Complexity of parallel scheduling unit-time jobs with in-tree precedence constraints while minimizing the mean flow time

Tiayu Wang, Odile Bellenguez-Morineau

- To cite this version:

Tiayu Wang, Odile Bellenguez-Morineau. Complexity of parallel scheduling unit-time jobs with in-tree precedence constraints while minimizing the mean flow time. 2018. hal-01800804

HAL Id: hal-01800804
https://hal.science/hal-01800804
Preprint submitted on 28 May 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Complexity of parallel scheduling unit-time jobs with in-tree precedence constraints while minimizing the mean flow time

Tianyu Wang • Odile
Bellenguez-Morineau

Received: date / Accepted: date

Abstract

This paper deals with a particular scheduling problem. We consider unit-time jobs and in-tree precedence constraints while minimizing the mean flow time. This problem is observed as $P \mid p_{j}=1$, in-tree $\mid \sum C_{j}$ with the use of the 3 -filed notation. To the best of our knowledge, its complexity is still open. Through a reduction from 3-Partition, we show that this problem is $\mathcal{N P}$-complete.

Keywords parallel scheduling • in-tree • precedence constraints complexity theory

Acknowledgments

This work was supported by the China Scholarship Council [grant numbers 201404490037].

1 Introduction

We consider the following scheduling problem: a set of n unit-time jobs ($p_{j}=1$) has to be done by m identical parallel machines. The jobs are submitted to precedence constraints. Prot and Bellenguez-Morineau (2018) revealed the fact that the complexity of a problem is likely

[^0]to be different for specific type of precedence graphs In this paper, we focus on the problem with in-trees (or in-forest in some literature) precedence graph. This particular graph suggests that each job has no more than one successor. We use C_{j} to denote the completion time of a job j. The problem involves finding an optimal schedule, respecting the precedence constraints and minimizing the total completion time $\sum C_{j}$. This criterion is termed as mean flow time (noted as MFT in the following text). When the number of machines m is not fixed, this problem is noted as $P \mid p_{j}=1$, in-tree $\mid \sum C_{j}$ in the 3 -field notation of Graham et al. (1979).

This problem was among the minimal open problems according to Sigrid Knust (2009). To the best of our knowledge, it is still open (Prot and BellenguezMorineau, 2018). Herein, we aim at providing a proof of its $\mathcal{N} \mathcal{P}$-completeness.

Organization of this paper is as hereunder: in the subsequent section, we present the state of the art. In section 3 , we prove that the problem $P \mid p_{j}=1$, in-tree $\mid \sum C_{j}$ is $\mathcal{N} \mathcal{P}$-complete. In subsection 3.1, we present how we reduce the 3 -Partition problem to the decision version of the scheduling problem. We prove the $\mathcal{N} \mathcal{P}$-completeness in detail in subsection 3.2 and 3.3 . Finally, section 4 provides our conclusion.

2 State of the art

A study involving in-tree precedence constraints in a parallel machine scheduling problem has been performed: $\mathrm{Hu}(1961)$ focus on the makespan and suggests that the problem is polynomially solvable using the HLF (highest level first) strategy. Nevertheless, Garey et al. (1983) prove that the problem is $\mathcal{N} \mathcal{P}$-complete when the precedence graph is an opposing forest, which corresponds to a set of in-trees and out-trees.

HLF can also be used to minimize the MFT if the precedence graph is an out-tree. Furthermore, a polynomial algorithm is put forward by Brucker et al. (2001) for the solution of this problem in case of allowance of preemption.

Nevertheless, Huo and Leung (2006) show HLF cannot optimally solve the in-tree version. In addition, Baptiste et al. (2004) proved that it can be solved in $O\left(n^{m}\right)$ time, i.e. if the number of machines m is a fixed parameter, the problem is polynomially solvable.

