
HAL Id: hal-01800804
https://hal.science/hal-01800804

Preprint submitted on 28 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Complexity of parallel scheduling unit-time jobs with
in-tree precedence constraints while minimizing the

mean flow time
Tiayu Wang, Odile Bellenguez-Morineau

To cite this version:
Tiayu Wang, Odile Bellenguez-Morineau. Complexity of parallel scheduling unit-time jobs with in-tree
precedence constraints while minimizing the mean flow time. 2018. �hal-01800804�

https://hal.science/hal-01800804
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Complexity of parallel
scheduling unit-time jobs with
in-tree precedence constraints
while minimizing the mean
flow time

Tianyu Wang · Odile

Bellenguez-Morineau

Received: date / Accepted: date

Abstract This paper deals with a particular schedul-

ing problem. We consider unit-time jobs and in-tree

precedence constraints while minimizing the mean flow

time. This problem is observed as P |pj = 1, in-tree|
∑
Cj

with the use of the 3-filed notation. To the best of our

knowledge, its complexity is still open. Through a re-

duction from 3-Partition, we show that this problem

is NP-complete.

Keywords parallel scheduling · in-tree · precedence

constraints · complexity theory

Acknowledgments

This work was supported by the China Scholarship Coun-

cil [grant numbers 201404490037].

1 Introduction

We consider the following scheduling problem: a set of

n unit-time jobs (pj = 1) has to be done by m identical

parallel machines. The jobs are submitted to precedence

constraints. Prot and Bellenguez-Morineau (2018) re-

vealed the fact that the complexity of a problem is likely

Tianyu Wang
Institut Mines-Télécom Atlantique, LS2N, UMR CNRS 6004,
4 rue Alfred Kastler, B.P. 20722 F-44307 Nantes Cedex 3.
France
Tel. +33 7 82 99 22 36
E-mail: tianyu.wang@emn.fr

Odile Bellenguez-Morineau
Institut Mines-Télécom Atlantique, LS2N, UMR CNRS 6004,
4 rue Alfred Kastler, B.P. 20722 F-44307 Nantes Cedex 3.
France
E-mail: odile.bellenguez@imt.atlantique.fr

to be different for specific type of precedence graphs.

In this paper, we focus on the problem with in-trees

(or in-forest in some literature) precedence graph. This

particular graph suggests that each job has no more

than one successor. We use Cj to denote the completion

time of a job j. The problem involves finding an opti-

mal schedule, respecting the precedence constraints and

minimizing the total completion time
∑
Cj . This crite-

rion is termed as mean flow time(noted as MFT in the

following text). When the number of machines m is not

fixed, this problem is noted as P |pj = 1, in-tree|
∑
Cj

in the 3-field notation of Graham et al. (1979).

This problem was among the minimal open prob-

lems according to Sigrid Knust (2009). To the best of

our knowledge, it is still open (Prot and Bellenguez-

Morineau, 2018). Herein, we aim at providing a proof

of its NP-completeness.

Organization of this paper is as hereunder: in the

subsequent section, we present the state of the art. In

section 3, we prove that the problem P |pj = 1, in-tree|
∑
Cj

is NP-complete. In subsection 3.1, we present how we

reduce the 3-Partition problem to the decision ver-

sion of the scheduling problem. We prove theNP-completeness

in detail in subsection 3.2 and 3.3. Finally, section 4

provides our conclusion.

2 State of the art

A study involving in-tree precedence constraints in a

parallel machine scheduling problem has been performed:

Hu (1961) focus on the makespan and suggests that the

problem is polynomially solvable using the HLF(highest

level first) strategy. Nevertheless, Garey et al. (1983)

prove that the problem isNP-complete when the prece-

dence graph is an opposing forest, which corresponds to

a set of in-trees and out-trees.

HLF can also be used to minimize the MFT if the

precedence graph is an out-tree. Furthermore, a polyno-

mial algorithm is put forward by Brucker et al. (2001)

for the solution of this problem in case of allowance of

preemption.

