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In this paper, we establish L ∞ and L p estimates for solutions of some polyharmonic elliptic equations via the Morse index. As far as we know, it seems to be the first time that such explicit estimates are obtained for polyharmonic problems.

Introduction

Consider the following polyharmonic equations (P k ) : (-∆) k u = f (x, u) in Ω with the Dirichlet boundary conditions

u = ∂u ∂ν = . . . = ∂ k-1 u ∂ν k-1 = 0 on ∂Ω; (1.1) 
or the Navier boundary conditions u = ∆u = . . . = ∆ k-1 u = 0 on ∂Ω.

(1.2)

Here Ω ⊂ R N (N > 2k) is a bounded domain with smooth boundary and f is a C 1 (Ω × R) function that we will specify later. Let Λ u be the second variation of the functional corresponding to the above boundary value problems, that is

Λ u (φ) := Ω |D k φ| 2 dx - Ω f (x, u)φ 2 dx for any φ ∈ Σ k , (1.3) 
where f (x, u) := ∂f ∂u (x, u),

D k = ∇∆ k-1 2 
for k odd; ∆ The Morse index of a classical solution u of (P k ), denoted by i(u), is defined as the maximal dimension of all subspaces of Σ k such that Λ u (φ) < 0 in Σ \ {0}. We say that u is stable if its Morse index is equal to zero. Our aim here is to get some explicit estimates of u using its Morse index i(u).

We begin by presenting some assumptions on the nonlinearity f .

(H 1 ) (superlinearity) There exists µ > 0 such that f (x, s)s 2 ≥ (1 + µ)f (x, s)s > 0, for |s| > s 0 , x ∈ Ω.

(H 2 ) (subcritical growth) There exists θ > 0 such that 2N N -2k F (x, s) ≥ (1 + θ)f (x, s)s, for |s| > s 0 , x ∈ Ω, where F (x, s) = t 0 f (x, t)dt.

(H 3 ) There is a constant C > 0 such that

|∇ x F (x, s)| ≤ C(F (x, s) + 1), ∀ x ∈ Ω, s ∈ R.
We say that f satisfies (H i ) in R + , if we have the assumption (H i ) only for s ∈ R + .

For the second order case, i.e. k = 1, Bahri and Lions obtained in [START_REF] Bahri | Solutions of superlinear elliptic equations and their Morse indices[END_REF] the estimates of solutions in H 1 0 (Ω) for superlinear and subcritical growth f , they used the blow-up technique and the boundedness of solutions' Morse index. Motivated by [START_REF] Bahri | Solutions of superlinear elliptic equations and their Morse indices[END_REF], based on some local interior estimates and careful boundary estimates, Yang obtained in [START_REF] Yang | Nodal Sets and Morse Indices of Solutions of Super-linear Elliptic PDEs[END_REF] the first explicit estimates of L p or L ∞ norm for solutions to (E 1 ), via the Morse index. More precisely, Yang proved that Theorem A. Let f verify (H 1 )-(H 3 ), then there exist positive constants C = C(Ω, N, k, µ, θ), α and β such that any u ∈ C 2 (Ω) ∩ C(Ω), solution of (E 1 ) satisfies

Ω |f (x, u)| p0 dx ≤ C(i(u) + 1) α , u L ∞ (Ω) ≤ C(i(u) + 1)
β
where

p 0 = 1 + (1 + θ)(N -2) (1 -θ)N + 2(1 + θ) , α = 3 2 + 3 2 + µ (2 + µ) 2 3µ + µ 2 and β = 2α p 0 N (2 -p 0 ) 2 N (2 -p 0 ) - 1 p 0 -1 .
Hajlaoui, Harrabi and Mtiri revised in [START_REF] Hajlaoui | Morse indices of solutions for super-linear elliptic PDEs[END_REF] the results of [START_REF] Yang | Nodal Sets and Morse Indices of Solutions of Super-linear Elliptic PDEs[END_REF], they obtained similar L ∞ -estimate for solutions to (E 1 ). The proof in [START_REF] Hajlaoui | Morse indices of solutions for super-linear elliptic PDEs[END_REF] is more transparent, and allows them to get a slightly better estimate for large dimension N .

