
HAL Id: hal-01801009
https://hal.science/hal-01801009

Submitted on 30 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

WIoT: Interconnection between Wise Objects and IoT
Ilham Alloui, Eric Benoit, Stéphane Perrin, Flavien Vernier

To cite this version:
Ilham Alloui, Eric Benoit, Stéphane Perrin, Flavien Vernier. WIoT: Interconnection between Wise
Objects and IoT. ICSOFT 2018, the 13th International Conference on Software Technologies, Jul
2018, Porto, Portugal. �10.5220/0006870204940505�. �hal-01801009�

https://hal.science/hal-01801009
https://hal.archives-ouvertes.fr

WIoT: Interconnection between Wise Objects and IoT

Ilham Alloui1, Eric Benoit1, Stéphane Perrin1, Flavien Vernier1

1Université Savoie Mont-Blanc - LISTIC, 5 chemin de bellevue, Annecy-le-Vieux, 74 940 ANNECY, France
{ilham.alloui, eric.benoit, stephane.perrin, flavien.vernier}@univ-smb.fr

Keywords: Wise Object, IoT, Software Architecture, Communication, Knowledge Analysis.

Abstract: Internet of Things (IoT) technologies remain young and require software technologies to ensure
data/information management among things in order to deliver more sophisticated services to their users.
In particular, users of IOT-based technologies need systems adapt to their use and not the reverse. To meet
those requirements, we enriched our object oriented framework WOF (Wise Object Framework) with a com-
munication structure to interconnect WOs (Wise Objects) and IoT. Things from IoT are then able to learn,
monitor and analyze data in order to be able to adapt their behavior. In this paper, we recall the underlying
concepts of our framework and then focus on the interconnection between WOs and IoT. This is provided
through a software bus-based architecture and IoT related communication protocols. We designed a dedicated
communication protocol for IoT objects. We show how IoT objects can benefit from learning, monitoring and
analysis mechanisms provided by WOF to identify common usage of a system and unusual behavior (habit
change). We illustrate this through a particular case of home automation.

1 INTRODUCTION

The Internet of Things (IoT) is the extension of
current Internet to provide connection and communi-
cation between devices or physical objects referred to
as “Things” (IEC, 2016). Even growing substantially
in number and use, the Internet of Things (IoT) tech-
nologies remain young and require software technolo-
gies to ensure data/information management among
things in order to deliver more sophisticated services
to their users. As an example, home automation (HA)
things which are getting more and more involved
within our daily life. HA things are either within a
ready-to-use systems (like boxes) or singles to be in-
tegrated to an existing system or platform. In both
cases, when it is provided, support for data monitor-
ing and analysis is very limited (Vishwajeet and San-
jeev, 2015).Users may need a remote access to things,
for instance to switch off lights they forgot or turn
off the strove... Communication provided by existing
IoT technologies involves then basic data or informa-
tion such as current state of things. Moreover, users
of a HA need the technology adapts to their use and
not the reverse. In our previous example, the system
(instead of users) would for instance detect that un-
usually the lights are switched on and then it would
switch off them.

This implies that the system is able to: (a) identify

changes in the way it is being used and (b) change
its behavior to comply with those new usages. Our
proposal is that intelligent software systems could
enhance IoT with useful capabilities such as learn-
ing, monitoring and adaptation to meet those require-
ments.

Starting from works on IoT, on one hand and on
intelligent software systems on the other hand (Weyns
et al., 2013) (Brun et al., 2013) we aim at adding
value to IoT through a software object framework we
named WOF (Wise Object Framework) (Alloui et al.,
2015) that provides things, be them physical or soft-
ware, built-in mechanisms for learning, monitoring,
analyzing and managing data/information (see Fig-
ure 1). Those software mechanisms allow IoT-based
systems like in HA to: (a) identify common usage (i.e.
usual behavior of their users); (b) consequently detect
uncommon usage (unusual behavior); (c) adapt to the
new usage (system in automatic mode) or simply give
information to the users (manual mode).

Identifying common usage by software is not an
easy work. The common usage is usually stud-
ied from a psychological point of view for the hu-
man (Aarts et al., 2006) or from the signal pro-
cessing point of view with change detection meth-
ods (Aminikhanghahi and Cook, 2017) for data, but
never from the software point of view at the best of
our knowledge. This research issue raises many ques-

:therm

WO

Wise Object
System

:shutter

WO

:heating

WO

:switch

WO

:mobile

WO

Figure 1: Example of Home Automation Wise Object Sys-
tem

tions such as: what is considered common usage? Is
common usage necessarily related to time? Is there an
interval of acceptance of unusual behavior? Which
one? What methods/techniques better identify com-
mon usage? In which context? etc.

