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STABILITY FOR ENTIRE RADIAL SOLUTIONS TO BIHARMONIC EQUATION WITH NEGATIVE EXPONENTS

In this note, we are interested in entire solutions for the semilinear biharmonic equation

.

Stabilité des solutions radiales entières de l'équation biharmonique avec exposants négatifs

.

introduction

In this note, we are interested in entire radial solutions for the biharmonic equation

(1.1) ∆ 2 u = -u -p , u > 0 in R N
where p > 0 and N ≥ 3.

Recently, the fourth order equations have attracted the interest of many researchers. In particular, the existence, multiplicity, stability and qualitative properties of solutions to equation (1.1) are studied in many works, especially for radial solutions. It has been proved in [START_REF] Lai | Remarks on entire solutions for two fourth-order elliptic problems[END_REF] that if 0 < p ≤ 1, the equation (1.1) admits no entire smooth solution. It is showed in [START_REF] Kusano | Radial entire solutions of even order semilinear elliptic equations[END_REF][START_REF] Mckenna | Radial solutions of singular nonlinear biharmonic equations and applications to conformal geometry[END_REF] that for any p > 1, there exist radial solutions to (1.1).

Definition 1. A solution u to (1.1) is said stable in Ω ⊆ R N if there holds Ω |∆φ| 2 dx -p Ω u -p-1 φ 2 dx ≥ 0 for any φ ∈ C ∞ 0 (Ω).
Moreover, a solution u to (1.1) is said stable outside a compact set

K if u is stable in R N \ K.
For simplicity, we say also that u is stable if Ω = R N .

We consider the following initial value problem

(1.2)      ∆ 2 u = -u -p for r ∈ [0, R α,β ) u (0) = u (0) = 0, u(0) = α, ∆u(0) = β,
for any α, β ∈ R, we denote by u α,β the (local) solution of (1.2) and by [0, R α,β ) the maximal interval of existence. Notice that the equation (1.2) is invariant under the scaling transformation

u λ (x) = λ -4 p+1 u(λx), λ > 0.
Therefore, we need only to consider the case α = 1. We will denote u 1,β by u β . Let p > 1, it's known from [START_REF] Guerra | A note on nonlinear biharmonic equations with negative exponents[END_REF][START_REF] Lai | The regularity and stability of solutions to semilinear fourth-order elliptic problems with negative exponents[END_REF][START_REF] Mckenna | Radial solutions of singular nonlinear biharmonic equations and applications to conformal geometry[END_REF]] that • There is no global solution to (1.2) if N ≤ 2.

• For N ≥ 3, there exists β 0 > 0 depending on N such that the solution to (1.2) is globally defined if and only if β ≥ β 0 . Furthermore, lim r→∞ ∆u β ≥ 0 and lim r→∞ ∆u β = 0 if and only if β = β 0 .

• For N ≥ 3, any entire solution u β is stable outside a compact set if β > β 0 .

• For N = 4, u β0 is unstable outside every compact set.

• For 5 ≤ N ≤ 12, there exists a critical value p N > 1 (see below for the precise definition) such that if 1 < p ≤ p N , u β is stable for every β ≥ β 0 ; while for p > p N , there exists β 1 > β 0 such that u β is stable if and only if β ≥ β 1 , and u β0 is unstable outside every compact set. • For N ≥ 13 and any p > 1, u β is stable for every β ≥ β 0 . Moreover, Warnault [START_REF] Warnault | Liouville theorems for stable radial solutions for the biharmonic operator[END_REF] proved that equation (1.1) admits no stable solution (radial no not) for N ≤ 4. So it remains to consider the eventual stability outside a compact set for N = 3 and β = β 0 .