Nevertheless, Huo and Leung (2006) show HLF can-

not optimally solve the in-tree version. In addition, Bap-

tiste et al. (2004) proved that it can be solved in O(nm)

time, i.e. if the number of machines m is a fixed param-

eter, the problem is polynomially solvable.

Finally, Garey et al. (1983) prove that the prob-

lem is NP-complete for a profile scheduling. Accord-

ingly, the number of available machines varies along the

time rather than parallel machines. However, the com-

plexity of the given parallel scheduling problem P |pj =

1, in-tree|
∑
Cj is still open.

2 Tianyu Wang, Odile Bellenguez-Morineau

3 Proof of NP-completeness

In a bid to proveNP-completeness of P |pj = 1, in-tree|
∑
Cj ,

we employed a reduction from a known NP-complete

problem: 3-Partition. An instance π1 of the 3-Partition

problem (noted Π1) is defined as hereunder (Garey and

Johnson, 2002):

Definition 1. Let α be a set of 3q elements and B an

integer, we have ∀a ∈ α, ∃wa ∈ Z+, B
4 < wa <

B
2 and∑

a∈α
wa = qB. The question is: is there a partition of α,

which is α1, α2, . . . , αq, such that ∀i ≤ q,
∑
a∈αi

wa = B

?

As Π1 is NP-complete in the strong sense, the theo-

rem provided hereunder allows us to employ a pseudo-

polynomial transformation(Garey and Johnson, 2002,

p. 101):

Theorem 1. If Π is NP-complete in the strong sense,

Π
′ ∈NP and there exists a pseudo-polynomial transfor-

mation from Π to Π
′
, then Π

′
is NP-complete in the

strong sense.

Firstly, we define Π2 as P |pj = 1, in− tree|
∑
Cj ≤

MFT ∗, which represents the decision version of our

scheduling problem. The decision question deals with

whether there exists a feasible schedule such that
∑
Cj ≤

MFT ∗ or not, where MFT ∗ is a given integer. In the

subsequent part, we demonstrate how to reduce any in-

stance π1 of Π1 to an instance π2 of Π2.

3.1 Transformation

In order to begin our transformation, we define some

constants:

– B = q5B

– ∀a ∈ α, wa = q5wa
– K = B5

– m = 3q + 1 + B, which will be used as the number

of machines

– MFT ∗ =
q∑
i=1

i(3(q+ 1− i) + 1) +
K3∑

i=q+1

i+B
q∑
i=1

i+

∑
a∈α

Kwa∑
i=1

i+KB
q∑
i=1

i

– ∀k ≤ q + 1, mk = B + 3k − 3

Notice that an optimal partition for π1, such that∑
a∈αi

wa = B, is totally equivalent to a partition such

that
∑
a∈αi

wa = B , since the problem does not change

when multiplying wa by an integer q5.

Thereafter, we create the following jobs:

u1
a u

2
a u

3
a uwa

a

v1
a

v2
a

v3
a

v4
a

v5
a

vKwa
a

Fig. 1: in-tree of u-jobs and v-jobs

– For each a ∈ α, we build two sets of jobs, which in-

clude u-jobs and v-jobs: u1a, u
2
a, . . . , u

wa
a , and v1a, v

2
a, . . . , v

Kwa
a .

The u-jobs precede directly v1a, i.e. ∀i ≤ wa, uia ≺ v1a.

Subsequent to that, we set via ≺ vi+1
a , ∀i < Kwa,

and they form a chain. The corresponding tree of

the u-jobs and v-jobs can be observed in the Figure

1. They form 3q in-trees

– In addition, we consider a set of d-jobs, which are

defined as hereunder:

d11, . . . , d
m−m1
1

d12, . . . , d
m−m2
2

. . .

d1q, d
2
q, d

3
q, d

4
q

dq+1

dq+2

. . .

dK3

Those d-jobs also design a tree. In that tree, we

fix for any k ≤ q + 1, d1k−1 ≺ d1k, d2k−1 ≺ d1k and

d3k−1 ≺ d1k. ∀i ∈ {4, 5, . . . ,m − mk−1}, then, we

set: dik−1 ≺ di−3k . Thereafter, for ∀k ∈ {q + 2, q +

3, . . . ,K3}, dk−1 ≺ dk, accordingly forming a chain.

