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Abstract—This paper addresses the heterogeneous data regis-
tration problem, which is one of the key features for any scene
reconstruction and representation, especially for the underwater
environment. In this study, we propose a registration method
built around a 2D-to-3D feature-based approach that registers
high-resolution side-scan sonar images with bathymetric data (to-
pographic 3D point cloud) obtained by multibeam echosounder.
This process enables us to achieve a global 3D mosaic of the
studied underwater scene, which is informatively richer and more
reliable than each individual dataset. Indeed, the interest of this
data fusion representation is that it combines the benefits of
using each sensor: bathymetric information provides the geo-
metric structure of the sea-bottom, while sidescan sonar images
contribute a complementary observation with better resolution of
the sea-bottom reality (e.g. sedimentology, bottom-laying object,
etc.)

Index Terms—heterogeneous registration, data fusion, 3D scene
reconstruction, sidescan sonar, multibeam echosounder.

I. INTRODUCTION
A. Motivation

Underwater environment is more difficult to be perceived
than the Earth’s land surface because of its inaccessibility
to ordinary sensing and localization signals (e.g. Global Po-
sitioning System), as electromagnetic waves are attenuated
extremely rapidly in this environment. As a matter of fact,
acoustic waves are used as the most practical means to explore
the ocean floor and produce high quality observation of the
scene of interest [1].

Nevertheless, the perception of an underwater environment
and its resulting exploitation require the use of multiple
sensors to capture specific and informatively complementary
characteristics of this environment. Since each sensor has a
limited range which is usually smaller than the scope of
the considered environment, it is crucial to aggregate many
series of sea-bottom observations in order to produce a global
representation of the environment. This global term can be
interpreted in two aspects: on one hand, the spatial aspect
of combining spatially complementary acquisitions; on the
other hand, the thematic aspect of aggregating complementary
characteristics within a representation of mutual knowledges.
In this paper, we focus mainly on the second topic as we
propose an approach to match data acquired by two different
and heterogeneous sonar systems in order to produce a rich 3D

representation of the observed underwater scene. Indeed, data
acquisitions consist of sidescan sonar images (providing the
information on sea-bottom sediment and contents) and multi-
beam echosounder sets of points (giving seabed topographical
maps).

The construction of sonar image mosaics without topo-
graphic knowledges may lead to some geometrical bias be-
cause of the topography simplified assumptions [2]. As a
matter of fact, the integration of topographic data is critical
in performing mosaic construction, not to mention 3D mosaic
construction. Therefore, heterogeneous registration and data
fusion become the key features for any scene reconstruction
and representation framework. However, they still remain
very challenging problems, and in this paper we propose a
novel feature-based approach to perform the heterogeneous
registration for underwater scene reconstruction.

Building a rich and reliable representation of underwater
scene has always been a major interest for various critical
applications, such as drone autonomous navigation [3], surveil-
lance mission implementation and tracking [4], [5], monitoring
of environments and infrastructures [6], measuring the impacts
of climate change and preventions [7], etc.

B. Related work

In [2], the authors proposed an algorithm that takes into
account bathymetric information (through the DTM of the
observed area) provided by a multibeam echosounder in the
process of building a 3D mosaic from sidescan images. There-
fore, the shape of the resulting mosaic is in agreement with
the topology of the sea-bottom while its textural information
comes from the sidescan images.

There are also many research works in the literature tackling
the issue of scene reconstruction; however, they have focused
mainly on the homogeneous registration of 3D datasets, i.e.
between two 3D point clouds [8], or two 3D meshes [9]; or on
the direct computation of the third dimension from 2D sonar
images. For instance, [10] proposed a method consisting in
detecting ridges in sidescan sonar images and using them as
primitives; or [11] performed the scene reconstruction from a
sequence of images.
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Fig. 1: Proposed framework for the underwater scene recon-
struction problem. The red-dotted rectangle gives the focus of
this paper within the whole framework.

C. Paper organization

The paper is organized as follows. Section II will present
the global framework of underwater scene reconstruction,
and emphasize the focus of our work. Then, the proposed
methodology of heterogeneous registration will be carried out
in Section III. In order to evaluate the accuracy and quality of
proposed method, experimental results on data samples will be
provided in Section IV. Finally, Section V will bring overall
conclusion and perspective regarding this work.

