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This paper deals with a particular scheduling problem. We consider unit-time jobs and in-tree precedence constraints while minimizing the mean flow time. This problem is observed as P |p j = 1, in-tree| C j with the use of the 3-filed notation. To the best of our knowledge, its complexity is still open. Through a reduction from 3-Partition, we show that this problem is N P-complete.

to be different for specific type of precedence graphs. In this paper, we focus on the problem with in-trees (or in-forest in some literature) precedence graph. This particular graph suggests that each job has no more than one successor. We use C j to denote the completion time of a job j. The problem involves finding an optimal schedule, respecting the precedence constraints and minimizing the total completion time C j . This criterion is termed as mean flow time(noted as MFT in the following text). When the number of machines m is not fixed, this problem is noted as P |p j = 1, in-tree| C j in the 3-field notation of [START_REF] Ronald L Graham | Optimization and approximation in deterministic sequencing and scheduling: a surveyhaha[END_REF].

This problem was among the minimal open problems according to Sigrid [START_REF] Brucker | Complexity results for scheduling problems[END_REF]. To the best of our knowledge, it is still open [START_REF] Prot | A survey on how the structure of precedence constraints may change the complexity class of scheduling problems[END_REF]. Herein, we aim at providing a proof of its N P-completeness.

Organization of this paper is as hereunder: in the subsequent section, we present the state of the art. In section 3, we prove that the problem P |p j = 1, in-tree| C j is N P-complete. In subsection 3.1, we present how we reduce the 3-Partition problem to the decision version of the scheduling problem. We prove the N P-completeness in detail in subsection 3.2 and 3.3. Finally, section 4 provides our conclusion.

State of the art

A study involving in-tree precedence constraints in a parallel machine scheduling problem has been performed: Hu (1961) focus on the makespan and suggests that the problem is polynomially solvable using the HLF(highest level first) strategy. Nevertheless, [START_REF] Garey | Scheduling opposing forests[END_REF] prove that the problem is N P-complete when the precedence graph is an opposing forest, which corresponds to a set of in-trees and out-trees.

HLF can also be used to minimize the MFT if the precedence graph is an out-tree. Furthermore, a polynomial algorithm is put forward by [START_REF] Brucker | A polynomial algorithm for P |p j = 1, r j , outtree| C j[END_REF] for the solution of this problem in case of allowance of preemption.

Nevertheless, [START_REF] Huo | Minimizing mean flow time for UET tasks[END_REF] show HLF cannot optimally solve the in-tree version. In addition, [START_REF] Baptiste | Ten notes on equal-processingtime scheduling[END_REF] proved that it can be solved in O(n m ) time, i.e. if the number of machines m is a fixed parameter, the problem is polynomially solvable.

Finally, [START_REF] Garey | Scheduling opposing forests[END_REF] prove that the problem is N P-complete for a profile scheduling. Accordingly, the number of available machines varies along the time rather than parallel machines. However, the complexity of the given parallel scheduling problem P |p j = 1, in-tree| C j is still open.

Proof of N P-completeness

In a bid to prove N P-completeness of P |p j = 1, in-tree| C j , we employed a reduction from a known N P-complete problem: 3-Partition. An instance π 1 of the 3-Partition problem (noted Π 1 ) is defined as hereunder [START_REF] Michael | Computers and intractability[END_REF]: Definition 1. Let α be a set of 3q elements and B an integer, we have ∀a ∈ α, ∃w a ∈ Z + , B 4 < w a < B 2 and a∈α w a = qB. The question is: is there a partition of α, which is α 1 , α 2 , . . . , α q , such that ∀i ≤ q, a∈αi w a = B ?

As Π 1 is N P-complete in the strong sense, the theorem provided hereunder allows us to employ a pseudopolynomial transformation (Garey and Johnson, 2002, p. 101):

Theorem 1. If Π is N P-complete in the strong sense, Π ∈N P and there exists a pseudo-polynomial transformation from Π to Π , then Π is N P-complete in the strong sense.

Firstly, we define Π 2 as P |p j = 1, in -tree| C j ≤ M F T * , which represents the decision version of our scheduling problem. The decision question deals with whether there exists a feasible schedule such that C j ≤ M F T * or not, where M F T * is a given integer. In the subsequent part, we demonstrate how to reduce any instance π 1 of Π 1 to an instance π 2 of Π 2 .