Users’ behavior identification and system adap-
tation rely on data/information collected from con-
nected things that may be distributed as is the case in
IoT. This led us to construct a software bridge link-
ing IoT objects to our WOF software objects. In
this paper we focus mainly on this link between soft-
ware ”wise” objects (WOs) and IoT through the WOF.
WOs can be seen as software avatars related to things.
In Section 2 we recall the concept of WO and WOF,
the behavior of a WO, its initial interaction with oth-
ers WO and our first representation of common us-
age. Section 3 introduces the connection between a
WO and an IoT, from the software interaction point
of view in Section 3.1 and from the communication
one in Section 3.2. Finally, we discuss our approach
and conclude with ongoing work and some perspec-
tives.

2 WO AND WOF

2.1 WOF

WOF is founded on the concept of WO. From a sys-
tem development perspective, our design decisions
behind the WOF are mainly guided by the follow-
ing requirements: software support should be unin-
trusive, reusable and generic enough to be maintain-
able and used in different application domains with
different strategies. Developers should be able to use
the framework with the minimum of constraints and
intrusion in the source code of the application. We
consequently separated, in the WOF, the ”wisdom”

and intelligence logic (we name abilities) of the ob-
jects from application services (we name capabilities)
they are intended to render. As depicted in Figure 2,
we designed the WOF according to a layered archi-
tecture:

• the core layer, i.e. the framework building blocks,
consists of a set of interrelated packages and
classes that embed basic mechanisms for intro-
spection, monitoring, analysis and communica-
tion among WO instances. WO is the main class
from which a system developer may specialize
application-level classes such as the Switch and
Shutter classes within the home automation sys-
tem in the example;

• the software system layer: contains the package
and classes related to software systems developed
for end-users. The home automation cited so far
is a representative of such systems. Classes repre-
senting things can inherit the structure and behav-
ior of the WO class in the Framework layer;

• the instantiated software system: gathers the
instantiated application software systems from
the previous layer. Instances of application-
related classes are avatars for physical/logical ob-
jects/things.

switch shutter

Framework
WO

Switch Shutter

inherit

instantiate

End user

Main system
developer

WO developer

Figure 2: WOF concrete architecture

2.2 Concept of WO

We define a Wise Object (WO) as a software object
able to learn by itself on itself and on its environ-
ment (other WOs, external knowledge), to deliver ex-
pected services according to the current state and us-
ing its own experience. Wisdom refers to the expe-
rience such object acquires by its own during its life.
We intentionally use terms dedicated to humans as a
metaphor. A Wise Object is intended to ”connect” to

either a physical entity/device (e.g. a vacuum cleaner)
or a logical entity (e.g. a software component). As an
example, a wise object could be a cleaner that learns
how to clean a room depending on its shape and di-
mensions. In the course of time, the cleaner could in
addition improve its performance (less time, less en-
ergy consumption, etc.). A WO is then characterized
by:

• its autonomy: it is able to behave with no human
intervention;

• its adaptiveness: it changes its behavior when its
environment changes;

• its intelligence: it observes itself and its environ-
ment, analyzes them and uses its knowledge to
decide how to behave (introspection, monitoring,
analysis, planning);

• its ability to communicate: with its environment
that includes other WOs and end-users in different
locations.

A WO behaves transiting among two states: The
dream state and the awake state, see Figure 3. The
dream state is dedicated to acquiring knowledge about
its own capabilities and to analyzing usage-related
knowledge. The awake state is the state where the
WO executes its methods invoked by other objects
(external service requests) or by itself (internal re-
quests), and, monitors such execution while recording
usage-related knowledge.

A WO’s capability-related knowledge is itself
stored as a state diagram. The WO executes the meth-
ods of its sub-class (i.e. an application class) to know
the effect on the attributes of this sub-class. Each
set of attribute values produces a state in the dia-
gram and method invocation produces a transition.
The main constraint in this step is that the method
invocation must have no effect on the other objects
of the application when the WO is dreaming. This
is solved thanks to a bus-based system architecture
described in (Alloui et al., 2015) with disconnec-
tion/reconnection mechanisms.

Regarding knowledge on an application object us-
age, two kinds of situations are studied: emotions and
adaptation of behavior. We define an emotion of WO
as a distance between its current usage and its com-
mon usage (i.e. unusual usage). WO can be stressed if
one of its methods (services) is more frequently used
or conversely, a WO can be bored. WO can be sur-
prised if one of its method is used and this was never
happened before. Emotions of WO are a projection
of its current usage with regard to its common (usual)
usage. In Subsection 2.3, we present a Data Ana-
lyzer based on a statistical method we implemented
in WOF to identify usual/unusual behavior. When a

WO state diagram:

Dream

Awake

[IDLE]
[Service
request]

(a) WO short state diagram

WO detailed state diagram:

Dream

Behavior
graph

KO
OK

Awake

[IDLE] [Service request]

Collecting
usage data

Servicing

Learn on itself

Learn on usage

Behavior graph
validation

(b) WO detailed state diagram
Figure 3: UML state diagram of WO built-in behavior (Al-
loui and Vernier, 2017)

WO expresses an emotion, this information is caught
by the WO system that may consequently lead to be-
havior adaptation. At the object level, two instances
of the same class that are used differently – different
frequencies, different methods... – may have different
emotions, thus, different behavior and interaction in
the WO system.