II. UNDERWATER SCENE RECONSTRUCTION FRAMEWORK

In order to deal with the complexity of underwater scene
reconstruction, we propose a full framework as illustrated in
Fig. 1. Five steps sum up the whole framework dynamics.

A. Repositioning of sidescan sonar’s coverage within the 3D
point cloud

Firstly, beginning with a sonar image on one hand and a
bathymetry point cloud on the other hand, it is necessary to
perform a step of coarse repositioning of the two datasets.
It consists in determining the coverage overlap of the datasets
and the common geographic location of the data. This step can
be done by using the pre-existing navigational information of
both surveys, or even using the a priori information of several
highly remarkable features.

Indeed, in most cases, available location (provided within
raw data) of sidescan sonar-carrying vehicle can be used
to approximately determine its viewpoint and which part of
the 3D point cloud corresponds to its observations. Figure
2 illustrates an example of the coverage overlap between a
sidescan sonar image and a 3D bathymetric point cloud. Based
on these geographic information, the common zone of both
observations can be determined.

B. Feature extraction and heterogeneous matching

In this step, we extract the potential and remarkable features
which will be the basis of our registration from both datasets
on their common area, displayed in Fig. 3. Even heteroge-
neous, these extracted features should characterize common
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Fig. 2: Example of a sidescan sonar track (blue line) and
an MBES track (red-dashed line), with their corresponding
coverage which overlap partially.

local behaviors of the scene impacting the recorded data from
different sensors. Next, the heterogeneous matching step will
measure the similarities between extracted features in order to
determine whether some features pairs can be assumed and to
what extent.

C. Trajectory correction

These matching results and their quality (based on similarity
measures) will feed the SLAM (Simultaneous Localization
And Mapping) process which estimates the best sensor trajec-
tories allowing the previously assumed pairs of features, while
maintaining the consistency of these trajectories. Corrected
trajectories should then provide exact location and attitude of
the acquisition sensors along the whole survey. For this step,
we can reference many studies which have been effectuated
on the SLAM techniques, such as [12] [13].

D. Data merging

Using the corrected trajectories, every pixel from the images
and every point from bathymetry data can be accurately
georeferenced, allowing the data merging step. The output of
this step will then be a global 3D mosaic of the considered
surveys. Indeed, this mosaic will merge 2D pixel intensities
from several sidescan images (where acquisitions overlap)
into 3D georeferenced pixels granted by the topographical
information acquired by multibeam echosounder point clouds.

E. Mosaic quality check-up and feedback

The final step is to perform a quality check-up on the result-
ing 3D mosaic in order to refine potential local discrepancies
in the representation. Quality measurements on the produced
mosaic may feedback to some of the previous steps, in order
for them to adapt/adjust their behavior and improve the final
3D mosaic quality.
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Fig. 3: Image and point cloud, respectively, acquired by
sidescan sonar and multibeam echosounder in the common
area between two tracks (depicted in Fig. 2). On sub-figure
(b), the point cloud is unconventionally colorized in order
to emphasize a shipwreck inside. Otherwise, altitude of gray
points are above -55 meters

As previously said, this paper will focus mainly on the
heterogeneous registration step, but knowing the whole frame-
work process may help understand the relevancy of this
specific step.

III. PROPOSED HETEROGENEOUS REGISTRATION
STRATEGY

As described, heterogeneous registration is a challenging
problem, especially for underwater scene reconstruction. Sonar
image resolution, range and pixel statistics heavily depend
on sonar characteristics, survey settings and acquisition con-
ditions. Moreover, different trajectories (with different view-
points) over the same area will result in very dissimilar
acquired images. Unlike multibeam echosounders, sidescan
sonars are carried by cable-towed vehicles working close
to the seabed. Thus, the location of these vehicles is often
very inaccurate or even unavailable in some cases. Besides,
as all these acquisitions are not performed simultaneously,
spatial modifications of the scene will impact the acquired

data. Lastly, collected data from sidescan sonar and multibeam
echosounder are intrinsically different: (distance to the sonar,
intensity) pair for an image pixel and (X,Y, Z) coordinates
for a cloud point.

Therefore, in order to overcome these difficulties, we
propose an approach consisting in extracting then matching
features capturing strong altitude variations or irregularities
appearing in the datasets. Indeed, any remarkable and localized
topographic variation (like patches of rocks) on the sea-bottom
produces a shadow region on the sidescan image due to a lack
of backscattered signal over a duration corresponding to the
topographic height. Estimating this local seabed height will
produce a series of potential hypotheses of pairing between
sidescan image and bathymetric data.