Theorem B. Let f verify (H 1 )-(H 3 ), there exist positive constants C = C(Ω, N, k, µ, θ), α and β such that any classical solution u of (E 1 ) satisfies

Ω |∇u| 2 dx ≤ C(i(u) + 1) α , u L ∞ ≤ C(i(u) + 1) β ,
where

α = 4 µ + 3 and β = 3µ + 4 3µθ × 3N 2 (1 -θ) + N (7θ -4) -2θ + 12 N (N -2) 2 .
In this paper, we try to handle the polyharmonic equations. Consider

(E k )    (-∆) k u = f (x, u) in Ω; u satisfies (1.1), if k is odd; u satisfies (1.2),
if k is even.

To simplify the presentation, we will concentrate on the cases k = 2 and k = 3, even we believe that similar results should hold true for more general k ∈ N. We establish some L p and L ∞ estimates in polynomial growth function of the Morse index for classical solutions of (E 2 ) and (E 3 ), provided suitable conditions on f .

It is worthy to mention that for subcritical nonlinearity f , using the blow-up analysis, Soranzo, Reichel and Weth established a priori bounds for solutions of the polyharmonic equation (P k ), under the Dirichlet or Navier conditions, see [START_REF] Soranzo | A priori estimates and existence of positive solutions of a superlinear polyharmonic equation[END_REF][START_REF] Recheil | A priori bounds and a Liouville theorem on a half-space for higher-order elliptic Dirichlet problems[END_REF]. Their approach can be used to more general elliptic equations and systems, see [START_REF] Sirakov | Existence results and a priori bounds for higher order elliptic equations and systems[END_REF][START_REF] Recheil | A priori bounds and a Liouville theorem on a half-space for higher-order elliptic Dirichlet problems[END_REF] and the references there in. However, as far as we know, it seems to be the first time that the explicit estimates via Morse index are obtained for polyharmonic problems. Moreover, contrary to [START_REF] Sirakov | Existence results and a priori bounds for higher order elliptic equations and systems[END_REF][START_REF] Recheil | A priori bounds and a Liouville theorem on a half-space for higher-order elliptic Dirichlet problems[END_REF][START_REF] Soranzo | A priori estimates and existence of positive solutions of a superlinear polyharmonic equation[END_REF], we do not require the precise growth assumption f (x, s) ∼ |s| q-1 s when |s| → ∞.

The key step here is to derive the following explicit dependence on i(u).

Theorem 1.1. For k = 2 and 3 respectively, there exists a positive constant

C(Ω, N, k, µ, θ) such that if u is a classical solution of (E 2 ) with f ≥ 0 satisfying (H 1 )-(H 3 ) in R + ; or if u is a classical solution of (E 3 ) with f satisfying (H 1 )-(H 3 ), then Ω |D k u| 2 dx + Ω |f (x, u)| p k dx ≤ C(i(u) + 1) α k (1.4)
where

p k = 2N N (1 -θ) + 2k(1 + θ)
and α k = 4k(µ + 1) µ with k = 2 or 3 respectively.

As in [START_REF] Hajlaoui | Morse indices of solutions for super-linear elliptic PDEs[END_REF], we shall employ cut-off functions to derive a variant of the Pohozaev identity. This device allows us to avoid many boundary integrals appearing in the classical Pohozaev identities, which are very difficult to estimate. However, even with our setting, we are not able to control always the boundary integrals, that's the reason why we work with the Navier boundary conditions for the biharmonic case, while the Dirichlet boundary conditions are chosen for the trilaplacian situation. Another difficulty for us is the local integral estimates of D k u and f (x, u)u, which are more involved here than for the second order case. For example, we have to handle many terms in product of different order derivatives of u.