Finally, Garey et al. (1983) prove that the problem is $\mathcal{N} \mathcal{P}$-complete for a profile scheduling. Accordingly, the number of available machines varies along the time rather than parallel machines. However, the complexity of the given parallel scheduling problem $P \mid p_{j}=$ 1 , in-tree $\mid \sum C_{j}$ is still open.

In a bid to prove $\mathcal{N} \mathcal{P}$-completeness of $P \mid p_{j}=1$, in-tree $\mid \sum C_{j}$, we employed a reduction from a known $\mathcal{N} \mathcal{P}$-complete problem: 3-Partition. An instance π_{1} of the 3-Partition problem (noted Π_{1}) is defined as hereunder (Garey and Johnson, 2002):

Definition 1. Let α be a set of $3 q$ elements and \mathfrak{B} an integer, we have $\forall a \in \alpha, \exists \mathfrak{w}_{a} \in Z^{+}, \frac{\mathfrak{B}}{4}<\mathfrak{w}_{a}<\frac{\mathfrak{B}}{2}$ and $\sum_{a \in \alpha} \mathfrak{w}_{a}=q \mathfrak{B}$. The question is: is there a partition of α, which is $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q}$, such that $\forall i \leq q, \sum_{a \in \alpha_{i}} \mathfrak{w}_{a}=\mathfrak{B}$?

As Π_{1} is $\mathcal{N} \mathcal{P}$-complete in the strong sense, the theorem provided hereunder allows us to employ a pseudopolynomial transformation Garey and Johnson, 2002, p. 101):

Theorem 1. If Π is $\mathcal{N} \mathcal{P}$-complete in the strong sense, $\Pi^{\prime} \in \mathcal{N} \mathcal{P}$ and there exists a pseudo-polynomial transformation from Π to Π^{\prime}, then Π^{\prime} is $\mathcal{N} \mathcal{P}$-complete in the strong sense.

Firstly, we define Π_{2} as $P \mid p_{j}=1$, in - tree $\mid \sum C_{j} \leq$ $M F T^{*}$, which represents the decision version of our scheduling problem. The decision question deals with whether there exists a feasible schedule such that $\sum C_{j} \leq$ $M F T^{*}$ or not, where $M F T^{*}$ is a given integer. In the subsequent part, we demonstrate how to reduce any instance π_{1} of Π_{1} to an instance π_{2} of Π_{2}.

3.1 Transformation

In order to begin our transformation, we define some constants:
$-B=q^{5} \mathfrak{B}$

- $\forall a \in \alpha, w_{a}=q^{5} \mathfrak{w}_{a}$
$-K=B^{5}$
- $m=3 q+1+B$, which will be used as the number of machines
$-M F T^{*}=\sum_{i=1}^{q} i(3(q+1-i)+1)+\sum_{i=q+1}^{K^{3}} i+B \sum_{i=1}^{q} i+$ $\sum_{a \in \alpha} \sum_{i=1}^{K w_{a}} i+K B \sum_{i=1}^{q} i$
$-\forall k \leq q+1, m_{k}=B+3 k-3$
Notice that an optimal partition for π_{1}, such that $\sum_{a \in a_{i}} \mathfrak{w}_{a}=\mathfrak{B}$, is totally equivalent to a partition such that $\sum_{a \in \alpha_{i}} w_{a}=B$, since the problem does not change when multiplying \mathfrak{w}_{a} by an integer q^{5}.

Thereafter, we create the following jobs:

Fig. 1: in-tree of u-jobs and v-jobs

- For each $a \in \alpha$, we build two sets of jobs, which include u-jobs and v-jobs: $u_{a}^{1}, u_{a}^{2}, \ldots, u_{a}^{w_{a}}$, and $v_{a}^{1}, v_{a}^{2}, \ldots, v_{a}^{K w_{a}}$. The u-jobs precede directly v_{a}^{1}, i.e. $\forall i \leq w_{a}, u_{a}^{i} \prec v_{a}^{1}$. Subsequent to that, we set $v_{a}^{i} \prec v_{a}^{i+1}, \forall i<K w_{a}$, and they form a chain. The corresponding tree of the u-jobs and v-jobs can be observed in the Figure 1. They form $3 q$ in-trees
- In addition, we consider a set of d-jobs, which are defined as hereunder:

