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Abstract This paper deals with a particular schedul-

ing problem. We consider unit-time jobs and in-tree

precedence constraints while minimizing the mean flow

time. This problem is observed as P |pj = 1, in-tree|
∑
Cj

with the use of the 3-filed notation. To the best of our

knowledge, its complexity is still open. Through a re-

duction from 3-Partition, we show that this problem

is NP-complete.

Keywords parallel scheduling · in-tree · precedence

constraints · complexity theory

Acknowledgments

This work was supported by the China Scholarship Coun-

cil [grant numbers 201404490037].

1 Introduction

We consider the following scheduling problem: a set of

n unit-time jobs (pj = 1) has to be done by m identical

parallel machines. The jobs are submitted to precedence

constraints. Prot and Bellenguez-Morineau (2018) re-

vealed the fact that the complexity of a problem is likely
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to be different for specific type of precedence graphs.

In this paper, we focus on the problem with in-trees

(or in-forest in some literature) precedence graph. This

particular graph suggests that each job has no more

than one successor. We use Cj to denote the completion

time of a job j. The problem involves finding an opti-

mal schedule, respecting the precedence constraints and

minimizing the total completion time
∑
Cj . This crite-

rion is termed as mean flow time(noted as MFT in the

following text). When the number of machines m is not

fixed, this problem is noted as P |pj = 1, in-tree|
∑
Cj

in the 3-field notation of Graham et al. (1979).

This problem was among the minimal open prob-

lems according to Sigrid Knust (2009). To the best of

our knowledge, it is still open (Prot and Bellenguez-

Morineau, 2018). Herein, we aim at providing a proof

of its NP-completeness.

Organization of this paper is as hereunder: in the

subsequent section, we present the state of the art. In

section 3, we prove that the problem P |pj = 1, in-tree|
∑
Cj

is NP-complete. In subsection 3.1, we present how we

reduce the 3-Partition problem to the decision ver-

sion of the scheduling problem. We prove theNP-completeness

in detail in subsection 3.2 and 3.3. Finally, section 4

provides our conclusion.

2 State of the art

A study involving in-tree precedence constraints in a

parallel machine scheduling problem has been performed:

Hu (1961) focus on the makespan and suggests that the

problem is polynomially solvable using the HLF(highest

level first) strategy. Nevertheless, Garey et al. (1983)

prove that the problem isNP-complete when the prece-

dence graph is an opposing forest, which corresponds to

a set of in-trees and out-trees.

HLF can also be used to minimize the MFT if the

precedence graph is an out-tree. Furthermore, a polyno-

mial algorithm is put forward by Brucker et al. (2001)

for the solution of this problem in case of allowance of

preemption.

Nevertheless, Huo and Leung (2006) show HLF can-

not optimally solve the in-tree version. In addition, Bap-

tiste et al. (2004) proved that it can be solved in O(nm)

time, i.e. if the number of machines m is a fixed param-

eter, the problem is polynomially solvable.

Finally, Garey et al. (1983) prove that the prob-

lem is NP-complete for a profile scheduling. Accord-

ingly, the number of available machines varies along the

time rather than parallel machines. However, the com-

plexity of the given parallel scheduling problem P |pj =

1, in-tree|
∑
Cj is still open.
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3 Proof of NP-completeness

In a bid to proveNP-completeness of P |pj = 1, in-tree|
∑
Cj ,

we employed a reduction from a known NP-complete

problem: 3-Partition. An instance π1 of the 3-Partition

problem (noted Π1) is defined as hereunder (Garey and

Johnson, 2002):

Definition 1. Let α be a set of 3q elements and B an

integer, we have ∀a ∈ α, ∃wa ∈ Z+, B
4 < wa <

B
2 and∑

a∈α
wa = qB. The question is: is there a partition of α,

which is α1, α2, . . . , αq, such that ∀i ≤ q,
∑
a∈αi

wa = B

?