Once (1.4) is obtained, by setting up a standard boot-strap iteration, as f has subcritical growth, we can proceed similarly as the proof of Theorem 2.2 in [START_REF] Yang | Nodal Sets and Morse Indices of Solutions of Super-linear Elliptic PDEs[END_REF] to claim that Theorem 1.2. There exists a positive constant C(Ω, N, k, µ, θ)

(for k = 2 or 3 respectively) such that if u is a classical solution of (E 2 ) with f ≥ 0 satisfying (H 1 )-(H 3 ) in R + ; or if u is a classical solution of (E 3 ) with f satisfying (H 1 )-(H 3 ), then u L ∞ (Ω) ≤ C(i(u) + 1) β k , where β k = 2kα k p k N (2 -p k ) 2k N (2 -p k ) - 1 p k -1
, α k and p k are defined in Theorem 1.1.

Using the assumptions (H 1 ) and (H 2 ) in R (resp. in R + ), there exist two positive constants C 1 and C 2 such that for |s| large enough (resp. for s large enough), x ∈ Ω, there hold

(N -2k)(1 + θ) 2N f (x, s)s -C 1 ≤ F (x, s) ≤ 1 2 + µ f (x, s)s + C 1 , (1.5) 
f (x, s)s ≥ C 1 (|s| 2+µ -1), (1.6) 
and

|f (x, s)| ≤ C 2 |s| N (1-θ)+2k(1+θ) (N -2k)(1+θ) + 1 . (1.7)
This paper is organized as follows : We give the proof of Theorem 1.1 for k = 2 and k = 3 respectively in sections 2 and 3. In the following, C denotes always a generic positive constant independent of the solution u, even their value could be changed from one line to another one.

Proof for k = 2

Here we will prove Theorem 1.1 for k = 2.

Preliminaries

Let y ∈ R N and R > 0. Throughout this paper, we denote by B R (y) the open ball of center y and radius R and ∂Ω R (y) := ∂Ω ∩ B R (y). For x ∈ B R (y) ∩ Ω, let n := x -y. We denote also

u ji•••j k := ∂ k u ∂x j1 ∂x j2 • • • ∂x j k .
First of all, we have the following Pohozaev identity.

Lemma 2.1. Let u be a classical solution to

(E 2 ). Let ψ ∈ C 2 c (B R (y)). Then N Ω F (x, u)ψdx + Ω ∇ x F (x, u) • nψdx - N -4 2 Ω (∆u) 2 ψdx = -2 Ω ∆u∇ 2 u(∇ψ, n)dx + 1 2 Ω (∇ψ • n)(∆u) 2 dx -2 Ω (∇u • ∇ψ)∆udx - Ω (∇u • n)∆u∆ψdx - Ω F (x, u)∇ψ • ndx - ∂Ω R (y) ∂∆u ∂ν (∇u • n)ψdσ.
The proof is classical by multiplying the equation by (n • ∇u)ψ and integration by parts, so we omit it.

To establish global estimates, we will cover the domain Ω by small balls and obtain local estimates. To be more precise, let

Ω 1,R := x ∈ Ω : dist(x, ∂Ω) > R and Ω 2,R := x ∈ Ω : dist(x, ∂Ω) ≤ R for R > 0.
The main difficulty is the estimates near the boundary, that is, in Ω 2,R . To cover Ω 2,R , we need to choose carefully the balls as in [START_REF] Yang | Nodal Sets and Morse Indices of Solutions of Super-linear Elliptic PDEs[END_REF]. Indeed, we will take balls with center lying in

Γ(R) := x ∈ R N \Ω : dist(x, ∂Ω) = R 20 . (2.1)
The following lemma is devoted to the control of the boundary term in the above Pohozaev identity, for y ∈ Γ(R) with small R.