$$
\begin{array}{r}
d_{1}^{1}, \ldots, d_{1}^{m-m_{1}} \\
d_{2}^{1}, \ldots, d_{2}^{m-m_{2}} \\
\ldots \\
d_{q}^{1}, d_{q}^{2}, d_{q}^{3}, d_{q}^{4} \\
d_{q+1} \\
d_{q+2} \\
\ldots \\
d_{K^{3}}
\end{array}
$$

Those d-jobs also design a tree. In that tree, we fix for any $k \leq q+1, d_{k-1}^{1} \prec d_{k}^{1}, d_{k-1}^{2} \prec d_{k}^{1}$ and $d_{k-1}^{3} \prec d_{k}^{1} . \forall i \in\left\{4,5, \ldots, m-m_{k-1}\right\}$, then, we set: $d_{k-1}^{i} \prec d_{k}^{i-3}$. Thereafter, for $\forall k \in\{q+2, q+$ $\left.3, \ldots, K^{3}\right\}, d_{k-1} \prec d_{k}$, accordingly forming a chain. The corresponding tree is presented in the Figure2.

Thus, we transformed π_{1} to an instance π_{2} of the scheduling problem Π_{2}. The construction is made in polynomial time of \mathfrak{B} and q (pseudo-polynomial). In accordance to the Theorem 1. we can establish the $\mathcal{N} \mathcal{P}$ completeness of Π_{2} through the provision of theorem provided as hereunder:

Fig. 2: in-tree of d-jobs
partition for $k=1, \ldots, q$, the three elements in it are a_{1}^{k}, a_{2}^{k} and a_{3}^{k}.

We make use of notation $M F T_{d}^{*}$ (resp. $M F T_{v}^{*}$ and $M F T_{u}^{*}$) for representing the mean flow time of d-jobs(resp. v-jobs and u-jobs) in σ^{*}. In the subsequent part, we show how jobs are scheduled in σ^{*} together with calculating the MFT.

Firstly, d-jobs are executed as soon as they are liberated. Formally, $\forall i \leq q, \forall j \leq m-m_{i}, C_{d_{i}^{j}}=i ; \forall i \leq K^{3}$, $C_{d_{i}}=i$. This enforces a profile, wherein, the $k^{t h}$ timeslot for $k \leq q+1$ has m_{k} available machines for both u-jobs and v-jobs.

Accordingly, we consider MFT for the d-jobs:
$M F T_{d}^{*}=\sum_{i=1}^{q} \sum_{j=1}^{m-m^{i}} C_{d_{i}^{j}}+\sum_{i=q+1}^{K^{3}} C_{d_{i}}$
as $\forall i \leq K^{3}, \forall j \leq m-m_{i}, C_{d_{i}^{j}}=i$, the first part is equivalent to:
$\sum_{i=1}^{q} \sum_{j=1}^{m-m_{i}} C_{d_{i}^{j}}=\sum_{i=1}^{q} \sum_{j=1}^{m-m_{i}} i=\sum_{i=1}^{q} i\left(m-m_{i}\right)$
and as $m-m_{i}=3(q+1-i)+1$, we have:
$\sum_{i=1}^{q} \sum_{j=1}^{m-m_{i}} C_{d_{i}^{j}}=\sum_{i=1}^{q} i(3(q+1-i)+1)$
Then, for $i>q$, we also have $C_{d_{i}}=i$, so the second part of (1) is:
$\sum_{i=q+1}^{K^{3}} C_{d_{i}}=\sum_{i=q+1}^{K^{3}} i$
Accordingly, we can obtain the MFT of all d-jobs:
$M F T_{d}^{*}=\sum_{i=1}^{q} i(3(q+1-i)+1)+\sum_{i=q+1}^{K^{3}} i$
In the second step, all the u-jobs corresponding to the subset α_{k} are executed in the same time-slot, which is the $k^{t h}$ time-slot. They need exactly B machines by definition of 3 -Partition. Formally, $\forall k \leq q, \forall a \in \alpha_{k}$, $\forall i \in\{1,2,3\}$, and $\forall j \leq w_{a_{i}^{k}}, C_{u_{a_{i}^{k}}}=k$. Accordingly, there are exactly B u-jobs executed at each time slot, i.e. $\left|\left\{C_{u}=t\right\}\right|=B, \forall t \leq q$. Thus, we are able to deduce that all the u-jobs are accomplished before $t=q$, and
We firstly show that if there exists a partition $\alpha_{1}, \alpha_{2}, \ldots$, , $_{q}$ have:
for π_{1}, such that $\sum_{a \in \alpha_{i}} w_{a}=B$, then, we can build a feasible schedule σ^{*} for π_{2} and $\sum C_{j} \leq M F T^{*}$. w.l.o.g: moreover, we assume that, for each subset α_{k} in the
$M F T_{u}^{*}=\sum_{t=1}^{q} t\left|\left\{u \mid C_{u}=t\right\}\right|=B \sum_{i=1}^{q} i$

