

T E
(
|δpq|2

)
(35)

By using a similar approach to that in [18] based on the central-limit and

continuity theorems, one obtains the following result :

Theorem 5 Vector δij
def
= [<e(δij) <e(δji) =m(δij) −=m(δji)]

T is asymptot-

ically Gaussian distributed with asymptotic covariance matrix

∆ij
def
= lim

T→+∞
T E

(
δijδ

T
ij

)
(36)

=
1

4
H#

ijΨijH#?
ij (37)

where

Hij = I2 ⊗
[
ρTi ρ

T
j

]
(38)
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Ψij =


Ξ

(ij)
11 Ξ

(ij)
12

Ξ
(ij)
21 Ξ

(ij)
22

 (39)

with

Ξ
(ij)
11 = Γ

(ij)
11 + Γ

(ij)
12 + Γ

(ij)
21 + Γ

(ij)
22 (40)

Ξ
(ij)
12 = 

[
Γ

(ij)
11 − Γ

(ij)
12 + Γ

(ij)
21 + Γ

(ij)
22

]
(41)

Ξ
(ij)
21 = −

[
Γ

(ij)
11 + Γ

(ij)
12 − Γ

(ij)
21 + Γ

(ij)
22

]
(42)

Ξ
(ij)
22 = Γ

(ij)
11 − Γ

(ij)
12 − Γ

(ij)
21 + Γ

(ij)
22 (43)

and

Γ
(ij)
11 (k, k′) =

∑
τ∈Z

rii(τk + τ)rjj(τk′ + τ) (44)

Γ
(ij)
22 (k, k′) =

∑
τ∈Z

rii(τk′ + τ)rjj(τk + τ) (45)

Γ
(ij)
12 (k, k′) =

∑
τ∈Z

rii(τk + τ)rjj(τk′ − τ) (46)

rii(τk) = ρi(τk) + δ(τk)σ
2bib

T
i . (47)

Note that Γ
(ij)
21 = Γ

(ij)T
12 and bi represents the ith row of B = A#.

In the case of real-valued signals, the preceding result becomes :

∆ij = H#
ijΨijH#T

ij (48)

where

Hij =


1

1

⊗
[
ρTi ρ

T
j

]
(49)

Ψij =


Γ

(ij)
11 Γ

(ij)
12

Γ
(ij)
21 Γ

(ij)
22

 (50)
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Using the inverse Fourier transform relation (i.e. ρi(τ) =
∫ 1

2

− 1
2

Si(f)e2πτfdf),

the previous result can be rewritten by using the normalization assumption of

Theorem 1 (‖ρi‖ = 1 for all i) as :

∆ij =
1(

ρ2
ij − 1

)2


1 −ρij

−ρij 1

D


1 −ρij

−ρij 1

 (51)

where

ρij = ρiρ
T
j (52)

and

D =
∫ 1

2

− 1
2

Si(f)Sj(f)V ijVT
ijdf . (53)

Note that

V ij = [<e (%i(f)) <e (%j(f))]T , (54)

with

%l(f) =
K∑
k=1

ρl(τk) exp(−2πτkf) for l ∈ {i, j} (55)

and

Sl(f) = Ssl
(f) + σ2‖bl‖2, for l ∈ {i, j} (56)

where Ssl
(f) is the power spectral density of the lth source. By replacing (56)

in (53), we obtain :

D =
∫ 1

2

− 1
2

Ssi
(f)Ssj

(f)V ijVT
ijdf + σ4‖bi‖2‖bj‖2

∫ 1
2

− 1
2

V ijVT
ijdf

+σ2‖bi‖2
∫ 1

2

− 1
2

Ssj
(f)V ijVT

ijdf + σ2‖bj‖2
∫ 1

2

− 1
2

Ssi
(f)V ijVT

ijdf

From the above expression, we notice that in the noiseless case the perfor-

mance of the considered BSS method is independent from the mixture matrix

(i.e. equivariance property). In that case, the performance limit is essentially
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function of the “non-collinearity” of vectors ρi and ρj (one can see it mainly

from the term
(
ρ2
ij − 1

)2
that appears in the denominator of equation (51)).