A WO uses its capability-related knowledge to
compute a path from a current state to a known
state (Moreaux et al., 2012). According to the fre-
quency of the paths used, a WO can adapt its be-
havior. For instance, if a path is often used between
non-adjacent states, the WO can build a shortcut tran-
sition between the initial and destination states and
then build the corresponding method within its sub-
class instance (application object). This consequently
modifies the capability-related graph of this instance.

To build a WO system, the WOF provides à com-

munication bus (Gava) for the interaction between the
WO instances. Interactions are managed through a
manager object that establishes the configured pairing
between events and actions according to a publish-
subscribe pattern. Figure 4 illustrates this interaction.
When a method is invoked on a WO instance: (a)

:S
w

itch
:S

h
utter

:M
anag

er

:A
ctor

S
tate

change
LE

vent: on !
P

eering

LA
ction: up !

invoke(up,null)
S

tate
change

LE
vent: up !

V
alidation

:W
o

 S
hutte

r
:W

o S
w

itch

on()

done

done

Figure 4: UML Sequence diagram of the interaction be-
tween a WO switch and a WO shutter.

the wise part of the instance sends an event at the
end of the invocation; (b) the manager catches the
event and sends orders to all WO instances interested
in the initial event (paired WOs); (c) the paired WO
instances execute the corresponding method; (d) the
manager checks that the order has been correctly ex-
ecuted. The communication and pairing system are
detailed in (Alloui and Vernier, 2017) and were ini-
tially limited to communication and pairing between
WO instances.

2.3 WOF and Data Analyzers

To manage its knowledge, to determine the common
usage and to express its emotions, the WOF provides
an analyzer connector to connect and to study differ-
ent approach to compute the emotions. Each con-
nected analyzer is waked-up during the dream step of
the WO to analyze the last events.

We base our preliminary model of common us-
age of an object on a statistic approach and define the
common usage as weaker forms of stationarity in the
statistic point of view. Let us recall this approach in-
troduced in (Alloui and Vernier, 2017).

Let x(i) a continuous and stationary time random
process. The weaker forms of stationarity (WSS) de-
fines that the mean E [x(i)] and variance Var [x(i)] do
not vary with respect to time and the autocovariance
Cov [x(i),x(i− k)] only depends on range k. A process
is a WSS process if and only if:

E [x(i)] = µ ∀i,
Var [x(i)] = σ2 6= ∞ ∀i,
Cov [x(i),x(i− k)] = f (k) = ρk ∀i∀k.

This definition implies the analysis of the whole
time series and a perfect stationarity. In our case, the
common usage can change and is not perfectly stable.
Therefore, we compute the stationarity – the common
usage – on a sliding window of size w:
E [x(i)] = µ(t) ∀i ∈ [t−w, t],
Var [x(i)] = σ2(t) 6= ∞ ∀i ∈ [t−w, t],
Cov [x(i),x(i− k)] = f (k, t) = ρk(t)∀i ∈ [t−w, t]∀k,
where the time series x(i) are the occurrences[
et−w

τ . . .ei
τ . . .e

t
τ

]
of a given event – i.e. transition –

τ between t-w and t.
As the system cannot be perfectly stationary, we

relax the definition and consider that the system is in
common use if and only if:

µ(t +1) ∈ [µ(t−w),µ(t)]
σ2(t +1) ∈ [σ2(t−w),σ2(t)]
ρk(t +1) ∈ [ρk(t−w),ρk(t)].

In other word, when a new datum arrives at time t+1,
its impact on the mean, variance and autocovariance
gives known values in the window w. If one or more
values are out of range, the behavior is not a common
usage.

According to this definition of the stationarity, we
define an emotion as the distance between the cur-
rent usage and the common usage, in other words, the
distance with the stationarity measure. We define this
distance d(x(i)) by the following centered normalized
scale where:

d(x(i)) =

 d(E [x(i)]),
d(Var [x(i)]),
d(Cov [x(i),x(i− k)]),

where

d(E [x(i)]) = E[x(i)]−E[x(j)]
(max(E[x(j)])−min(E[x(j)]))/2 ,

d(Var [x(i)]) = Var[x(i)]−Var[x(j)]
(max(Var[x(j)])−min(Var[x(j)]))/2 ,

d(Cov [x(i),x(i− k)]) =
Cov[x(i),x(i−k)]−Cov[x(j),x(j−k)]

(max(Cov[x(j),x(j−k)])−min(Cov[x(j),x(j−k)]))/2 ,

j ∈ [t−w, t] and E [x(j)], Var [x(j)] and
Cov [x(j),x(j− k)] are respectively the means of
means, variances and autocovariances on the range
[t−w, t].

Thus, when a new event occurs at t + 1, we com-
pute the distance with the common usage between
t−w and t. If all values of the distance – d(E [x(i)]),
d(Var [x(i)]) and d(Cov [x(i),x(i− k)]) – are in [−1,1]
this is considered as a common behavior, otherwise
this is identified as a behavior change (unusual usage)
relatively to the knowledge on the common usage.