Thereafter, every v-job is executed without any delay in accordance with the precedence constraints. Formally, $\forall a \in \alpha, C_{v_{a}^{1}}=C_{u_{a}^{1}}+1$ and $\forall i \in\left\{2,3, \ldots, K w_{a}\right\}$, $C_{v_{a}^{i}}=C_{v_{a}^{i-1}}+1$.

So, for each v -chain corresponding to the element $a \in \alpha$, we have $C_{v_{a}^{i}}=C_{v_{a}^{i-1}}+1, \forall i \in\left\{2,3, \ldots, K w_{a}\right\}$, that is $C_{v_{a}^{i}}=C_{v_{a}^{1}}+i-1$. Let u_{a} be any u-job preceding v_{a}^{1}, as $C_{v_{a}^{1}}=C_{u_{a}}+1$, we have $C_{v_{a}^{i}}=C_{u_{a}}+i$. Now, we calculate the MFT for this given chain:
$\sum_{i=1}^{K w_{a}} C_{v_{a}^{i}}=\sum_{i=1}^{K w_{a}} C_{u_{a}}+\sum_{i=1}^{K w_{a}} i=K w_{a} C_{u_{a}}+\sum_{i=1}^{K w_{a}} i$
Then, we deduce the MFT for all these v-chains, i.e. all the v-jobs:
$M F T_{v}^{*}=\sum_{\forall a \in \alpha} \sum_{i=1}^{K w_{a}} C_{v_{a}^{i}}=K \sum_{\forall a \in \alpha} w_{a} C_{u_{a}}+\sum_{\forall a \in \alpha} \sum_{i=1}^{K w_{a}} i$
We are aware of the fact that, for each subset α_{k}, we have $C_{u_{a_{j}^{i}}}=i$, where $j \in\{1,2,3\}$, and $i \leq q$. So, we are able to deduce that the first part is equivalent to:

$$
\begin{array}{r}
K \sum_{\forall a \in \alpha} w_{a} \sum_{j \leq w_{a}} C_{u_{a}^{j}}=K \sum_{i=1}^{q} \sum_{\forall a \in \alpha_{i}} w_{a} \sum_{j \leq w_{a}} C_{u_{a}^{j}}= \\
K \sum_{i=1}^{q} i \sum_{\forall a \in \alpha_{i}} w_{a}=K \sum_{i=1}^{q} i B
\end{array}
$$

So,
$M F T_{v}^{*}=K \sum_{i=1}^{q} i B+\sum_{\forall a \in \alpha} \sum_{i=1}^{K w_{a}} i$
So, in $k^{t h}$ time slot of $\sigma^{*}, k<q+1$, there are exactly $m-m_{k}$ d-jobs, B v-jobs and $3 k-3$ v-jobs. By definition of m_{k}, there are exactly m jobs in progress. After $t=q$, there are only one d-job and at most $3 q$ v-jobs executed in parallel. Thus, there are no more than m jobs. So, this schedule respects the availability of machines.