6.2 Simulation-based performance analysis

We present in this section some numerical simulations to evaluate the perfor-

mance of the previous separation algorithm. We consider in our simulation an

array of n = 4 sensors with half wavelength spacing, receiving two signals in

the presence of stationary real temporally white noise. The two source signals

are generated by filtering real white Gaussian processes by an autoregressive

(AR) model of order 1 with coefficient a1 = 0.95e0.5 and a2 = 0.5e0.7 (ex-

cept for Figure 6). The sources have direction of arrivals (DOA) φ1 = 30 and

φ2 = 45 degrees respectively. Note that the simulation results shown here do

not depend on this explicit choice of the source DOAs but rather on the angle

difference φ2−φ1, as illustrated by Figure 7. The number of time lags is K = 5

(except for Figure 8). The signal to noise ratio is defined as SNR = 10 log10
σ2

s

σ2
n
,

where σ2
n and σ2

s are the noise variance and signal variance respectively. The

mean rejection level is estimated over 1000 Monte-Carlo runs.

In Figure 1, we compare the separation performance obtained by the decorre-

lation algorithm with SOBI algorithm.

Figure 2 shows the mean rejection levels against the signal to noise ratio SNR.

We compare the IDA algorithm with the SOBI algorithm which is based on

a joint diagonalization of a set of covariance matrices [3]. The additive noise

is temporally white but spatially colored. The noise covariance is assumed to

be of the form E(η(t)η?(t)) = nσ2
nQQH/‖Q‖2, where Q is given by Qij =
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Fig. 1. Comparison between IDA and SOBI for spatially white noise: Mean Rejection

Level in dB versus SNR for 2 autoregressive sources 4 sensors and T = 1000.

0 5 10 15 20 25 30 35 40
−30

−25

−20

−15

−10

−5

0

5

SNR (dB)

M
ea

n 
R

ej
ec

tio
n 

Le
ve

l (
dB

)

SOBI
IDA

Fig. 2. Comparison between IDA and SOBI for spatially colored noise: Mean Re-

jection Level in dB versus SNR for 2 autoregressive sources T = 1000.

0.9|i−j| (i.e. η(t) =
√
nσn

Q
‖Q‖η(t) where η(t) is a unit norm white Gaussian

noise). In this case, IDA performs much better than SOBI at low SNR. This is

an important advantage of the IDA method over existing SOS methods that

often assume the noise covariance matrix known up to a scalar constant.

In Figure 3, The mean rejection level Iperf is plotted in dB against the

sample size. The figure is for SNR = 40dB. This figure shows that the asymp-
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Fig. 3. Mean Rejection Level in dB versus the sample size T for 2 autoregressive

sources 4 sensors and SNR = 40dB.

totic closed form expressions of the rejection level are pertinent from snapshot

length of about 100 samples. In the plots E (|δij|2) and E (|δji|2) are replaced

by ∆ij(1,1)+∆ij(3,3)

T
and ∆ij(2,2)+∆ij(4,4)

T
respectively. This means that asymptotic

conditions are reached for short data block size.
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(b)

Fig. 4. Mean Rejection Level in dB versus the SNR for T = 1000 : (a) 4 sensors

and 2 AR sources with DOAs φ1 = 30 and φ2 = 45 degrees; (b) 7 sensors and 5

AR sources with DOAs φ1 = 15, φ2 = 30, φ3 = 45, φ4 = 60 and φ5 = 120 degrees

respectively.
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Figure 4 shows the mean rejection level against the signal to noise ratio SNR.

We compare the empirical performance with theoretical performance for T =

1000 sample size.
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Fig. 5. Mean Rejection Level in dB versus the number of sensors n for 2 autoregres-

sive sources and T=1000.

Figure 5 shows the mean rejection level versus the number of sensors using the

theoretical formulation for T = 1000 sample size. We observe that, the more

the number of sensors, the lower the rejection level is in the low SNR case.

For high SNRs the number of sensors has negligible effect on the separation

performance (in accordance with the uniform performance property).