Transformation

In order to begin our transformation, we define some constants:

-B = q 5 B -∀a ∈ α, w a = q 5 w a -K = B 5 m = 3q + 1 + B, which will be used as the number of machines

-M F T * = q i=1 i(3(q + 1 -i) + 1) + K 3 i=q+1 i + B q i=1 i + a∈α Kwa i=1 i + KB q i=1 i -∀k ≤ q + 1, m k = B + 3k -3
Notice that an optimal partition for π 1 , such that a∈αi w a = B, is totally equivalent to a partition such that a∈αi w a = B , since the problem does not change when multiplying w a by an integer q 5 . Thereafter, we create the following jobs:

u 1 a u 2 a u 3 a u wa a v 1 a v 2 a v 3 a v 4 a v 5 a v Kwa a
Fig. 1: in-tree of u-jobs and v-jobs -For each a ∈ α, we build two sets of jobs, which include u-jobs and v-jobs: u 1 a , u 2 a , . . . , u wa a , and

v 1 a , v 2 a , . . . , v Kwa a . The u-jobs precede directly v 1 a , i.e. ∀i ≤ w a , u i a ≺ v 1 a . Subsequent to that, we set v i a ≺ v i+1
a , ∀i < Kw a , and they form a chain. The corresponding tree of the u-jobs and v-jobs can be observed in the Figure 1. They form 3q in-trees -In addition, we consider a set of d-jobs, which are defined as hereunder:

d 1 1 , . . . , d m-m1 1 d 1 2 , . . . , d m-m2 2 . . . d 1 q , d 2 q , d 3 q , d 4 q d q+1 d q+2 . . . d K 3
Those d-jobs also design a tree. In that tree, we fix for any k ≤ q + 1,

d 1 k-1 ≺ d 1 k , d 2 k-1 ≺ d 1 k and d 3 k-1 ≺ d 1 k . ∀i ∈ {4, 5, . . . , m -m k-1 }, then, we set: d i k-1 ≺ d i-3 k . Thereafter, for ∀k ∈ {q + 2, q + 3, . . . , K 3 }, d k-1 ≺ d k , accordingly forming a chain.
The corresponding tree is presented in the Figure 2. Thus, we transformed π 1 to an instance π 2 of the scheduling problem Π 2 . The construction is made in polynomial time of B and q (pseudo-polynomial). In accordance to the Theorem 1, we can establish the N Pcompleteness of Π 2 through the provision of theorem provided as hereunder:

d 1 1 d 2 1 d 3 1 d 4 1 d 5 1 d 6 1 d 7 1 d 8 1 d 9 1 d 10 1 d m-m1 1 d 1 2 d 2 2 d 3 2 d 4 2 d 5 2 d 6 2 d 7 2 d m-m2 2 d 1 3 d 2 2 d 3 2 d 4 2 d m-m3 3 d 4 q d 1 q d q+1 d q+2 d q+3 d q+4 d q+5 d K 3 d 3 q d 2 q ... ... ... ...

Fig. 2: in-tree of d-jobs

Theorem 2. There exists a partition for π 1 ∈ Π 1 , if and only if there exists a feasible schedule for π 2 such that We firstly show that if there exists a partition α 1 , α 2 , . . . , α q for π 1 , such that a∈αi w a = B , then, we can build a feasible schedule σ * for π 2 and C j ≤ M F T * . w.l.o.g: moreover, we assume that, for each subset α k in the partition for k = 1, . . . , q, the three elements in it are a k 1 , a k 2 and a k 3 . We make use of notation M F T * d (resp. M F T * v and M F T * u ) for representing the mean flow time of d-jobs(resp. v-jobs and u-jobs) in σ * . In the subsequent part, we show how jobs are scheduled in σ * together with calculating the MFT.

C j ≤ M F T * . 3.2 Proof of Theorem 2: ⇒ 0 1 2 3 4 q -1 q q + 1 t 5 6 dummy jobs v-jobs u-jobs
Firstly, d-jobs are executed as soon as they are liberated. Formally, ∀i ≤ q, ∀j ≤ m -m i , C d j i = i; ∀i ≤ K 3 , C di = i. This enforces a profile, wherein, the k th timeslot for k ≤ q + 1 has m k available machines for both u-jobs and v-jobs.

Accordingly, we consider MFT for the d-jobs:

M F T * d = q i=1 m-m i j=1 C d j i + K 3 i=q+1 C di (1) as ∀i ≤ K 3 , ∀j ≤ m -m i , C d j i = i, the first part is equivalent to: q i=1 m-mi j=1 C d j i = q i=1 m-mi j=1 i = q i=1 i(m -m i )
and as m -m i = 3(q + 1 -i) + 1, we have:

q i=1 m-mi j=1 C d j i = q i=1 i(3(q + 1 -i) + 1)
Then, for i > q, we also have C di = i, so the second part of (1) is:

K 3 i=q+1 C di = K 3 i=q+1 i
Accordingly, we can obtain the MFT of all d-jobs:

M F T * d = q i=1 i(3(q + 1 -i) + 1) + K 3 i=q+1 i (2) 
In the second step, all the u-jobs corresponding to the subset α k are executed in the same time-slot, which is the k th time-slot. They need exactly B machines by definition of 3-Partition. Formally, ∀k ≤ q, ∀a ∈ α k , ∀i ∈ {1, 2, 3}, and ∀j ≤ w a k i , C u j a k i = k. Accordingly, there are exactly B u-jobs executed at each time slot, i.e. |{C u = t}|= B, ∀t ≤ q. Thus, we are able to deduce that all the u-jobs are accomplished before t = q, and we have:

M F T * u = q t=1 t|{u|C u = t}|= B q i=1 i (3) 
Thereafter, every v-job is executed without any delay in accordance with the precedence constraints. Formally, ∀a ∈ α, C v 1 a = C u 1 a + 1 and ∀i ∈ {2, 3, . . . , Kw a },

C v i a = C v i-1 a + 1. So, for each v-chain corresponding to the element a ∈ α, we have C v i a = C v i-1 a + 1, ∀i ∈ {2, 3, . . . , Kw a }, that is C v i a = C v 1 a + i -1. Let u a be any u-job preceding v 1 a , as C v 1 a = C ua + 1, we have C v i a = C ua + i
. Now, we calculate the MFT for this given chain:

Kwa i=1 C v i a = Kwa i=1 C ua + Kwa i=1 i = Kw a C ua + Kwa i=1 i
Then, we deduce the MFT for all these v-chains, i.e. all the v-jobs:

M F T * v = ∀a∈α Kwa i=1 C v i a = K ∀a∈α w a C ua + ∀a∈α Kwa i=1 i
We are aware of the fact that, for each subset α k , we have C u a i j = i, where j ∈ {1, 2, 3}, and i ≤ q. So, we are able to deduce that the first part is equivalent to:

K ∀a∈α w a j≤wa C u j a = K q i=1 ∀a∈αi w a j≤wa C u j a = K q i=1 i ∀a∈αi w a = K q i=1 iB So, M F T * v = K q i=1 iB + ∀a∈α Kwa i=1 i (4)
So, in k th time slot of σ * , k < q+1, there are exactly m-m k d-jobs, B v-jobs and 3k -3 v-jobs. By definition of m k , there are exactly m jobs in progress. After t = q, there are only one d-job and at most 3q v-jobs executed in parallel. Thus, there are no more than m jobs. So, this schedule respects the availability of machines.

Then, we deduce that the total MFT of σ * , which is a feasible schedule for π 2 , is:

C j = M F T * v + M F T * u + M F T * d = M F T *

Proof of Theorem 2: ⇐

In this section, we prove that if π 2 has a feasible schedule, then π 1 has a partition. A schedule without unforced idle time is termed as non-delay schedule by [START_REF] Weiss | Scheduling: Theory, algorithms, and systems[END_REF]. The authors also prove that there always exists an optimal non-delay schedule. Let σ be a feasible non-delay schedule. We prove in the following part that σ takes the same shape as σ * and followed by building a partition from σ.

For that purpose, we at first, define the MFT of u-jobs, v-jobs and d-jobs in σ as M F T u , M F T v and M F T d . Subsequent to that, define the following gaps:

∆ u = M F T u -M F T * u ∆ v = M F T v -M F T * v ∆ d = M F T d -M F T * d
In order to respect the M F T * , we understand that:

∆ d + ∆ u + ∆ v ≤ 0 (5)
In addition to this, we would like to throw emphasis on the following observations:

Observation 1. When a chain of n c jobs is rightshifted by one time slot, then its MFT will be increased by n c .

Observation 2. The sizes of different sets of jobs exhibit the following relation:

K 3 Kw a B q 5
First of all, let us consider the d-jobs. We show that d-jobs must have the same profile as in σ * , which is the following lemma: Lemma 1. In σ, the d-jobs are scheduled as soon as they are liberated (as in σ * ), i.e. ∆ d = 0.

Proof. By contradiction: assume that there is at least one delayed d-job. σ is a non-delay schedule; accordingly, this d-jobs can be delayed only by insertion of u-jobs or v-jobs.

Notice that the d-jobs can take no more than m-m 1 machines in parallel because of the precedence constraints. At any moment, there are at least m 1 = B available machines for both the v-jobs and u-jobs. Moreover, in a non-delay schedule, the makespan(C max ) is not larger than the number of jobs. As the total number of v-jobs and u-jobs is KB + qB, the last v-job or u-job finishes before KB + qB. Consequently, the delay must happen before KB + qB.