Then, we deduce that the total MFT of σ^{*}, which is a feasible schedule for π_{2}, is:
$\sum C_{j}=M F T_{v}^{*}+M F T_{u}^{*}+M F T_{d}^{*}=M F T^{*}$

3.3 Proof of Theorem 2 \Leftarrow

In this section, we prove that if π_{2} has a feasible schedule, then π_{1} has a partition. A schedule without unforced idle time is termed as non-delay schedule by Weiss and Pinedo (2012). The authors also prove that there always exists an optimal non-delay schedule. Let σ be a feasible non-delay schedule. We prove in the
following part that σ takes the same shape as σ^{*} and followed by building a partition from σ.

For that purpose, we at first, define the MFT of u-jobs, v-jobs and d-jobs in σ as $M F T_{u}, M F T_{v}$ and $M F T_{d}$. Subsequent to that, define the following gaps:
$\Delta_{u}=M F T_{u}-M F T_{u}^{*}$
$\Delta_{v}=M F T_{v}-M F T_{v}^{*}$
$\Delta_{d}=M F T_{d}-M F T_{d}^{*}$
In order to respect the $M F T^{*}$, we understand that:
$\Delta_{d}+\Delta_{u}+\Delta_{v} \leq 0$
In addition to this, we would like to throw emphasis on the following observations:

Observation 1. When a chain of n_{c} jobs is rightshifted by one time slot, then its MFT will be increased by n_{c}.

Observation 2. The sizes of different sets of jobs exhibit the following relation:
$K^{3} \gg K w_{a} \gg B \gg q^{5}$
First of all, let us consider the d-jobs. We show that d-jobs must have the same profile as in σ^{*}, which is the following lemma:

Lemma 1. In σ, the d-jobs are scheduled as soon as they are liberated (as in σ^{*}), i.e. $\Delta_{d}=0$.

Proof. By contradiction: assume that there is at least one delayed d-job. σ is a non-delay schedule; accordingly, this d-jobs can be delayed only by insertion of u-jobs or v-jobs.

Notice that the d-jobs can take no more than $m-m_{1}$ machines in parallel because of the precedence constraints. At any moment, there are at least $m_{1}=B$ available machines for both the v-jobs and u-jobs. Moreover, in a non-delay schedule, the makespan $\left(C_{\max }\right)$ is not larger than the number of jobs. As the total number of v-jobs and u-jobs is $K B+q B$, the last v-job or u-job finishes before $K B+q B$. Consequently, the delay must happen before $K B+q B$.

As the length of the d-chain is K^{3}, at least $K^{3}-$ $K B+q B$ jobs are right-shifted. Following the Observation 11 we have

$$
\Delta_{d} \geq K^{3}-K B+q B
$$

Remind that $M F T_{u}^{*} \ll K^{2}, M F T_{v}^{*} \ll K^{2}$, so we have
$\Delta_{d} \gg M F T_{u}^{*}+M F T_{v}^{*}$

In accordance with the definition, we have $\Delta_{u}>$ $-M F T_{u}^{*}$ and $\Delta_{v}>-M F T_{v}^{*}$, then

$$
\begin{array}{r}
\Delta_{d}+\Delta_{v}+\Delta_{u} \\
>\Delta_{d}-M F T_{u}^{*}-M F T_{v}^{*} \gg 0
\end{array}
$$

This is a contradiction to (5). So, our assumption is false, there is no delay during the execution of djobs.