3 WOF TOWARDS IOT

To meet IoT related requirements cited in Sec-
tion 1, we extended our framework WOF (Alloui and
Vernier, 2017) with mechanisms to relate ”things” to
WOs. We thus define an object in WIoT as a peer
composed of a physical object (thing) and a logical
(software) object (WO).

Internet

Avatars

Things

Figure 5: WIoT architecture

A WO can be viewed as an avatar of a thing or a
set of things. In this first approach, we limit the in-
terconnection between a WO and only one thing (see
Figure 5). From now on, when use the term object to
refer to the thing-avatar peer.

3.1 WO model for IoT

When a thing joins the application system (e.g. HA
system), its corresponding avatar is automatically in-
stantiated and this pair forms then a new object. This
means that the avatar class of the thing exists. As it
is not desirable and even not relevant to provide ev-
erything in the system with the ability of learning and
analysis, we introduced a class named Generic WO
without the introspection ability.

Like WO class instances, instances of Generic
WO are able to construct their capability-related
graph, but they cannot use introspection to analyze
their behavior. A Generic WO instance learns its be-
havior from state change messages it receives from
the thing it is related to. This way, a generic WO can
be related to any ”thing” able to communicate its state
and state changes. This is not a strong constraint as re-
cent physical connected objects are generally able to
communicate their state changes. In the case of home
automation, devices using ZigBee (Zigbee, 2018), Z-
Wave (Z-Vawe, 2018) or other modern systems, com-
municate their capabilities through profiles or other
kinds of descriptions. Figure 6 presents the UML
Class diagram of WO including the Generic WO. As
shown in the figure, a generic WO is a WO where
the ”invoke” method is redefined. Classically through
the ”invoke” method, a WO can invoke the methods
of its sub-classes, i.e. application classes whose in-
stances are avatars for things. On the opposite, the
class generic WO has no subclass. Then when the
”invoke” method is called, it just updates its usage-
related diagram (knowledge on the way the thing is
being used).

Figure 7 illustrates the communication flow be-
tween a physical switch and its associated phys-
ical shutter. The ”PEvent/PAction” and ”LEv-
ent/LAction” are respectively sent through the physi-
cal (P) and logical (L) communication media.

When the switch is activated, it sends the message
”PEvent:on!” to its avatar. When receiving this mes-
sage, the wise part of the avatar knows the state of
its associated object has changed, thus it executes the
method on itself, ”on()” in the example, to be in a
consistent state with its thing. When this is done, the
switch object sends ”LEvent:on!” message to inform
the system that its state has changed.

Let us note the system can manage pure logical

w
o

W
O

-
l
a
s
t
R
e
a
l
i
t
y
S
t
a
t
e
:

V
e
c
t
o
r
<
O
b
j
e
c
t
>

-
d
r
e
a
m
(
)

-
w
a
k
e
U
p
(
)

-
r
e
s
e
t
S
t
a
t
e
(
s
t
a
t
e
:
V
e
c
t
o
r
<
O
b
j
e
c
t
>
)

+
m
e
t
h
o
d
i
n
v
o
c
a
t
e
(
)

+
m
e
t
h
o
d
I
n
v
o
c
a
t
e
d
(
)

-
i
n
v
o
k
e
(
m
e
t
h
o
d
N
a
m
e
:
S
t
r
i
n
g
,
a
t
t
r
i
b
u
t
s
:
O
b
j
e
c
t
[
]
)

G
e
n
e
ric

W
o

-
e
n
v
e
n
t
s
:

V
e
c
t
o
r
<
E
v
e
n
t
>

-
i
n
v
o
k
e
(
m
e
t
h
o
d
N
a
m
e
:
S
t
r
i
n
g
,
a
t
t
r
i
b
u
t
e
s
:
O
b
j
e
c
t
[
]
)

+
o
n
P
h
y
s
i
c
a
l
S
t
a
t
e
E
v
e
n
t
(
e
:
P
h
y
s
i
c
a
l
S
t
a
t
e
E
v
e
n
t
)

+
o
n
P
h
y
s
i
c
a
l
S
t
a
t
e
C
h
a
n
g
e
E
v
e
n
t
(
e
:
P
h
y
s
i
c
a
l
S
t
a
t
e
C
h
a
n
g
e
E
v
e
n
t
)

<
<
I
n
t
e
r
f
a
c
e
>
>

R
u
n
n
a
b
le

g
r
a
p
h

G
ra
p
h

-
e
d
g
e
N
a
m
e
s
:

V
e
c
t
o
r
<
S
t
r
i
n
g
>

-
a
d
j
a
c
e
n
t
N
o
d
e
s
:

V
e
c
t
o
r
<
V
e
c
t
o
r
<
N
o
d
e
>
>

-
i
n
c
i
d
e
n
c
e
E
d
g
e
s
:

V
e
c
t
o
r
<
V
e
c
t
o
r
<
S
t
r
i
n
g
>
>

-
t
r
a
n
s
i
t
i
o
n
s
U
s
e
d
:

V
e
c
t
o
r
<
V
e
c
t
o
r
<
V
e
c
t
o
r
<
U
s
a
g
e
I
n
f
o
r
m
a
t
i
o
n
>
>
>

+
a
d
d
N
o
d
e
(
f
i
e
l
d
V
a
l
u
e
s
:
V
e
c
t
o
r
<
O
b
j
e
c
t
>
)

+
a
d
d
E
d
g
e
(
s
o
u
r
c
e
:
I
n
t
e
g
e
r
,
d
e
s
t
i
n
a
t
i
o
n
:
I
n
t
e
g
e
r
,

a
c
t
i
o
n
N
a
m
e
:
S
t
r
i
n
g
)

+
g
e
t
N
e
x
t
S
t
a
t
e
(
s
t
a
t
e
:
I
n
t
e
g
e
r
,
a
c
t
i
o
n
:
S
t
r
i
n
g
)
:

I
n
t
e
g
e
r

+
i
s
C
o
m
p
l
e
t
e
(
)
:

B
o
o
l
e
a
n

N
o
d
e

-
s
t
a
t
e
N
u
m
b
e
r
:

I
n
t
e
g
e
r

-
f
i
e
l
d
V
a
l
u
e
s
:

V
e
c
t
o
r
<
O
b
j
e
c
t
>

+
N
o
d
e
(
f
i
e
l
d
V
a
l
u
e
s
:
V
e
c
t
o
r
<
O
b
j
e
c
t
>
)

n

Figure 6: UML Class diagram of generic WO

objects: objects that are not linked to physical ob-
jects. Figures 8 and 9 illustrate 2 cases. The former,
Figure 8, presents the sequence diagram of a logi-
cal switch activated respectively through software and
through a physical shutter. Physical devices and end-
users are represented as external actors (fellow sym-
bol) to a WOS whereas logical things (software) are
represented as internal actors (blue boxes).

Figure 9, presents the sequence diagram of a phys-
ical bell push that launches on the system a video ap-
plication to check who is ringing. In this case, the
video application is considered as part of the WOS.

In the cases where a thing has no avatar in the
system, it is associated with a generic WO. Fig-
ure 10 illustrates this configuration where a physi-
cal switch has an action on an object that is not ex-
plicitly defined in the system. Although it is named
”unknown:Actor”, it must respect the communica-
tion protocol defined in Section 3.2. Let us notice
that there is no constraint about the fact that the ”un-
known:Actor” must be a logical or a physical object,
it can be of both kinds.

As shown in the different sequence diagrams, the
WOF offers the required support for all combinations
between two objects, be them physical (e.g. devices)

:S
w

itch
:S

hutter
:M

a
nager

sw
itch

:A
ctor

S
tate

change
LE

vent: on !
P

eering

LA
ction: up !

up()
S

tate
change

LE
vent: up !

V
alidation

:W
o S

h
utter

:W
o S

w
itch

P
E

vent: on !

P
A

ction: up !

P
E

vent : up !

done

done

shutter
:A

ctor

on()
invoke(on,null)

invoke(up,null)

Figure 7: UML Sequence diagram of the interaction be-
tween a physical switch and a physical shutter

or logical (i.e. software). Let us however note that,
if a physical object is used – a thing – a logical ob-
ject – its avatar – is necessarily associated with it.
Moreover, a physical object does not necessarily have
a known avatar in the system. In this case, it must re-
spect communication constraints detailed in the next
section.

3.2 Communication Protocol

The WOF provides a communication system for WOs
to interact and exchange information. It corresponds
to communications between objects in the logical
world (the software application that manages those
objects). The physical objects/things are from IoT and
communicate in our case through an MQTT commu-
nication system (Yassein et al., 2017). Thus we imple-
mented a bridge between both those system in WOF
to enable communication between WOs and things.

As the communications between WOs and be-
tween a WO and its associated physical object are not
of the same nature, we defined two kinds of commu-

:S
w

itch
:S

hutter
:M

a
nager

:A
ctor

S
tate

change
LE

vent: on !
P

eering

LA
ction: up !

invoke(up,null)
S

tate
change

LE
vent: up !

V
alidation

:W
o S

h
utter

:W
o S

w
itch

on()

P
A

ction: up !

P
E

vent : up !

done

done

shutter
:A

ctor

Figure 8: UML Sequence diagram of the interaction be-
tween a logical switch and a physical shutter

nications we named respectively ”logical” (WO-WO)
and ”physical” communications (WO-thing). From
the conceptual point of view, this approach can be
considered as a dedicated communication medium.
Figure 11 shows this communication flow among
physical things (button and light), their logical avatars
(software WOs) and the manager software object.

From the implementation point of view, the WOF
uses the publish/subscribe-based Guava bus and IoT
communication is based on MQTT with JSON format
for messages. As both are publish/subscribe-based
systems, a simple bridge is used to exchange mes-
sages from one to the other. To separate ”logical” and
”physical” communications, we use different types of
messages that we defined as follows:

• Physical messages:

– ”PhysicNewDevice”: message sent by a physi-
cal object when it connects to MQTT server.