As Π1 is NP-complete in the strong sense, the theo-

rem provided hereunder allows us to employ a pseudo-

polynomial transformation(Garey and Johnson, 2002,

p. 101):

Theorem 1. If Π is NP-complete in the strong sense,

Π
′ ∈NP and there exists a pseudo-polynomial transfor-

mation from Π to Π
′
, then Π

′
is NP-complete in the

strong sense.

Firstly, we define Π2 as P |pj = 1, in− tree|
∑
Cj ≤

MFT ∗, which represents the decision version of our

scheduling problem. The decision question deals with

whether there exists a feasible schedule such that
∑
Cj ≤

MFT ∗ or not, where MFT ∗ is a given integer. In the

subsequent part, we demonstrate how to reduce any in-

stance π1 of Π1 to an instance π2 of Π2.

3.1 Transformation

In order to begin our transformation, we define some

constants:

– B = q5B

– ∀a ∈ α, wa = q5wa
– K = B5

– m = 3q + 1 + B, which will be used as the number

of machines

– MFT ∗ =
q∑
i=1

i(3(q+ 1− i) + 1) +
K3∑

i=q+1

i+B
q∑
i=1

i+

∑
a∈α

Kwa∑
i=1

i+KB
q∑
i=1

i

– ∀k ≤ q + 1, mk = B + 3k − 3

Notice that an optimal partition for π1, such that∑
a∈αi

wa = B, is totally equivalent to a partition such

that
∑
a∈αi

wa = B , since the problem does not change

when multiplying wa by an integer q5.

Thereafter, we create the following jobs:

u1
a u

2
a u

3
a uwa

a

v1
a

v2
a

v3
a

v4
a

v5
a

vKwa
a

Fig. 1: in-tree of u-jobs and v-jobs

– For each a ∈ α, we build two sets of jobs, which in-

clude u-jobs and v-jobs: u1a, u
2
a, . . . , u

wa
a , and v1a, v

2
a, . . . , v

Kwa
a .

The u-jobs precede directly v1a, i.e. ∀i ≤ wa, uia ≺ v1a.

Subsequent to that, we set via ≺ vi+1
a , ∀i < Kwa,

and they form a chain. The corresponding tree of

the u-jobs and v-jobs can be observed in the Figure

1. They form 3q in-trees

– In addition, we consider a set of d-jobs, which are

defined as hereunder:

d11, . . . , d
m−m1
1

d12, . . . , d
m−m2
2

. . .

d1q, d
2
q, d

3
q, d

4
q

dq+1

dq+2

. . .

dK3

Those d-jobs also design a tree. In that tree, we

fix for any k ≤ q + 1, d1k−1 ≺ d1k, d2k−1 ≺ d1k and

d3k−1 ≺ d1k. ∀i ∈ {4, 5, . . . ,m − mk−1}, then, we

set: dik−1 ≺ di−3k . Thereafter, for ∀k ∈ {q + 2, q +

3, . . . ,K3}, dk−1 ≺ dk, accordingly forming a chain.

The corresponding tree is presented in the Figure 2.

Thus, we transformed π1 to an instance π2 of the

scheduling problem Π2. The construction is made in

polynomial time of B and q (pseudo-polynomial). In

accordance to the Theorem 1, we can establish the NP-

completeness of Π2 through the provision of theorem

provided as hereunder:
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... ...

......

Fig. 2: in-tree of d-jobs

Theorem 2. There exists a partition for π1 ∈ Π1, if

and only if there exists a feasible schedule for π2 such

that
∑
Cj ≤MFT ∗.

3.2 Proof of Theorem 2: ⇒

0 1 2 3 4 q − 1 q q + 1t 5 6

dummy jobs

v-jobs

u-jobs

Fig. 3: Gantt graph of σ∗

We firstly show that if there exists a partition α1, α2, . . . , αq
for π1, such that

∑
a∈αi

wa = B , then, we can build a fea-

sible schedule σ∗ for π2 and
∑
Cj ≤ MFT ∗. w.l.o.g:

moreover, we assume that, for each subset αk in the

partition for k = 1, . . . , q, the three elements in it are

ak1 , a
k
2 and ak3 .