Since $\Delta_{d}=0$, (5) becomes

$$
\begin{equation*}
\Delta_{u}+\Delta_{v} \leq 0 \tag{6}
\end{equation*}
$$

Here we conclude that the profile of available machines in σ is the same as in σ^{*} to schedule u-jobs and v-jobs. Now, let us deal with u-jobs.

Definition 2. We define the u-jobs in the same component a u-set and define U_{t} as the number of u-jobs in u-sets completed at t.
Lemma 2. At time $t^{*} \leq q$, the completed u-sets contain at most $t^{*} B u$-jobs, i.e. $\sum_{t=1}^{t^{*}} U_{t} \leq t^{*} B$.

Proof. The number of jobs finished at $t^{*} \leq q$ is at most $t^{*} m$ which is:
$t^{*} m=t^{*} B+t^{*}(3 q+1) \leq t^{*} B+3 q^{3}$
As we are aware of the fact, the number of u-jobs in a u -set is w_{a}, which is integer times q^{5}, so, the number of u -jobs in completed u -sets is at most $t^{*} B$.

Now, let us move on to the v-jobs.
Definition 3. We define V_{t} as the number of v-jobs in the chains starting at the time t for $t<q$ in σ, and V_{q} as the number of v-jobs in the chains starting at or after $t=q$.
Lemma 3. In σ, at any time $t \leq q$, the total length of the v-chains beginning at t in σ is exactly $K B$, as in σ^{*}, i.e. $V_{t}=K B$.

Proof. At first, we prove that $\sum_{i=1}^{q} i V_{i} \geq K B \sum_{i=1}^{q} i$.
According to the precedence constraints, we have a relation between V_{t} and U_{t} :

$$
\sum_{t=1}^{t^{*}} V_{t} \leq K \sum_{t=1}^{t^{*}} U_{t} \quad \forall t^{*}<q
$$

So, from Lemma 2 we can deduce:

$$
\sum_{t=1}^{t^{*}} V_{t} \leq t^{*} B K \quad \forall t^{*}<q
$$

which is:

$$
\begin{align*}
& V_{1} \leq K B \\
& V_{1}+V_{2} \leq 2 K B \\
& V_{1}+V_{2}+V_{3} \leq 3 K B \tag{7}\\
& \cdots \\
& \cdots \\
& V_{1}+V_{2}+V_{3}+\cdots+V_{q-1} \leq(q-1) K B
\end{align*}
$$

If we sum them up, we get:
$(q-1) V_{1}+(q-2) V_{2}+\cdots+V_{q-1} \leq K B \frac{q^{2}-q}{2}$
By definition, we understand that $\sum_{t=1}^{q} V_{t}$ corresponds to the norm of whole set of v -jobs and it is equal to $K q B$:
$\sum_{t=1}^{q} V_{t}=K q B$
Then, by multiplying (9) by q, we get:
$q V_{1}+q V_{2}+\ldots q V_{q}=K B q^{2}$
With 10 - 8 , we get
$V_{1}+2 V_{2}+\cdots+(q-1) V_{q-1}+q V_{q} \geq K B \frac{q^{2}+q}{2}$
which is exactly
$\sum_{i=1}^{q} i V_{i} \geq K B \sum_{i=1}^{q} i$
It requires observation that the two terms are equal if and only if every decomposition of group (7) is written with an equality, which indicates that $V_{1}=V_{2}=\cdots=$ $V_{q}=K B$.

Now, we demonstrate that $\sum_{i=1}^{q} i V_{i}=K B \sum_{i=1}^{q} i$. Suppose by absurd that $\sum_{i=1}^{q} i V_{i}>K B \sum_{i=1}^{q} i$. By definition, V_{i} is the total length of some v-chains, which implies that V_{i} is integer times K. So, we have:
$\sum_{i=1}^{q} i V_{i} \geq K B \sum_{i=1}^{q} i+K$
In the best case of σ, all the v -jobs in one chain are executed without any delay, so, we have:
$M F T_{v} \geq \sum_{a \in \alpha} \sum_{i=1}^{K w_{a}} i+\sum_{i=1}^{q} i V_{i}$
Reminding the expression of $M F T_{v}^{*}$ in (4), we can deduce that:
$\Delta_{v} \geq \sum_{i=1}^{q} i V_{i}-K B \sum_{i=1}^{q} i$

By (13) and (11), we have $\Delta_{v} \geq K$. Then, by (6), we have $\Delta_{u} \leq-K$. This contradicts the fact that $\Delta_{u} \geq$ $-M F T_{u}^{*} \gg-K$.