:B
ellP

ush
:V

id
eoD

o
orA

pp
:M

a
nager

bellP
ush

:A
ctor

S
tate

change
LE

vent: pushed !
P

eering

LA
ction: launch !

invoke(run,null)
S

tate
change

LE
vent: launched !

V
alidation

:W
o V

ideoD
oorA

p
p

:W
o

 B
ellP

ush

 invoke(push,null)
P

E
vent: pushed !

done

done

Figure 9: UML Sequence diagram of the interaction be-
tween a physical bell push and a logical video application

– ”PhysicStateChange”: message sent by a phys-
ical object when its state changes; it contains
the event that generates the state change.

– ”PhysicAction”: message sent to a physical ob-
ject so that it performs an action.

– ”PhysicGetState”: message sent to a physical
object so that it sends its state; this message
type is mainly dedicated to generic WOs so that
they ask the things their state.

– ”PhysicState”: message sent by a physical ob-
ject to indicate its state; this message is the an-
swer to ”PhysicGetState” message.

• Logical messages:

– ”LogicNewDevice” message sent by a WO
when it is created in the WOF.

– ”LogicalStateChange” message sent by a WO
when its state changes.

– ”LogicalAction” message sent to a WO so that
it performs an action.

:S
w

itch
:G

enericW
o

:M
a

nager

sw
itch

:A
ctor

S
tate

change
LE

vent: on !
P

eering

LA
ction: up !

S
tate

change
LE

vent: up !

V
alidation

:W
o

:W
o S

w
itch

P
E

vent: on !

P
A

ction: up !

P
E

vent : up !

done

unknow
n

:A
ctor

on()
invoke(on,null)

done

invoke(up,null)
Figure 10: UML Sequence diagram of the interaction be-
tween a physical switch and a physical object not imple-
mented as WO (no avatar) and managed as a generic WO

The bridge only translates Java object messages to
JSON objects and vice-versa according to the follow-
ing rules:

• the MQTT topic is defined by [basetopic]/[Class]
where:

– basetopic is free, ”Wo” in our example,
– Class is the name of class message including

the package name, for example a ”PhysicAc-
tion” message of package ”bus” is sent on topic
”WO/bus.PhysicAction”,

• any attribute of the Java object is an attribute of
JSON.

Figures 12(a) and 12(b) illustrate respectively the
”PhysicAction” class and an object that is translated
as the following JSON message:

MqttConnector from MQTT: Wo/bus.PhysicAction->
{"senderId":"home_automation.Switch:1",
"sendTime":1512984990902,
"receiverId":"Switch:1",
"action":"on"}

Figure 11: Communication flow between manager, logical
and physical objects

The WO identified by id ”home automation-
.Switch:1” sends, at time 1512984990902, the order
”on” to its thing identified by ”Switch:1”.

Finally, the communication system we used be-
tween WOF and IoT allows us to connect:

• A thing defined in the WOF.

• A thing not defined in the WOF, but that can com-
municate using our protocol.

• A thing not defined in the WOF, that commu-
nicates with another medium (ZigBee, ZWave,
WiFi...)

The constraint is that the thing must be able to give
information on its state change. Figure 13 illustrates
on a switch example the three communication cases.

4 EXPERIMENTAL
IMPLEMENTATION

4.1 Use case description

To illustrate the use of the proposed architecture so-
lution which interconnects wise objects and IoT, we
took the case of a presence smart sensor within a

PhysicAction

- receiverId:String
- action2do:String

+ PhysicAction(senderId:String,
receiverId:String,
action2do:String)

+ getAction2do():String
+ getReceiverId():String

(a) PhysicAction class used to send ”Physi-
cAction” message from a WO to its thing

m :PhysicAction

senderId = « home_automation.Switch:1"
sendTime = 1512984990902
receiverId = "Switch:1"
action2do = "on"

(b) Example of PhysicAction object
Figure 12: PhysicAction class used to receive ”PhysicAc-
tion” message by a WO

IOT
Physical switch

Soft switch
:Wo

Soft switch
Eg : zigBee box

:GenericWo :GenericWo

WOF Bridge

WOF Bridge

WOF Bridge

Java object message on Gava Bus

JSON object message on MQTT Bus

Other communication system

Figure 13: An IoT object, like a switch can be connected to
WOF according to 3 ways: a) the thing can communicate
using our MQTT protocol and its avatar exists in the WOF,
b) the thing can communicate using our MQTT protocol
but its avatar does not exist in the WOF, c) the thing cannot
communicate using our MQTT protocol

classroom with the objective to identify the usual us-
age of the room and detect habit change (unusual be-
havior). This allows us to experimentally validate our
approach of habit change measurement.