Figure 6 shows Iperf versus the spectral shift δθ. The spectral shift δθ repre-

sents the spectral overlap of the two sources. In this figure, the noise is assumed

to be spatially white and its level is kept constant at 10dB and 30dB. We let

a1 = 0.7e0.5 and a2 = 0.5e(0.5+δθ). The plot evidences a significant increase in

rejection performance by increasing δθ.

Figure 7 assesses the performance of IDA versus the angle difference δφ =

φ2 − φ1 for different values of the SNR. The number of sensors is n = 4, the
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Fig. 6. Mean Rejection Level in dB versus the spectral shift δθ for 2 autoregressive

sources, 4 sensors and T=1000.
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Fig. 7. Mean Rejection Level in dB versus the angle difference δφ for 2 autoregressive

sources, 4 sensors and T=1000.

sample size T = 1000, two AR sources with coefficient a1 = 0.95e0.5 and

a2 = 0.5e0.7 are considered. Their respective DOAs are φ1 = 30 degrees and

φ2 = φ1+δφ. From the plots, we observe a significant performance degradation

when δφ is close to zero. Indeed in that case, the identifiability condition w.r.t.

the mixture matrix A is ill-satisfied. Also, we can observe that in the absence

of noise or equivalently when the noise is negligible (e.g. for SNR=50dB), the
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method has uniform performance independent from the mixture matrixA and

its numerical conditioning.
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Fig. 8. Mean Rejection Level in dB versus the number of time lags K for 2 autore-

gressive sources, 4 sensors and T=1000.

The plots in Figure 8 illustrate the effect of the number of time lags K for

different SNRs. In this simulation the sources arrive from the directions φ1 =

10 and φ2 = 13 degrees. This choice is to have an ill-conditioned mixture

matrix and hence a difficult separation context. In that case, the increase of

the number of correlation matrices is needed to improve the separation quality.

Otherwise, in a ‘good’ context, increasing the number of time lags would

not significantly affect the performance of the considered algorithm. From

this figure, we also observe that a large increase of the number of correlation

matrices leads to a degradation of the separation performance. The reason is

that, the correlation coefficients of considered sources decrease exponentially

towards zero and consequently the signal term in the large time lags correlation

matrices is negligible and their estimations are too noisy.
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6.3 Performance assessment of the testing technique

We present in this section some simulation results to illustrate the performance

of the separability testing method. In the simulated environment we consider

uniform linear array with n = 2 sensors receiving the signals from m = 2 unit-

power first order autoregressive sources (with coefficients a1 = 0.95e0.5 and

a2 = 0.5e0.7) in the presence of stationary complex temporally white noise.

The considered sources are separable according to the identifiability result, i.e.

their respective correlation vectors ρ̃1 and ρ̃2 are linearly independent. The

time lags (delays) implicitly involved are τ0, · · · , τ9 (i.e., K = 10). We use

SOBI algorithm [3] to obtain the decorrelated sources. The statistics in the

curves are evaluated over 2000 Monte-Carlo runs.
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Fig. 9. Rate of success versus SNR for 2 autoregressive sources and 2 sensors and

β = 99.7%: comparison of the performance of our testing algorithm for different

sample sizes T .

We first present in Figure 9 a simulation example where we compare the rate of

success of the testing procedure (success means that we decide the 2 sources
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have been separated) to detect the sources separability for different sample

sizes versus the SNR in dB. The confidence interval is fixed to β = 99.7%.

One can observe from this figure that the performance of the testing procedure

degrades significantly for a small sample size due to the increased estimation

errors and the fact that we use the asymptotic normality of considered statis-

tics.
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Fig. 10. Rate of success versus sample size T for 2 autoregressive sources and 2

sensors and SNR = 25dB: comparison of the performance of our algorithm for

different confidence interval β.

In Figure 10, we present a simulation example where we compare the rate

of success according to the sample size for different confidence intervals. The

SNR is set to 25dB. Clearly, the lower the confidence interval is, the higher is

the rate of success of the testing procedure. Also, as observed in Figure 9, the

rate of success increases rapidly when increasing the sample size.

In Figure 11, we present a simulation example where we plot the rate of success

versus the confidence interval β for different sample sizes and for SNR = 25dB.