The stability property of entire radial solutions is closely related to their asymptotic behaviors. Let us recall the asymptotic behaviors showed in [START_REF] Dávila | Multiplicity of solutions for a fourth order equation with power-type nonlinearity[END_REF][START_REF] Guerra | A note on nonlinear biharmonic equations with negative exponents[END_REF][START_REF] Lai | The regularity and stability of solutions to semilinear fourth-order elliptic problems with negative exponents[END_REF]. For N = 3 and β = β 0 , the following hold:

(1.3)              lim r→∞ u β0 (r)r -1 = > 0, if p > 3; lim r→∞ u β0 (r)r -1 (ln r) -1 4 = 4 √ 2, if p = 3; lim r→∞ u β0 (r)r -4 p+1 = -Q 4 - 4 p + 1 -1 p+1 =: L 0 , if 1 < p < 3,
where Q 4 is defined by

(1.4) Q 4 (m) := m(m + 2)(N -2 -m)(N -4 -m).
Remark that equation (1.1) has a singular solution u s (r)

≡ L 0 r 4 p+1 , if Q 4 -4 p+1 < 0. From [2], we know that for N = 3 there exist 3 > p + c > p c > 1 such that if p = p c or p = p + c , then -pQ 4 (m) = 9 16 with m = -4 p+1 , and if p c < p < p + c then -pQ 4 (m) > 9 16 . For N ≥ 5, p N is the unique root of -pQ 4 - 4 p + 1 = N 2 (N -4) 2 16 in (1, ∞).
Theorem A (Theorem 1.6 in [START_REF] Lai | The regularity and stability of solutions to semilinear fourth-order elliptic problems with negative exponents[END_REF]) Let N = 3, p > 1. We have:

(i) If p + c < p < 3 or 1 < p < p c , then u β0 is stable outside a compact set; (ii) If p c < p < p + c , u β0 is unstable outside every compact set; (iii) If p ≥ 3, then u β0 is stable outside a compact set.

Open problem: What is the stability behavior outside compact set when β = β 0 , N = 3, p = p c or p = p + c ? The following result gives the definite answer. Indeed, we will prove an refined asymptotic behavior for the radial solution u β0 and use the following Hardy-Rellich inequality with weights, see Corollary 5.4 in [START_REF] Caldiroli | Rellich inequalities with weights[END_REF].

Lemma 1.2. Let N ≥ 3, Ω = R N \ B 1 , then the following inequality holds Ω |∆φ| 2 dx - N 2 (N -4) 2 16 Ω φ 2 |x| 4 dx ≥ N 2 -4N + 8 8 Ω φ 2 |x| 4 ln 2 |x| dx + 9 16 Ω φ 2 |x| 4 ln 4 |x| dx, ∀ φ ∈ C ∞ c (Ω).
(1.5)

Proof of Theorem 1.1

Rewrite the equation (1.1) with the radial coordinate.

u (4) + 2(N -1) r u + (N -1)(N -3) r 2 u - (N -1)(N -3) r 3 u = -u -p .
Denote α := -m = 4 p+1 . Without confusion, from now on we omit the index β 0 and fix N = 3, p ∈ (1, 3). Let v(t) = r -α u -L 0 with t = ln r, then v satisfies

(2.1) v (4) + 2(2α -1)v + (6α 2 -6α -1)v + 2(2α -1)(α 2 -α -1)v -(p + 1)L -(p+1) 0 v + g(v) = 0, where g(v) = (v + L 0 ) -p -L -p 0 + pL -(p+1) 0 v. As 1 < p < 3, by (1.3), we have lim t→∞ v(t) = 0, so g(v) = O(v 2 ) as t → ∞.
The corresponding characteristic polynomial of equation (2.1) is

λ 4 + 2(2α -1)λ 3 + (6α 2 -6α -1)λ 2 + 2(2α -1)(α 2 -α -1)λ -(p + 1)L -(p+1) 0 = 0.
Using MATLAB, we have the following four roots of the above polynomial:

                     λ 1 = 1 2 -α + 1 2 5 + 4 h(p, α), λ 2 = 1 2 -α - 1 2 5 + 4 h(p, α), λ 3 = 1 2 -α + 1 2 5 -4 h(p, α), λ 4 = 1 2 -α - 1 2 5 -4 h(p, α), where h(p, α) = 1 + pα(2 -α)(1 + α)(α -1).
Recall that for p = p c or p + c , there holds -pQ 4 (-α) = 9 16 , i.e. pα(2 -α)(α + 1)(α -1) = 9 16 . Hence h(p, α) = 25 16 and