The corresponding tree is presented in the Figure 2.

Thus, we transformed π1 to an instance π2 of the

scheduling problem Π2. The construction is made in

polynomial time of B and q (pseudo-polynomial). In

accordance to the Theorem 1, we can establish the NP-

completeness of Π2 through the provision of theorem

provided as hereunder:

Title Suppressed Due to Excessive Length 3

d1
1 d2

1 d3
1 d4

1 d5
1 d6

1 d7
1 d8

1 d9
1 d10

1 dm−m1
1

d1
2 d2

2 d3
2 d4

2 d5
2 d6

2 d7
2 dm−m2

2

d1
3 d2

2 d3
2 d4

2 dm−m3
3

d4
qd1

q

dq+1

dq+2

dq+3

dq+4

dq+5

dK3

d3
qd2

q

... ...

......

Fig. 2: in-tree of d-jobs

Theorem 2. There exists a partition for π1 ∈ Π1, if

and only if there exists a feasible schedule for π2 such

that
∑
Cj ≤MFT ∗.

3.2 Proof of Theorem 2: ⇒

0 1 2 3 4 q − 1 q q + 1t 5 6

dummy jobs

v-jobs

u-jobs

Fig. 3: Gantt graph of σ∗

We firstly show that if there exists a partition α1, α2, . . . , αq
for π1, such that

∑
a∈αi

wa = B , then, we can build a fea-

sible schedule σ∗ for π2 and
∑
Cj ≤ MFT ∗. w.l.o.g:

moreover, we assume that, for each subset αk in the

partition for k = 1, . . . , q, the three elements in it are

ak1 , a
k
2 and ak3 .

We make use of notation MFT ∗d (resp. MFT ∗v and

MFT ∗u) for representing the mean flow time of d-jobs(resp.

v-jobs and u-jobs) in σ∗. In the subsequent part, we

show how jobs are scheduled in σ∗ together with calcu-

lating the MFT.

Firstly, d-jobs are executed as soon as they are liber-

ated. Formally, ∀i ≤ q,∀j ≤ m−mi, Cdji
= i; ∀i ≤ K3,

Cdi = i. This enforces a profile, wherein, the kth time-

slot for k ≤ q + 1 has mk available machines for both

u-jobs and v-jobs.

Accordingly, we consider MFT for the d-jobs:

MFT ∗d =

q∑
i=1

m−mi∑
j=1

Cdji
+

K3∑
i=q+1

Cdi (1)

as ∀i ≤ K3,∀j ≤ m − mi, Cdji
= i, the first part is

equivalent to:

q∑
i=1

m−mi∑
j=1

Cdji
=

q∑
i=1

m−mi∑
j=1

i =

q∑
i=1

i(m−mi)

and as m−mi = 3(q + 1− i) + 1, we have:

q∑
i=1

m−mi∑
j=1

Cdji
=

q∑
i=1

i(3(q + 1− i) + 1)

Then, for i > q, we also have Cdi = i, so the second

part of (1) is:

K3∑
i=q+1

Cdi =

K3∑
i=q+1

i

Accordingly, we can obtain the MFT of all d-jobs:

MFT ∗d =

q∑
i=1

i(3(q + 1− i) + 1) +

K3∑
i=q+1

i (2)

In the second step, all the u-jobs corresponding to

the subset αk are executed in the same time-slot, which

is the kth time-slot. They need exactly B machines by

definition of 3-Partition. Formally, ∀k ≤ q, ∀a ∈ αk,

∀i ∈ {1, 2, 3}, and ∀j ≤ waki , Cuj

ak
i

= k. Accordingly,

there are exactly B u-jobs executed at each time slot,

i.e. |{Cu = t}|= B, ∀t ≤ q. Thus, we are able to deduce

that all the u-jobs are accomplished before t = q, and

we have:

MFT ∗u =

q∑
t=1

t|{u|Cu = t}|= B

q∑
i=1

i (3)

4 Tianyu Wang, Odile Bellenguez-Morineau

Thereafter, every v-job is executed without any de-

lay in accordance with the precedence constraints. For-

mally, ∀a ∈ α, Cv1a = Cu1
a

+1 and ∀i ∈ {2, 3, . . . ,Kwa},
Cvia = Cvi−1

a
+ 1.