At first, under the flat sea-bottom assumptions, Eq. (1) gives
an estimated height of a terrain irregularity, or a bottom-lying
object, according to the length of the shadow region in one
line of the image.

Kf‘] _ LshadowH (1)

total

where Lgpqd0w 1S the acoustic shadow length (in number of
pixels of the sidescan image line) and Ly, represents the
length from the first pixel of image line (i.e. the beginning of
the water column) to the last pixel of the shadow. These two
lengths are also illustrated on Fig. 4c. In addition, H denotes
the altitude of the vehicle above the sea-bottom, and AH is
the estimated height of which causes the shadow. This relation
is built straightforwardly from trigonometric considerations
(illustrated by the Fig. 4a) between the vehicle’s altitude H,
the object’s height AH, and the slant ranges R4 and Rp,

A7H _ RB _RA _ c X (tB _tA)/2 _ Lshadow
H Rp h CXtB/Q o

where ¢ stands for underwater sound velocity, t4 and tp,
respectively, represent the round-trip time for an acoustic
signal sent from sonar transmitter to reach points A and B,
then back to the sonar receiver.

However, the sea-bottom is in general not flat, which can
be considered as the altitude of ground below the vehicle is
different than that of the shadow region end-point (cf. Fig.
4b). Consequently, in taking into account this altitude, which
is denoted as h henceforth, Eq. (2) is extended as follows,

(@)

Ltotal

AH —h - RB - RA o Lshadow (3)
H—-h Rp Ltotal
The object’s height estimate then becomes,
— L
AH:(H—h) shadow+h (4)

Ltotal

Accordingly, a detection of water column and shadow region
on sonar image based on pixel intensity, and the prior knowl-
edge of altitude H of the sonar-carrying vehicle (provided
within sonar data) will enable us to estimate the height of
the sea-bottom irregularity or object. Furthermore, sea-bottom
remarkable features often impact more than one line of images.
Thus, such a pointwise estimation may be carried out along all
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representation.

Fig. 4: Transversal view of a sidescan sonar acquisition (i.e.
in the perpendicular plane to the towfish track) and sidescan
sonar image formation.

the consecutive pings containing the studied shadow in order to
build a descriptor (for instance, a cross-track elevation profile)
representing a terrain elevation profile, which should have a
detectable impact in the bathymetry dataset.

IV. EXPERIMENTAL RESULTS

In this study, we work with the datasets acquired in the
Sydney bay and part of the “Common Dataset Set” designed
for the “Shallow Survey '99” conference [14], in which the
image comes from a Klein 5400 sidescan sonar, whereas the
bathymetry is provided by a RESON Seabat 8101 multibeam
echosounder (MBES). As the datasets are composed of many
regions with different properties, we particularly concentrate
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Fig. 5: Western survey trajectories of datasets used in this
paper, where blue lines represent sidescan tracks (providing
images) and red-dashed lines stand for MBES tracks (provid-
ing bathymetric data).

on the one with many interesting features such as shipwrecks
or piles from a bridge, namely the Western region. Figure 5
depicts the trajectory of surveys from both systems on this
region.

A. Height estimation from sonar image features

In order to validate the proposed algorithm, we also effec-
tuate a processing chain to detect shadow regions in sidescan
sonar images. More specifically, an image denoising is per-
formed to remove speckle effect on sidescan sonar images.
This despecklization relies on a specific wavelet decomposition
associated with a soft thresholding on wavelet coefficients
[15], [16]. Then, consistent shadow regions can be detected on
images through an adaptive thresholding on image intensity,
followed by a morphological opening operator that improves
the smoothness of the detected shadow shape. Once the shad-
ows are detected, the local elevation profiles will be estimated.
Figure 6 demonstrates the detection and estimation results on
a shipwreck observed by sidescan sonar on the common area
of both sensors’ coverage.