This plot shows somehow the evolution of the rate of success w.r.t. the ‘false
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Fig. 11. Rate of false alarm versus confidence interval β for 2 autoregressive sources

and 2 sensors and SNR = 25dB: comparison of the performance of our algorithm

for different sample size T .

alarm rate’ and confirms the results of the two previous figures.
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Fig. 12. Rate of success versus spectral shift δθ for 2 autoregressive sources and 5

sensors and SNR = 25dB.

The simulation example presented in Figure 12 assumes two source signals

with parameters a1 = 0.5e0.5 and a2 = 0.5e(0.5+δθ), where δθ represents the

spectral overlap of the two sources. The number of sensors is n = 5, the sample
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size is T = 1000 and the SNR = 25dB. Figure 12 shows the rate of success

versus the spectral shift δθ. As we can see, small values of δθ lead to high

rates of ‘non-separability’ decision by our testing procedure. Indeed, when δθ

is close to zero the two vectors ρ̃1 and ρ̃2 are close to ‘linear dependency’.

That means that the separation quality of the two sources is poor in that case

which explains the observed testing results.
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Fig. 13. Average values of the |R(i, j)| and thresholds 1 − α(i,j) versus SNR for 3

sources and 3 sensors : 2 sources are complex white Gaussian processes and the

third one is an autoregressive signal.

In the last figure, we assume there exist three sources. The first two sources

are complex white Gaussian processes (hence ρ̃1 = ρ̃2) and the third one is

an autoregressive signal with coefficient a3 = 0.95e0.5. The plots in Figure 13

compares the average values of scalar products for ρ̃i and ρ̃j (i, j = 1, 2, 3)

with their corresponding threshold values 1−α(i,j) versus the SNR. The sample

size is fixed to T = 500 and the number of sensors is n = 3. This example

illustrates the situation where two of the sources (here sources 1 and 2) cannot

be separated (this is confirmed by the testing result) while the third one

35



is extracted correctly (the plots show clearly that R(1, 3) < 1 − α(1,3) and

R(2, 3) < 1− α(2,3)).

7 Conclusion

The second order blind source separation of stationary colored sources is a

simple decorrelation problem. The signal decorrelation for a finite set of time

lags leads to source separation under certain conditions that are fully detailed

in this paper. The separability conditions depend on the unknown sources and

hence cannot be verified (tested) directly. However, we present in this paper a

testing procedure that uses the output signals of the decorrelator to verify a

posteriori whether the sources have been correctly separated or not. The signal

decorrelation can be achieved in many different ways. We have presented in

this work, one of them that has the advantage of simplicity and efficiency

both in block and adaptive processing. Performance analysis using computer

simulations and validation of the different theoretical results are provided at

the end of the paper. Testing IDA in real world data is one of the perspectives

of this work.

A Proof of Theorem 3

Before proceeding, note that Theorem 3 is a generalization of Theorem 2 and

hence its proof is implicitly a proof of Theorem 2. Also, note that the result

of Theorem 2 is a proof for the sufficiency of the identifiability condition of

Theorem 1. Indeed, since A is full column rank, we know that a decorrelation

matrix exist (e.g. B = A#). Now, Theorem 2 result demonstrates that under
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condition (8), a decorrelation matrix at the considered time lags achieves the

desired blind source separation.

For proof of Theorem 3, let us notice that equation (10) is equivalent to 5

CS(τk)C
H diagonal for k = 1, · · · , K

C(
K∑
k=1

S(τk)
HCHCS(τk))C

H > 0

where C = BA, H denotes the matrix conjugate transpose, and the inequal-

ity A > 0 stands for A positive definite. This latter inequality implies in

particular that C is full rank. Note that CS(τk)C
H is diagonal if and only if

both C<e(S(τk))C
H and C=m(S(τk))C

H are diagonal.