One objective of the case study is to know if our
system is able to detect habit change in relation to
a common usage, especially regarding student vaca-
tion periods. The smart presence sensor provides the
”presence” state when persons are in a room and the
”no presence” state when not. It is worth noting that
the smart capacity of the sensor offers the possibility

to filter the output state: ”no presence” state is deliv-
ered if no detection occurs for one minute.

Attempting to identify a common usage (habit) re-
quires a significant volume of data that depends on
the temporal observing window or the number of ob-
servations taken into account. To cover different vol-
umes of data, it is obviously relevant to consider a
long duration of observation. However to avoid a
long experiment, one year in our case, we simulate
the smart presence sensor outputs by using real data
coming from the real-time scheduling system of our
university. Thus, real data injected in the system cor-
responds to the outputs of the smart presence sensor
placed into a classroom. At each ”state change” event
from the sensor, a physical timestamped message, in-
cluding the sensor id, is sent using MQTT protocol.
The next section presents some results of our experi-
mentation.

4.2 Experimental results

Figures 14 and 15 illustrate the experiment results ac-
cording to the definition of common usage given in
Section 2.3, with only one k value for covariance. Our
purpose is to highlight the strengths and weaknesses
of our first modeling of common usage. As the focus
of this paper is on interconnection between wise ob-
jects and IOT, we do provide an in-depth analysis of
common usage modeling. This issue will be studied
in the future.

In this experiment, we observe for the sensor, the
delay between events as well as the time spent by
it in different states. The events are the detection
of ”new presence”, when the sensor switches from
”no presence state to ”presence” state and conversely,
the detection of ”no more presence”, when the sen-
sor switches from ”presence state to ”no presence”
state. Figures 14(a) and 14(b) give the common us-
age respectively computed from the ”new presence”
events and from the ”no more presence” events. In
other word, Figure 14(a), gives the common varia-
tion of delay between two successive ”new presence”
events. Figures 15(a) and 15(b) give the common us-
age respectively computed from the duration of pres-
ence and the duration of no presence in the room. The
results are computed with 15 days as window size w,
any data older than 15 days are forgotten. Thus, in the
range [−1,1], between green lines in the figures, the
behavior is considered as common usage regarding
the last 15 days. Outside the range [−1,1], behavior
is considered as unusual, we qualify it as ”emotion”.
The emotional force is represented by the distance of
the behavior to the common usage.

These preliminary results are encouraging. They

(a) Classroom usage representation computed
from ”new presence” events

(b) Classroom usage representation computed
from ”no more presence” events

Figure 14: Common usage and Emotion representation
based on events

(a) Classroom usage representation computed
from ”presence” duration

(b) Classroom usage representation computed
from ”no presence” duration

Figure 15: Common usage and Emotion representation
based on time spent in state

highlight, from different points of view – state
changes and time spent in a state – the change in the
classroom usage. Each part with an important dis-
tance from the common usage corresponds to holi-
days (in France):

• 1 week for the Halloween holidays in October,

• 2 weeks for the Christmas holidays in December,

• 1 week for the winter holidays in February,

• 1 week for the Easter holidays in April and

• the end of the school year in June.

Each part with a small distance from the common
usage corresponds to weekends. Let us note that
each part detected as unusual depends on the usage
done during the 15 days before. Thus weekends are
strongly detected when the room is frequently used
in the week for example between September and De-
cember. The holidays are strongly detected before
January but, weakly detected after December. As the
observed room is an amphitheater, it is more used at
the beginning of the school year than at the end.

We consider those results as preliminary because
there is a combinatorial problem in using the under-
lying analysis method as it is. Sensor modeling with
2 states and 2 transitions leads to 12 graphics, with
only one k value for the covariance, to identify com-
mon usage and emotions. For a given object, the max-
imum number of ”common usage” related graphics is
n ∗ a ∗ (2+ nk), where n is the number of states, a is
the number of methods and nk is the possible num-
ber of values of k. Thus, an information fusion step
is required to reduce the combinatorial problem. An-
other point is that our system does not react if nothing
happens during an unusual period; IT detects changes
only when an event occurs. The management of ”no
event” must also be performed by the system. Both
those points will be studied in future work.

5 CONCLUDING REMARKS AND
FUTURE WORKS

With the growing IoT and user requirements for
technology-based systems that adapt to their needs,
we showed in this paper how to interconnect IoT to
adaptive software systems, namely ”wise systems”.

We think that wise software systems could en-
hance IoT with useful capabilities such as learn-
ing, monitoring and adaptation to meet those require-
ments.

To do so, we enriched our software frame-
work WOF (Wise Object Framework) (Alloui and

Vernier, 2017) to provide IO Things, be them phys-
ical or software, with the necessary mechanisms
for learning, monitoring, analyzing and managing
data/information. We illustrated our approach on a
home automation case study where things (a smart
presence sensor in our case) are able to identify com-
mon usage and unusual behavior. This becomes pos-
sible thanks to the communication protocol we de-
signed in WOF.

Each managed things of IoT is represented by its
software avatar: a WO. This approach allows the sys-
tem to learn on the common usage of any things con-
nected to the home automation system.