We make use of notation MFT ∗d (resp. MFT ∗v and

MFT ∗u ) for representing the mean flow time of d-jobs(resp.

v-jobs and u-jobs) in σ∗. In the subsequent part, we

show how jobs are scheduled in σ∗ together with calcu-

lating the MFT.

Firstly, d-jobs are executed as soon as they are liber-

ated. Formally, ∀i ≤ q,∀j ≤ m−mi, Cdji
= i; ∀i ≤ K3,

Cdi = i. This enforces a profile, wherein, the kth time-

slot for k ≤ q + 1 has mk available machines for both

u-jobs and v-jobs.

Accordingly, we consider MFT for the d-jobs:

MFT ∗d =

q∑
i=1

m−mi∑
j=1

Cdji
+

K3∑
i=q+1

Cdi (1)

as ∀i ≤ K3,∀j ≤ m − mi, Cdji
= i, the first part is

equivalent to:

q∑
i=1

m−mi∑
j=1

Cdji
=

q∑
i=1

m−mi∑
j=1

i =

q∑
i=1

i(m−mi)

and as m−mi = 3(q + 1− i) + 1, we have:

q∑
i=1

m−mi∑
j=1

Cdji
=

q∑
i=1

i(3(q + 1− i) + 1)

Then, for i > q, we also have Cdi = i, so the second

part of (1) is:

K3∑
i=q+1

Cdi =

K3∑
i=q+1

i

Accordingly, we can obtain the MFT of all d-jobs:

MFT ∗d =

q∑
i=1

i(3(q + 1− i) + 1) +

K3∑
i=q+1

i (2)

In the second step, all the u-jobs corresponding to

the subset αk are executed in the same time-slot, which

is the kth time-slot. They need exactly B machines by

definition of 3-Partition. Formally, ∀k ≤ q, ∀a ∈ αk,

∀i ∈ {1, 2, 3}, and ∀j ≤ waki , Cuj

ak
i

= k. Accordingly,

there are exactly B u-jobs executed at each time slot,

i.e. |{Cu = t}|= B, ∀t ≤ q. Thus, we are able to deduce

that all the u-jobs are accomplished before t = q, and

we have:

MFT ∗u =

q∑
t=1

t|{u|Cu = t}|= B

q∑
i=1

i (3)
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Thereafter, every v-job is executed without any de-

lay in accordance with the precedence constraints. For-

mally, ∀a ∈ α, Cv1a = Cu1
a

+1 and ∀i ∈ {2, 3, . . . ,Kwa},
Cvia = Cvi−1

a
+ 1.

So, for each v-chain corresponding to the element

a ∈ α, we have Cvia = Cvi−1
a

+ 1, ∀i ∈ {2, 3, . . . ,Kwa},
that is Cvia = Cv1a + i−1. Let ua be any u-job preceding

v1a, as Cv1a = Cua
+ 1, we have Cvia = Cua

+ i. Now, we

calculate the MFT for this given chain:

Kwa∑
i=1

Cvia =

Kwa∑
i=1

Cua
+

Kwa∑
i=1

i = KwaCua
+

Kwa∑
i=1

i

Then, we deduce the MFT for all these v-chains, i.e.

all the v-jobs:

MFT ∗v =
∑
∀a∈α

Kwa∑
i=1

Cvia = K
∑
∀a∈α

waCua
+

∑
∀a∈α

Kwa∑
i=1

i

We are aware of the fact that, for each subset αk, we

have Cu
ai
j

= i, where j ∈ {1, 2, 3}, and i ≤ q. So, we

are able to deduce that the first part is equivalent to:

K
∑
∀a∈α

wa
∑
j≤wa

Cuj
a

= K

q∑
i=1

∑
∀a∈αi

wa
∑
j≤wa

Cuj
a

=

K

q∑
i=1

i
∑
∀a∈αi

wa = K

q∑
i=1

iB

So,

MFT ∗v = K

q∑
i=1

iB +
∑
∀a∈α

Kwa∑
i=1

i (4)

So, in kth time slot of σ∗, k < q+1, there are exactly

m−mk d-jobs, B v-jobs and 3k−3 v-jobs. By definition

of mk, there are exactly m jobs in progress. After t = q,

there are only one d-job and at most 3q v-jobs executed

in parallel. Thus, there are no more than m jobs. So,

this schedule respects the availability of machines.