So, for each v-chain corresponding to the element

a ∈ α, we have Cvia = Cvi−1
a

+ 1, ∀i ∈ {2, 3, . . . ,Kwa},
that is Cvia = Cv1a + i−1. Let ua be any u-job preceding

v1a, as Cv1a = Cua
+ 1, we have Cvia = Cua

+ i. Now, we

calculate the MFT for this given chain:

Kwa∑
i=1

Cvia =

Kwa∑
i=1

Cua
+

Kwa∑
i=1

i = KwaCua
+

Kwa∑
i=1

i

Then, we deduce the MFT for all these v-chains, i.e.

all the v-jobs:

MFT ∗v =
∑
∀a∈α

Kwa∑
i=1

Cvia = K
∑
∀a∈α

waCua
+

∑
∀a∈α

Kwa∑
i=1

i

We are aware of the fact that, for each subset αk, we

have Cu
ai
j

= i, where j ∈ {1, 2, 3}, and i ≤ q. So, we

are able to deduce that the first part is equivalent to:

K
∑
∀a∈α

wa
∑
j≤wa

Cuj
a

= K

q∑
i=1

∑
∀a∈αi

wa
∑
j≤wa

Cuj
a

=

K

q∑
i=1

i
∑
∀a∈αi

wa = K

q∑
i=1

iB

So,

MFT ∗v = K

q∑
i=1

iB +
∑
∀a∈α

Kwa∑
i=1

i (4)

So, in kth time slot of σ∗, k < q+1, there are exactly

m−mk d-jobs, B v-jobs and 3k−3 v-jobs. By definition

of mk, there are exactly m jobs in progress. After t = q,

there are only one d-job and at most 3q v-jobs executed

in parallel. Thus, there are no more than m jobs. So,

this schedule respects the availability of machines.

Then, we deduce that the total MFT of σ∗, which

is a feasible schedule for π2, is:∑
Cj = MFT ∗v +MFT ∗u +MFT ∗d = MFT ∗

3.3 Proof of Theorem 2: ⇐

In this section, we prove that if π2 has a feasible sched-

ule, then π1 has a partition. A schedule without un-

forced idle time is termed as non-delay schedule by

Weiss and Pinedo (2012). The authors also prove that

there always exists an optimal non-delay schedule. Let

σ be a feasible non-delay schedule. We prove in the

following part that σ takes the same shape as σ∗ and

followed by building a partition from σ.

For that purpose, we at first, define the MFT of

u-jobs, v-jobs and d-jobs in σ as MFTu, MFTv and

MFTd. Subsequent to that, define the following gaps:

∆u = MFTu −MFT ∗u

∆v = MFTv −MFT ∗v

∆d = MFTd −MFT ∗d

In order to respect the MFT ∗, we understand that:

∆d + ∆u + ∆v ≤ 0 (5)

In addition to this, we would like to throw emphasis

on the following observations:

Observation 1. When a chain of nc jobs is right-

shifted by one time slot, then its MFT will be increased

by nc.

Observation 2. The sizes of different sets of jobs ex-

hibit the following relation:

K3 � Kwa � B � q5

First of all, let us consider the d-jobs. We show that

d-jobs must have the same profile as in σ∗, which is the

following lemma:

Lemma 1. In σ, the d-jobs are scheduled as soon as

they are liberated (as in σ∗), i.e. ∆d = 0.