As the length of the d-chain is K 3 , at least K 3 -KB + qB jobs are right-shifted. Following the Observation 1, we have

∆ d ≥ K 3 -KB + qB Remind that M F T * u K 2 , M F T * v K 2 , so we have ∆ d M F T * u + M F T * v
In accordance with the definition, we have

∆ u > -M F T * u and ∆ v > -M F T * v , then ∆ d + ∆ v + ∆ u > ∆ d -M F T * u -M F T * v 0
This is a contradiction to (5). So, our assumption is false, there is no delay during the execution of djobs.

Since ∆ d = 0, (5) becomes

∆ u + ∆ v ≤ 0 (6)
Here we conclude that the profile of available machines in σ is the same as in σ * to schedule u-jobs and v-jobs. Now, let us deal with u-jobs.

Definition 2. We define the u-jobs in the same component a u-set and define U t as the number of u-jobs in u-sets completed at t. Lemma 2. At time t * ≤ q, the completed u-sets contain at most t * B u-jobs, i.e.

t * t=1 U t ≤ t * B.
Proof. The number of jobs finished at t * ≤ q is at most t * m which is:

t * m = t * B + t * (3q + 1) ≤ t * B + 3q 3
As we are aware of the fact, the number of u-jobs in a u-set is w a , which is integer times q 5 , so, the number of u-jobs in completed u-sets is at most t * B. Now, let us move on to the v-jobs.

Definition 3. We define V t as the number of v-jobs in the chains starting at the time t for t < q in σ, and V q as the number of v-jobs in the chains starting at or after t = q. Lemma 3. In σ, at any time t ≤ q, the total length of the v-chains beginning at t in σ is exactly KB, as in σ * , i.e. V t = KB.

Proof. At first, we prove that

q i=1 iV i ≥ KB q i=1 i.
According to the precedence constraints, we have a relation between V t and U t :

t * t=1 V t ≤ K t * t=1 U t ∀t * < q
So, from Lemma 2, we can deduce:

t * t=1 V t ≤ t * BK ∀t * < q which is: (7) V 1 ≤ KB V 1 + V 2 ≤ 2KB V 1 + V 2 + V 3 ≤ 3KB . . . . . . V 1 + V 2 + V 3 + • • • + V q-1 ≤ (q -1)KB
If we sum them up, we get:

(q -1)V 1 + (q -2)V 2 + • • • + V q-1 ≤ KB q 2 -q 2 (8)
By definition, we understand that q t=1 V t corresponds to the norm of whole set of v-jobs and it is equal to KqB:

q t=1 V t = KqB (9)
Then, by multiplying ( 9) by q, we get:

qV 1 + qV 2 + . . . qV q = KBq 2 (10) 
With ( 10)-( 8), we get

V 1 + 2V 2 + • • • + (q -1)V q-1 + qV q ≥ KB q 2 + q 2 which is exactly q i=1 iV i ≥ KB q i=1 i
It requires observation that the two terms are equal if and only if every decomposition of group ( 7) is written with an equality, which indicates that

V 1 = V 2 = • • • = V q = KB. Now, we demonstrate that q i=1 iV i = KB q i=1 i. Sup- pose by absurd that q i=1 iV i > KB q i=1
i. By definition, V i is the total length of some v-chains, which implies that V i is integer times K. So, we have:

q i=1 iV i ≥ KB q i=1 i + K (11) 
In the best case of σ, all the v-jobs in one chain are executed without any delay, so, we have:

M F T v ≥ a∈α Kwa i=1 i + q i=1 iV i (12)
Reminding the expression of M F T * v in (4), we can deduce that:

∆ v ≥ q i=1 iV i -KB q i=1 i (13) 
By ( 13) and ( 11), we have∆ v ≥ K. Then, by (6), we have ∆ u ≤ -K. This contradicts the fact that ∆ u ≥ -M F T * u -K. Finally, we can conclude that ∆ v = 0 and V t = KB, ∀t ≤ q. This suggests that, at any t, the length of vchains started is exactly KB.

The Lemma above allows us to build a partition from V i by selecting the elements corresponding to its 3 v-chains of KB jobs. Thus, we accomplished the proof for the Theorem 2.

Conclusion

In this paper, we put forward a proof of N P-completeness for P |p j = 1, in-tree| C j . Based on that, we refine the knowledge about the complexity of parallel scheduling problems subjected to precedence constraints in specific graphs.

Nevertheless, some open problems still exist requiring investigation. For example, when preemption is allowed, the complexity of the problem P |p j = 1, in-tree, pmtn| C j is unknown. We conjecture that, with the same reduction as in subsection 3.1, the Theorem 2 still holds even if preemption is allowed, and the problem shall be N Pcomplete as well.

Another possible research avenue involves exploration of how to solve the problem when m is a fixed number. The complexity of the algorithm proposed by [START_REF] Baptiste | Ten notes on equal-processingtime scheduling[END_REF] is O(n m ), but it can be certainly improved.
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