λ 1 = 1 2 -α + 1 2 √ 10, λ 2 = 1 2 -α - 1 2 √ 10, λ 3 = λ 4 = 1 -2α 2 , if p = p c or p + c .
As α ∈ (1, 2) for 1 < p < 3, we see that λ 1 > 0, λ 2 < λ 3 = λ 4 < 0. By the variation of parameters method, the solution v of (2.1) is given by

v(t) = 3 i=1 A i e λit + 3 i=1 B i t 0 e λi(t-s) g(v(s))ds + A 4 te λ4t + B 4 t 0 (t -s)e λ4(t-s) g(v(s))ds = A 1 e λ1t + A 2 e λ2t + A 3 e λ3t + A 4 te λ4t -B 1 ∞ t e λ1(t-s) g(v(s))ds + 3 i=2 B i t 0
e λi(t-s) g(v(s))ds + B 4 t 0 (t -s)e λ4(t-s) g(v(s))ds

where we used the fact e -λ1s g(v(s)) ∈ L 1 (R + ). As lim t→∞ v(t) = 0 and λ 1 > 0, there holds A 1 = 0. Therefore, for any ∈ (0, -λ 4 ), there exists C > 0 such that for all t ≥ 0, Thanks to (2.2), if we fix δ > 0 small enough such that 2C δ ≤ min(λ 1 , -λ 4 -), there holds

|v(t)| ≤ C e (λ4+ )t + C ∞ t e λ1(t-s) |g(v)(s)|ds + C t 0 e (λ4+
(K 1 -K 2 ) (t) = 2|v(t)| + (λ 4 + )K 1 (t) -λ 1 K 2 (t) ≤ 2C δ(K 1 + K 2 ) + (λ 4 + )K 1 (t) -λ 1 K 2 + O(e (λ4+ )t )
≤ O(e (λ4+ )t ).

Using again lim t→∞ v(t) = 0, we have readily

lim t→∞ K 1 (t) = lim t→∞ K 2 (t) = 0. Hence, (K 2 -K 1 )(t) ≤ O(e (λ4+ )t ) as t → ∞. Going back to (2.2), (2.3) |v(t)| ≤ O(e (λ4+ )t ) + 2C δK 1 (t). Consequently, K 1 (t) = |v(t)| + (λ 4 + )K 1 (t) ≤ O(e (λ4+ )t ) + (2C δ + λ 4 + )K 1 (t)
So K 1 (t) = O(e (λ4+ +2C δ)t ), we get |v(t)| = O(e (λ4+ +2C δ)t ) by (2.3). Let σ = -λ 4 --2C δ > 0, we obtain (2.4) u(r) = L 0 r α + r α O(r -σ ), as r → ∞.

Finally, let R > 0 be large enough, we apply Lemma 1.2 with N = 3. Recall that p = p c or p + c , for any φ ∈ C ∞ c (R 3 \ B R ), we have then

R 3 \B R |∆φ| 2 dx -p R 3 \B R u -p-1 φ 2 dx ≥ R 3 \B R |∆φ| 2 dx -p R 3 \B R r -4 L -(p+1) 0 -O(r -σ ) φ 2 dx = R 3 \B R |∆φ| 2 dx -pL -(p+1) 0 R 3 \B R r -4 φ 2 - R 3 \B R r -4 O(r -σ )φ 2 dx = R 3 \B R |∆φ| 2 dx + pQ 4 - 4 p + 1 R 3 \B R r -4 φ 2 - R 3 \B R r -4 O(r -σ )φ 2 dx = R 3 \B R |∆φ| 2 dx - 9 16 R 3 \B R r -4 φ 2 - R 3 \B R O(r -4-σ )φ 2 dx ≥ 0.
This implies that u is stable outside a compact set. The proof is completed.

Theorem 1 . 1 .

 11 Let N = 3, p = p c or p = p + c , the solution u β0 to equation (1.2) is stable outside a compact set.
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