Finally, we can conclude that $\Delta_{v}=0$ and $V_{t}=K B$, $\forall t \leq q$. This suggests that, at any t, the length of v chains started is exactly $K B$.

The Lemma above allows us to build a partition from V_{i} by selecting the elements corresponding to its 3 v-chains of $K B$ jobs. Thus, we accomplished the proof for the Theorem 2.

4 Conclusion

In this paper, we put forward a proof of $\mathcal{N} \mathcal{P}$-completeness for $P \mid p_{j}=1$, in-tree $\mid \sum C_{j}$. Based on that, we refine the knowledge about the complexity of parallel scheduling problems subjected to precedence constraints in specific graphs.

Nevertheless, some open problems still exist requiring investigation. For example, when preemption is allowed, the complexity of the problem $P \mid p_{j}=1$, in-tree, $p m t n \mid \sum C_{j}$ is unknown. We conjecture that, with the same reduction as in subsection 3.1, the Theorem 2 still holds even if preemption is allowed, and the problem shall be $\mathcal{N} \mathcal{P}$ complete as well.

Another possible research avenue involves exploration of how to solve the problem when m is a fixed number. The complexity of the algorithm proposed by Baptiste et al. (2004) is $O\left(n^{m}\right)$, but it can be certainly improved.

References

Philippe Baptiste, Peter Brucker, Sigrid Knust, and Vadim G Timkovsky. Ten notes on equal-processingtime scheduling. Quarterly Journal of the Belgian, French and Italian Operations Research Societies, 2 (2):111-127, 2004.

Peter Brucker, Johann L Hurink, and Sigrid Knust. A polynomial algorithm for $P \mid p_{j}=1, r_{j}$, outtree $\mid \sum C_{j}$. Math. Methods Oper. Res., 2001.
Michael R Garey and David S Johnson. Computers and intractability, volume 29. wh freeman New York, 2002.

MR Garey, DS Johnson, RE Tarjan, and Yannakakis M. Scheduling opposing forests. SIAM Journal on Algebraic Discrete Methods, 4(1):72-93, 1983.
Ronald L Graham, Eugene L Lawler, Jan Karel Lenstra, and AHG Rinnooy Kan. Optimization and approximation in deterministic sequencing and scheduling: a surveyhaha. Annals of discrete mathematics, 5:287-326, 1979.

Te C Hu. Parallel sequencing and assembly line problems. Operations research, 9(6):841-848, 1961.
Yumei Huo and Joseph Y-T Leung. Minimizing mean flow time for UET tasks. ACM Transactions on Algorithms (TALG), 2(2):244-262, 2006.
Damien Prot and Odile Bellenguez-Morineau. A survey on how the structure of precedence constraints may change the complexity class of scheduling problems. Journal of Scheduling, 21(1):3-16, 2018.

[^0]: Tianyu Wang
 Institut Mines-Télécom Atlantique, LS2N, UMR CNRS 6004, 4 rue Alfred Kastler, B.P. 20722 F-44307 Nantes Cedex 3. France
 Tel. +33782992236
 E-mail: tianyu.wang@emn.fr
 Odile Bellenguez-Morineau
 Institut Mines-Télécom Atlantique, LS2N, UMR CNRS 6004, 4 rue Alfred Kastler, B.P. 20722 F-44307 Nantes Cedex 3. France
 E-mail: odile.bellenguez@imt.atlantique.fr