The paper recalls the concepts of WO and de-
scribes the software communication structure for the
interaction between WO and IoT. The main advantage
of this structure is that it manages known or unknown
things from IoT under the condition that the system
communicates with the thing using the communica-
tion protocol we have defined. If a thing is unknown
– there is no WO implementation dedicated to this
thing – a generic WO implementation can be used as
an avatar for this thing.

To highlight the learning capability of the system,
an experiment on real data is presented. This experi-
ment studies the common usage of a classroom using
a smart presence sensor. Those results show, from dif-
ferent points of view, the changes in usage like week-
ends or vacations and this is based only on knowledge
acquired from data. In the broader context of home
automation, we are convinced that our approach can
be useful, for instance to assist old people in their
home (individual or nursing). Authors in (Röcker
et al., 2011) and (Singh et al., 2017), adopt a user
driven approach and present an interesting study on
nursing home users’ expectations from AAL (Am-
bient Assistant Living) technologies. One important
outcome is that there is a need for systems able to de-
tect users’ activity level and to notify the care staff
and/or family members about unusual behavior.

In future work, we plan to focus our research
mainly on the modeling and the management of com-
mon usage and emotions. As highlighted in the ex-
perimental results, issues of information fusion and
of management of situations like ”nothing happens
during an unusual time” must be addressed to obtain
results that are more accurate, usable and up-to-date
upon request. The next step for us is to be able to ex-
press emotions with a higher semantic level than the
present one in order to communicate lighter amounts
of information to the system. The system can then re-
act according to an aggregated information rather than
multiple pieces of information.

REFERENCES

Aarts, H., Verplanken, B., and Knippenberg, A. (2006). Pre-
dicting behavior from actions in the past: Repeated
decision making or a matter of habit? Journal of
Applied Social Psychology, 28(15):1355–1374.

Alloui, I., Esale, D., and Vernier, F. (2015). Wise Ob-
jects for Calm Technology. In 10th International
Conference on Software Engineering and
Applications (ICSOFT-EA 2015), ICSOFT-EA
2015, pages 468–471, Colmar, France. SciTePress
2015.

Alloui, I. and Vernier, F. (2017). Wof: Towards behavior
analysis and representation of emotions in adaptive
systems. Software Technologies, 12th International
Joint Conference, ICSOFT 2017, Madrid, Spain, July
24-26, 2017, Revised Selected Papers, to appear.

Aminikhanghahi, S. and Cook, D. J. (2017). A survey
of methods for time series change point detection.
Knowl. Inf. Syst., 51(2):339–367.

Brun, Y., Desmarais, R., Geihs, K., Litoiu, M., Lopes,
A., Shaw, M., and Smit, M. (2013). A design space
for self-adaptive systems. In de Lemos, R., Giese,
H., Müller, H. A., and Shaw, M., editors, Software
Engineering for Self-Adaptive Systems II, volume
7475 of Lecture Notes in Computer Science, pages
33–50, Dagstuhl Castle, Germany. Springer.

IEC (2016). IoT 2020: Smart and Secure IoT Platform :
White Paper. International Electrotechnical Commis-
sion.

Moreaux, P., Sartor, F., and Vernier, F. (2012). An ef-
fective approach for home services management. In
20th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP),
pages 47–51, Garching. IEEE.

Röcker, C., Ziefle, M., and Holzinger, A. (2011). So-
cial inclusion in ambient assisted living environments:
Home automation and convenience services for el-
derly users. In International Conference on Artificial
Intelligence (ICAI 2011). New York CSERA Press,
pages 55–59.

Singh, D., Kropf, J., Hanke, S., and Holzinger, A.
(2017). Ambient assisted living technologies from
the perspectives of older people and professionals.
In Machine Learning and Knowledge Extraction.
Springer Lecture Notes in Computer Science LNCS
10410, pages 255–266.

Vishwajeet, H. B. and Sanjeev, W. (2015). i-learning iot: An
intelligent self learning system for home automation
using iot.

Weyns, D., Schmerl, B., Grassi, V., Malek, S., Mirandola,
R., Prehofer, C., Wuttke, J., Andersson, J., Giese, H.,
and Goeschka, K. (2013). On Patterns for Decentral-
ized Control in Self-Adaptive Systems. In de Lemos,
R., Giese, H., Müller, H., and Shaw, M., editors,
Software Engineering for Self-Adaptive Systems II,
volume 7475 of Lecture Notes in Computer Science
(LNCS), pages 76–107. Springer.

Yassein, M. B., Shatnawi, M. Q., Aljwarneh, S., and Al-
Hatmi, R. (2017). Internet of things: Survey and

open issues of mqtt protocol. In 2017 International
Conference on Engineering MIS (ICEMIS), pages 1–
6.

Z-Vawe (2018). Z-vawe aliance. https://z-
wavealliance.org/. Accessed: 2018-04-01.

Zigbee (2018). Zigbee aliance. http://www.zigbee.org/. Ac-
cessed: 2018-04-01.