Then we shall show that there exist linear combinations of <e(S(k))

and =m(S(k)), i.e., S1 =
∑K
k=1 αk<e(S(τk)) +α′k=m(S(τk)) and S2 =∑K

k=1 βk<e(S(τk)) + β′k=m(S(τk)), such that (i) S2 is non-singular and (ii)

the diagonal entries of S1S
−1
2 take d distinct values of multiplicity d1, · · · , dd,

respectively. A simple way to prove it is to consider linear combinations of

the form αk = xk, α′k = xk+K and βk = yk, β′k = yk+K (x and y being real

scalars). The diagonal entries of S1 and S2 are Pi(x) =
∑K
k=1<e(ρi(τk))xk

+xK
∑K
k=1=m(ρi(τk))x

k and Pi(y), i = 1, · · · ,m, respectively. Under the as-

sumption of Theorem 2, we have 6

Pi(y) 6≡ 0 for all i

Pi(x)Pj(y) 6≡Pi(y)Pj(x) if i and j belong to two distinct groups

Pi(x)Pj(y)≡Pi(y)Pj(x) if i and j belong to the same group

5 The noise term is neglected. However, this term equals zero if all the time lags

are non-zero and if the noise is temporally white.
6 The equalities below are understood in terms of equalities of polynomials.
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Therefore, P (x, y)
def
=

∏d
i=1 Pi(y)

∏
1≤i<j≤d(Pi(x)Pj(y) − Pj(x)Pi(y)) 6≡ 0

(here i and j denote the group index not the source index) and thus

there exist infinite values of (x, y) such that P (x, y) 6= 0. Let (x0, y0)

be such a value and let S1 =
∑K
k=1 x

k
0<e(S(τk)) + xk+K0 =m(S(τk)) and

S2 =
∑K
k=1 y

k
0<e(S(τk)) + yk+K0 =m(S(τk)). S1 and S2 satisfy conditions (i)

and (ii).

To complete the proof, note that

M1
def
=

K∑
k=1

xk0C<e(S(τk))C
H + xk+K0 C=m(S(τk))C

H = CS1C
H

is diagonal and

M2
def
=

K∑
k=1

yk0C<e(S(τk))C
H + yk+K0 C=m(S(τk))C

H = CS2C
H

is diagonal and non-singular. It follows that, M1M
−1
2 = CS1S

−1
2 C

−1 is

a diagonal matrix with d distinct eigenvalues (condition (ii)). Using stan-

dard spectral theory, e.g., [32], we conclude that C = PΛ for a given per-

mutation matrix P and a given non-singular block-diagonal matrix Λ, i.e.,

Λ = diag(U1, · · · ,Ud) where Ui is a di × di non-singular matrix. Finally, the

fact that sources belonging to the same group cannot be separated from the

considered set of statistics is simply a direct consequence of the necessity of

condition (8). 2

B Proof of Theorem 4

According to the above development, we have C = Pdiag(U1, · · · ,Ud). On

the other hand we have CS(τk)C
H diagonal for k = 1, · · · , K. This leads
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to UiSi(τk)U
H
i diagonal ∀i = 1, · · · , d, ∀k = 1, · · · , K. Now since we have

grouped the sources in such a way each group corresponds to sources with

(up to a sign) correlation vector, i.e. Si(τk) = ρi(τk)Σi where Σi are diagonal

matrices with diagonal entries equal to ±1, the previous equation becomes

UiΣiU
H
i diagonal for i = 1, · · · , d. Moreover, since Σi is real diagonal and

since we normalized to unity the correlation vectors (both estimated and ex-

act), then UiΣiU
H
i is real diagonal with diagonal entries equal to ±1. Finally,

since the signature (i.e., the number of positive eigenvalues and the number of

negative eigenvalues) of a quadratic form Q is invariant by multiplication left

and right by a non-singular matrix and its conjugate transpose, respectively,

then UiΣiU
H
i has the same signature (i.e., number of +1s and number of −1s)

as Σi. In other words, there exists a di × di permutation matrix Pi such that

UiΣiU
H
i = PiΣiP

T
i . It follows then that, for k = 1, · · · , K

E(z(t+ τk)z
?(t)) = CS(τk)C

H = PS(τk)P
T (B.1)

for a given permutation matrix P . Equation (B.1) means that the entries

zi(t) of z(t) have the same correlation coefficients as sP (i)(t) for i = 1, · · · ,m,

where P (1), · · · , P (m) are the images of 1, · · · ,m by the permutation P . This

verifies the conclusion of Theorem 4. 2

C Proof of Theorem 5

We propose here to derive the expression of the asymptotic covariance error.