B. Taking into account the non-flat bottom impact

However, in the case of non-flat sea-bottom, the height
estimate from Eq. (2) becomes irrelevant. In considering the
altitude varying sea-bottom as in reality, the height estimation
based on Eq. (4) can be carried out using two prior altitude
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Fig. 6: Segmentation highlighting the shadow region (green)
and the water column (blue), and estimated height as a
function of ping number of a shipwreck, using Eq. (1) without
topographic knowledge.

values h of the shadow end-point B (as illustrated in Fig. 4b)
interpreted based on the bathymetry of the studied region. The
first one is computed according to the form of the sea-bottom
where the shipwreck lies, more specifically, by a slope fitting
approach on the observed sea-bottom. For the second one, we
simulate the viewpoint of sidescan sonar on the bathymetric
data, then determine the ground point where the acoustic wave
reaches the bottom right after hitting the object. This ground
point is the end-point of the shadow region caused by the
object on the sea-bottom, and its altitude is the value h of
interest. Figure 7 displays the estimated elevation profiles of
the shipwreck, which is displayed on Fig. 3 and examined on
Fig. 6, in taking into account these two h values alongside
with the local elevation profiles measured directly from the
bathymetric data.

Besides, Table I summarizes three statistical results on the
similarity between these estimates, which are Mean Squared
Error (MSE), and correlation coefficient between each esti-
mated curve and the measured curve, with associated p-value
(associating with the probability of null hypothesis, i.e. the
hypothesis that there is no relationship between two elevation
values, is true). A low p-value (e.g. less than 0.05) implies
that the corresponding correlation is significant, and also a low
probability of observing the null hypothesis between estimated
and measured curves.

Altitude {m)
8

60

62 L L L L L L L

Fig. 7: Local elevation profile measured from the bathymetric
3D point cloud and estimated from sonar image (either with
additional altitude information of the shadow end-point or
from the fitting slope).
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TABLE I: Similarity measure between the measured and
estimated elevation profiles.

Correlation
MSE coefficient p | ? -value
Slope-fitting 0.7408 0.9763 7.5E-25
Shadow end-point | 0.2118 0.9268 1.9E-16

However, as these two altitude values are computed based
on the simulation of sidescan sonar’s location and viewpoint
on the bathymetry, there are two main reasons making this
simulation become less accurate. Yet they explain partially
why both estimated heights are slightly dissimilar from the
measured profile.

« Location of the sonar-carrying vehicle is uncertain, as it
is underwater and towed to the vessel by cable;

o Low spatial resolution of the bathymetric 3D point cloud
makes it difficult to have a good measurement of h. As
a matter of fact, for shipwreck displayed on Fig. 6, we
have only 37 points along its length (or in other words,
an average of 1.15 meters between two points).

In addition, Fig. 8 comparing two members of Eq. (3)
highlights another source of difference between local elevation
profiles. Indeed, the quality of the processing chain impacts
the sonar image and, as such, plays an important role in the
height estimation accuracy. Similarity measures between ratios
Lshadow/Ltotar and (AH — h)/(H — h) respectively are also
shown on Table II.



of pairs of features, this initial iteration of feature extraction
should be sufficient at first. Then, on the following iterations,
more compatible profiles should be progressively introduced
to this process. When lacking of robust pairs of matched
profiles, additional features can be selected for the registration
process (e.g. altitude information using Shape-From-Shading
algorithm guided by our previously assumed pairs of pointwise
features).
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TABLE 1II: Similarity measure between two ratios
Lshadow AH-h
shad /Ltutal and ( )/(H—h)-
Correlation
MSE coefficient p | ¥ -value
3.73E-4 0.6559 1.05E-5

V. CONCLUSION AND PERSPECTIVE

In order to take advantage of the strength of two heteroge-
neous sensors in the process of reconstructing the underwater
scene, this paper has proposed a method to register data
from these sensors, which are intrinsically different and also
consist of spatial and temporal variabilities. The ability to
retrieve the altitude information from sonar image features
(especially shadow regions) has also been demonstrated, as
well as indicating their coherence with the measured elevation
profile. Furthermore, despite being incompletely demonstrated
in this paper, the proposed framework has shown that its main
step has potential with very promising results.

In this paper, we have performed an algorithm to retrieve
the height of bottom-lying object or terrain irregularity based
on the characteristics of its shadow on sonar image. In other
words, we have used the information from the region behind
the object in the insonification direction away from sidescan
sonar. Besides, this pointwise estimated height relates only to
the highest point of object that causes the shadow; hence, it
is unable to provide the object’s shape. In the future, our al-
gorithm may be supplemented by a Shape-From-Shading [17]
algorithm which yields altitude information in accumulating
the relief from the forefront of the object.

Moreover, as the SLAM process needs a reduced number
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