Then, we deduce that the total MFT of σ∗, which

is a feasible schedule for π2, is:∑
Cj = MFT ∗v +MFT ∗u +MFT ∗d = MFT ∗

3.3 Proof of Theorem 2: ⇐

In this section, we prove that if π2 has a feasible sched-

ule, then π1 has a partition. A schedule without un-

forced idle time is termed as non-delay schedule by

Weiss and Pinedo (2012). The authors also prove that

there always exists an optimal non-delay schedule. Let

σ be a feasible non-delay schedule. We prove in the

following part that σ takes the same shape as σ∗ and

followed by building a partition from σ.

For that purpose, we at first, define the MFT of

u-jobs, v-jobs and d-jobs in σ as MFTu, MFTv and

MFTd. Subsequent to that, define the following gaps:

∆u = MFTu −MFT ∗u

∆v = MFTv −MFT ∗v

∆d = MFTd −MFT ∗d

In order to respect the MFT ∗, we understand that:

∆d + ∆u + ∆v ≤ 0 (5)

In addition to this, we would like to throw emphasis

on the following observations:

Observation 1. When a chain of nc jobs is right-

shifted by one time slot, then its MFT will be increased

by nc.

Observation 2. The sizes of different sets of jobs ex-

hibit the following relation:

K3 � Kwa � B � q5

First of all, let us consider the d-jobs. We show that

d-jobs must have the same profile as in σ∗, which is the

following lemma:

Lemma 1. In σ, the d-jobs are scheduled as soon as

they are liberated (as in σ∗), i.e. ∆d = 0.

Proof. By contradiction: assume that there is at least

one delayed d-job. σ is a non-delay schedule; accord-

ingly, this d-jobs can be delayed only by insertion of

u-jobs or v-jobs.

Notice that the d-jobs can take no more than m−m1

machines in parallel because of the precedence con-

straints. At any moment, there are at least m1 = B

available machines for both the v-jobs and u-jobs. More-

over, in a non-delay schedule, the makespan(Cmax) is

not larger than the number of jobs. As the total number

of v-jobs and u-jobs is KB+qB, the last v-job or u-job

finishes before KB+ qB. Consequently, the delay must

happen before KB + qB.

As the length of the d-chain is K3, at least K3 −
KB+qB jobs are right-shifted. Following the Observa-

tion 1, we have

∆d ≥ K3 −KB + qB

Remind that MFT ∗u � K2, MFT ∗v � K2, so we

have

∆d �MFT ∗u +MFT ∗v
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In accordance with the definition, we have ∆u >

−MFT ∗u and ∆v > −MFT ∗v , then

∆d + ∆v + ∆u

> ∆d −MFT ∗u −MFT ∗v � 0

This is a contradiction to (5). So, our assumption

is false, there is no delay during the execution of d-

jobs.

Since ∆d = 0, (5) becomes

∆u + ∆v ≤ 0 (6)

Here we conclude that the profile of available ma-

chines in σ is the same as in σ∗ to schedule u-jobs and

v-jobs. Now, let us deal with u-jobs.

Definition 2. We define the u-jobs in the same com-

ponent a u-set and define Ut as the number of u-jobs

in u-sets completed at t.

Lemma 2. At time t∗ ≤ q, the completed u-sets con-

tain at most t∗B u-jobs, i.e.
t∗∑
t=1

Ut ≤ t∗B.

Proof. The number of jobs finished at t∗ ≤ q is at most

t∗m which is:

t∗m = t∗B + t∗(3q + 1) ≤ t∗B + 3q3

As we are aware of the fact, the number of u-jobs in a

u-set is wa, which is integer times q5, so, the number of

u-jobs in completed u-sets is at most t∗B.