Proof. By contradiction: assume that there is at least

one delayed d-job. σ is a non-delay schedule; accord-

ingly, this d-jobs can be delayed only by insertion of

u-jobs or v-jobs.

Notice that the d-jobs can take no more than m−m1

machines in parallel because of the precedence con-

straints. At any moment, there are at least m1 = B

available machines for both the v-jobs and u-jobs. More-

over, in a non-delay schedule, the makespan(Cmax) is

not larger than the number of jobs. As the total number

of v-jobs and u-jobs is KB+qB, the last v-job or u-job

finishes before KB+ qB. Consequently, the delay must

happen before KB + qB.

As the length of the d-chain is K3, at least K3 −
KB+qB jobs are right-shifted. Following the Observa-

tion 1, we have

∆d ≥ K3 −KB + qB

Remind that MFT ∗u � K2, MFT ∗v � K2, so we

have

∆d �MFT ∗u +MFT ∗v

Title Suppressed Due to Excessive Length 5

In accordance with the definition, we have ∆u >

−MFT ∗u and ∆v > −MFT ∗v , then

∆d + ∆v + ∆u

> ∆d −MFT ∗u −MFT ∗v � 0

This is a contradiction to (5). So, our assumption

is false, there is no delay during the execution of d-

jobs.

Since ∆d = 0, (5) becomes

∆u + ∆v ≤ 0 (6)

Here we conclude that the profile of available ma-

chines in σ is the same as in σ∗ to schedule u-jobs and

v-jobs. Now, let us deal with u-jobs.

Definition 2. We define the u-jobs in the same com-

ponent a u-set and define Ut as the number of u-jobs

in u-sets completed at t.

Lemma 2. At time t∗ ≤ q, the completed u-sets con-

tain at most t∗B u-jobs, i.e.
t∗∑
t=1

Ut ≤ t∗B.

Proof. The number of jobs finished at t∗ ≤ q is at most

t∗m which is:

t∗m = t∗B + t∗(3q + 1) ≤ t∗B + 3q3

As we are aware of the fact, the number of u-jobs in a

u-set is wa, which is integer times q5, so, the number of

u-jobs in completed u-sets is at most t∗B.

Now, let us move on to the v-jobs.

Definition 3. We define Vt as the number of v-jobs in

the chains starting at the time t for t < q in σ, and

Vq as the number of v-jobs in the chains starting at or

after t = q.

Lemma 3. In σ, at any time t ≤ q, the total length of

the v-chains beginning at t in σ is exactly KB, as in

σ∗, i.e. Vt = KB.

Proof. At first, we prove that
q∑
i=1

iVi ≥ KB
q∑
i=1

i.

According to the precedence constraints, we have a

relation between Vt and Ut:

t∗∑
t=1

Vt ≤ K
t∗∑
t=1

Ut ∀t∗ < q

So, from Lemma 2, we can deduce:

t∗∑
t=1

Vt ≤ t∗BK ∀t∗ < q

which is:

(7)

V1 ≤ KB
V1 + V2 ≤ 2KB
V1 + V2 + V3 ≤ 3KB

. . .

. . .

V1 + V2 + V3 + · · ·+ Vq−1 ≤ (q − 1)KB

If we sum them up, we get:

(q − 1)V1 + (q − 2)V2 + · · ·+ Vq−1 ≤ KB
q2 − q

2
(8)

By definition, we understand that
∑q
t=1 Vt corre-

sponds to the norm of whole set of v-jobs and it is

equal to KqB:

q∑
t=1

Vt = KqB (9)

Then, by multiplying (9) by q, we get:

qV1 + qV2 + . . . qVq = KBq2 (10)

With (10)-(8), we get

V1 + 2V2 + · · ·+ (q − 1)Vq−1 + qVq ≥ KB
q2 + q

2

which is exactly

q∑
i=1

iVi ≥ KB
q∑
i=1

i

It requires observation that the two terms are equal

if and only if every decomposition of group (7) is written

with an equality, which indicates that V1 = V2 = · · · =
Vq = KB.