Note that the asymptotic Gaussianity of the error δ comes from the central

limit theorem as shown in [3, 18]. The expression of δ can be obtained by

replacing in equations (17) and (23) z(p)(t) and ε(p) by s(t) and δ respectively.
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Hence, from the vectorized version of equation (25) the expression of matrix

δijδ
T
ij can be written as :

δijδ
T
ij =

1

4
H#
ijψijH

#?
ij (C.1)

where

Hij = I2 ⊗ [rii rjj] (C.2)

ψij =


ξ

(ij)
11 ξ

(ij)
12

ξ
(ij)
21 ξ

(ij)
22

 (C.3)

with

ξ
(ij)
11 = γ

(ij)
11 + γ

(ij)
12 + γ

(ij)
21 + γ

(ij)
22 (C.4)

ξ
(ij)
12 = 

[
γ

(ij)
11 − γ

(ij)
12 + γ

(ij)
21 + γ

(ij)
22

]
(C.5)

ξ
(ij)
21 = −

[
γ

(ij)
11 + γ

(ij)
12 − γ

(ij)
21 + γ

(ij)
22

]
(C.6)

ξ
(ij)
22 = γ

(ij)
11 − γ

(ij)
12 − γ

(ij)
21 + γ

(ij)
22 (C.7)

and γ
(ij)
11 , γ

(ij)
12 , γ

(ij)
21 and γ

(ij)
22 are K ×K matrices given by ∀1 ≤ k, k′ ≤ K :

γ
(ij)
11 (k, k′) =

1

(T − τk)(T − τk′)

T−τk∑
t=1

T−τk′∑
t′=1

zi(t+ τk)zj(t)zi(t
′ + τk′)zj(t

′) (C.8)

γ
(ij)
22 (k, k′) =

1

(T − τk)(T − τk′)

T−τk∑
t=1

T−τk′∑
t′=1

zj(t+ τk)zi(t)zj(t
′ + τk′)zi(t

′) (C.9)

γ
(ij)
12 (k, k′) =

1

(T − τk)(T − τk′)

T−τk∑
t=1

T−τk′∑
t′=1

zi(t+τk)zj(t)zj(t
′+τk′)zi(t

′) (C.10)

γ
(ij)
21 (k, k′) =

1

(T − τk)(T − τk′)

T−τk∑
t=1

T−τk′∑
t′=1

zj(t+τk)zi(t)zi(t
′+τk′)zj(t

′) (C.11)

Therefore, using the index τ = t− t′, we obtain

lim
T→+∞

T E
(
γ

(ij)
11 (k, k′)

)
= lim

T→+∞
T (T−τk−|τ |)

(T−τk)(T−τk′ )

T−τk∑
τ=−T+τk′

rii(τk + τ)rjj(τk′ + τ)

= Γ
(ij)
11 (k, k′)
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lim
T→+∞

T E
(
γ

(ij)
22 (k, k′)

)
= lim

T→+∞
T (T−τk−|τ |)

(T−τk)(T−τk′ )

T−τk∑
τ=−T+τk′

rii(τk′ + τ)rjj(τk + τ)

= Γ
(ij)
22 (k, k′)

lim
T→+∞

T E
(
γ

(ij)
12 (k, k′)

)
= lim

T→+∞
T (T−τk−|τ |)

(T−τk)(T−τk′ )

T−τk∑
τ=−T+τk′

rii(τk + τ)rjj(τk′ − τ)

= Γ
(ij)
12 (k, k′)

lim
T→+∞

T E
(
γ

(ij)
21 (k, k′)

)
= lim

T→+∞
T (T−τk−|τ |)

(T−τk)(T−τk′ )

T−τk∑
τ=−T+τk′

rii(τk′ − τ)rjj(τk + τ)

= Γ
(ij)
21 (k, k′)

where Γ
(ij)
11 (k, k′), Γ

(ij)
22 (k, k′), Γ

(ij)
12 (k, k′) and Γ

(ij)
21 (k, k′) are given by equations

(44), (45), (46) and (47). 2
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