Now, let us move on to the v-jobs.

Definition 3. We define Vt as the number of v-jobs in

the chains starting at the time t for t < q in σ, and

Vq as the number of v-jobs in the chains starting at or

after t = q.

Lemma 3. In σ, at any time t ≤ q, the total length of

the v-chains beginning at t in σ is exactly KB, as in

σ∗, i.e. Vt = KB.

Proof. At first, we prove that
q∑
i=1

iVi ≥ KB
q∑
i=1

i.

According to the precedence constraints, we have a

relation between Vt and Ut:

t∗∑
t=1

Vt ≤ K
t∗∑
t=1

Ut ∀t∗ < q

So, from Lemma 2, we can deduce:

t∗∑
t=1

Vt ≤ t∗BK ∀t∗ < q

which is:

(7)

V1 ≤ KB
V1 + V2 ≤ 2KB
V1 + V2 + V3 ≤ 3KB

. . .

. . .

V1 + V2 + V3 + · · ·+ Vq−1 ≤ (q − 1)KB

If we sum them up, we get:

(q − 1)V1 + (q − 2)V2 + · · ·+ Vq−1 ≤ KB
q2 − q

2
(8)

By definition, we understand that
∑q
t=1 Vt corre-

sponds to the norm of whole set of v-jobs and it is

equal to KqB:

q∑
t=1

Vt = KqB (9)

Then, by multiplying (9) by q, we get:

qV1 + qV2 + . . . qVq = KBq2 (10)

With (10)-(8), we get

V1 + 2V2 + · · ·+ (q − 1)Vq−1 + qVq ≥ KB
q2 + q

2

which is exactly

q∑
i=1

iVi ≥ KB
q∑
i=1

i

It requires observation that the two terms are equal

if and only if every decomposition of group (7) is written

with an equality, which indicates that V1 = V2 = · · · =
Vq = KB.

Now, we demonstrate that
q∑
i=1

iVi = KB
q∑
i=1

i. Sup-

pose by absurd that
q∑
i=1

iVi > KB
q∑
i=1

i. By definition,

Vi is the total length of some v-chains, which implies

that Vi is integer times K. So, we have:

q∑
i=1

iVi ≥ KB
q∑
i=1

i+K (11)

In the best case of σ, all the v-jobs in one chain are

executed without any delay, so, we have:

MFTv ≥
∑
a∈α

Kwa∑
i=1

i+

q∑
i=1

iVi (12)

Reminding the expression of MFT ∗v in (4), we can de-

duce that:

∆v ≥
q∑
i=1

iVi −KB
q∑
i=1

i (13)
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By (13) and (11), we have∆v ≥ K. Then, by (6), we

have ∆u ≤ −K. This contradicts the fact that ∆u ≥
−MFT ∗u � −K.

Finally, we can conclude that ∆v = 0 and Vt = KB,

∀t ≤ q. This suggests that, at any t, the length of v-

chains started is exactly KB.

The Lemma above allows us to build a partition

from Vi by selecting the elements corresponding to its

3 v-chains of KB jobs. Thus, we accomplished the proof

for the Theorem 2.

4 Conclusion

In this paper, we put forward a proof ofNP-completeness

for P |pj = 1, in-tree|
∑
Cj . Based on that, we refine the

knowledge about the complexity of parallel scheduling

problems subjected to precedence constraints in specific

graphs.

Nevertheless, some open problems still exist requir-

ing investigation. For example, when preemption is al-

lowed, the complexity of the problem P |pj = 1, in-tree, pmtn|
∑
Cj

is unknown. We conjecture that, with the same reduc-

tion as in subsection 3.1, the Theorem 2 still holds even

if preemption is allowed, and the problem shall be NP-

complete as well.

Another possible research avenue involves exploration

of how to solve the problem when m is a fixed number.

The complexity of the algorithm proposed by Baptiste

et al. (2004) is O(nm), but it can be certainly improved.
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