Now, we demonstrate that
q∑
i=1

iVi = KB
q∑
i=1

i. Sup-

pose by absurd that
q∑
i=1

iVi > KB
q∑
i=1

i. By definition,

Vi is the total length of some v-chains, which implies

that Vi is integer times K. So, we have:

q∑
i=1

iVi ≥ KB
q∑
i=1

i+K (11)

In the best case of σ, all the v-jobs in one chain are

executed without any delay, so, we have:

MFTv ≥
∑
a∈α

Kwa∑
i=1

i+

q∑
i=1

iVi (12)

Reminding the expression of MFT ∗v in (4), we can de-

duce that:

∆v ≥
q∑
i=1

iVi −KB
q∑
i=1

i (13)

6 Tianyu Wang, Odile Bellenguez-Morineau

By (13) and (11), we have∆v ≥ K. Then, by (6), we

have ∆u ≤ −K. This contradicts the fact that ∆u ≥
−MFT ∗u � −K.

Finally, we can conclude that ∆v = 0 and Vt = KB,

∀t ≤ q. This suggests that, at any t, the length of v-

chains started is exactly KB.

The Lemma above allows us to build a partition

from Vi by selecting the elements corresponding to its

3 v-chains of KB jobs. Thus, we accomplished the proof

for the Theorem 2.

4 Conclusion

In this paper, we put forward a proof ofNP-completeness

for P |pj = 1, in-tree|
∑
Cj . Based on that, we refine the

knowledge about the complexity of parallel scheduling

problems subjected to precedence constraints in specific

graphs.

Nevertheless, some open problems still exist requir-

ing investigation. For example, when preemption is al-

lowed, the complexity of the problem P |pj = 1, in-tree, pmtn|
∑
Cj

is unknown. We conjecture that, with the same reduc-

tion as in subsection 3.1, the Theorem 2 still holds even

if preemption is allowed, and the problem shall be NP-

complete as well.

Another possible research avenue involves exploration

of how to solve the problem when m is a fixed number.

The complexity of the algorithm proposed by Baptiste

et al. (2004) is O(nm), but it can be certainly improved.

References

Philippe Baptiste, Peter Brucker, Sigrid Knust, and

Vadim G Timkovsky. Ten notes on equal-processing-

time scheduling. Quarterly Journal of the Belgian,

French and Italian Operations Research Societies, 2

(2):111–127, 2004.

Peter Brucker, Johann L Hurink, and Sigrid Knust. A

polynomial algorithm for P |pj = 1, rj , outtree|
∑
Cj .

Math. Methods Oper. Res., 2001.

Michael R Garey and David S Johnson. Computers

and intractability, volume 29. wh freeman New York,

2002.

MR Garey, DS Johnson, RE Tarjan, and Yannakakis

M. Scheduling opposing forests. SIAM Journal on

Algebraic Discrete Methods, 4(1):72–93, 1983.

Ronald L Graham, Eugene L Lawler, Jan Karel

Lenstra, and AHG Rinnooy Kan. Optimization

and approximation in deterministic sequencing and

scheduling: a surveyhaha. Annals of discrete mathe-

matics, 5:287–326, 1979.

Te C Hu. Parallel sequencing and assembly line prob-

lems. Operations research, 9(6):841–848, 1961.

Yumei Huo and Joseph Y-T Leung. Minimizing mean

flow time for UET tasks. ACM Transactions on Al-

gorithms (TALG), 2(2):244–262, 2006.

Damien Prot and Odile Bellenguez-Morineau. A survey

on how the structure of precedence constraints may

change the complexity class of scheduling problems.

Journal of Scheduling, 21(1):3–16, 2018.

Peter Brucker Sigrid Knust. Complex-

ity results for scheduling problems,

2009. http://www2.informatik.uni-

osnabrueck.de/knust/class/.

Gideon Weiss and Michael Pinedo. Scheduling: Theory,

algorithms, and systems, 2012.

	Introduction
	State of the art
	Proof of NP -completeness
	Conclusion