Lemma 2.2. There exists

R 1 > 0 depending on Ω such that if f (x, u) ≥ 0 and u is a classical solution of (E 2 ), then for any 0 < R ≤ R 1 and y ∈ Γ(R), there holds ∂Ω R (y) ∂∆u ∂ν (∇u • n)ψdσ ≥ 0, for any nonnegative function ψ ∈ C 2 c (B R (y)).
Proof. As in the proof of Lemma 2.2 of [START_REF] Yang | Nodal Sets and Morse Indices of Solutions of Super-linear Elliptic PDEs[END_REF], there exists

R 1 > 0 such that if 0 < R ≤ R 1 and y ∈ Γ(R) then ν • n ≤ 0 for any x ∈ ∂Ω R (y).
As f (x, u) ≥ 0, the maximum principle implies that -∆u ≥ 0 in Ω as ∆u = 0 on ∂Ω, hence u ≥ 0. Therefore ∂∆u ∂ν ≥ 0 on ∂Ω and ∇u • n = (n • ν) ∂u ∂ν ≥ 0 on ∂Ω, so we obtain the claim. Consequently, we get Proposition 2.1. Assume that f ≥ 0 satisfies (H 1 )-(H 3 ) in R + , then there exist R 0 > 0 and C > 0 such that for any u a classical solution of (E 2 ), any

0 < R ≤ R 0 , y ∈ Γ(R) ∪ Ω 1,R and ψ ∈ C 3 c (B R (y)) verifying 0 ≤ ψ ≤ 1, there holds Ω f (x, u)uψdx + Ω (∆u) 2 ψdx ≤ CR ∇ψ ∞ A R,ψ (y) f (x, u)udx + CR 2 A R,ψ (y) |∇ 2 (u∇ψ)| 2 dx + C 1 + R ∇ψ ∞ ∆u 2 L 2 (A R,ψ (y)) + C R 2 ∇(∆ψ) 2 ∞ + ∆ψ 2 ∞ u 2 L 2 (A R,ψ (y)) + C ∇ψ 2 ∞ + R 2 ∇ 2 ψ 2 ∞ ∇u 2 L 2 (A R,ψ (y)) + C(1 + ∇ψ ∞ )R N +1 (2.2) where A R,ψ (y) = B R (y) ∩ Ω ∩ {∇ψ = 0}. Proof. Let y ∈ Γ(R) with R < R 1 and ψ ∈ C 3 c (B R (y)). Using Lemmas 2.1-2.2, (H 1 )-(H 3 ) and (1.5),
we obtain

(1 + θ) Ω f (x, u)uψdx - Ω (∆u) 2 ψdx ≤ C A R,ψ (y) |∆u||∇ 2 u(∇ψ, n)|dx + C A R,ψ (y) (∆u) 2 |∇ψ • n|dx + C A R,ψ (y) |∆u||∇u • ∇ψ|dx + C A R,ψ (y) |∆u||∇u • n||∆ψ|dx + C A R,ψ (y) f (x, u)u|∇ψ • n|dx + CR B R (y)∩Ω f (x, u)uψdx + C(1 + ∇ψ ∞ )R N +1 .
(2.3)

A direct calculation gives

∇ 2 u(∇ψ, n) = ij n j ∂ 2 ij u∂ i ψ = ij ∂ 2 ij (u∂ i ψ)n j -u∇(∆ψ) • n -∆ψ(∇u • n) -∇ 2 ψ(∇u, n).
By the Cauchy-Schwarz inequality, there exists C > 0 such that

A R,ψ (y) |∆u||∇ 2 u(∇ψ, n)|dx ≤ C A R,ψ (y) |∆u| 2 dx + CR 2 A R,ψ (y) u 2 |∇(∆ψ)| 2 dx + CR 2 A R,ψ (y) |∇ 2 (u∇ψ)| 2 dx + CR 2 A R,ψ (y) |∇u| 2 ∇ 2 ψ 2 ∞ dx.
(2.4)

On the other hand, recall that u = ∆u = 0 on ∂Ω and ψ ∈ C 3 c (B R (y)). Multiplying the equation (E 2 ) by uψ and integrating by parts, we get

Ω (∆u) 2 ψdx - Ω f (x, u)uψdx ≤ C A R,ψ (y) |∆u| |∇u • ∇ψ| + |u||∆ψ| dx ≤ C A R,ψ (y) (∆u) 2 + |∇u| 2 |∇ψ| 2 + (∆ψ) 2 u 2 dx. (2.5) Remark that Ω (∆u) 2 ψdx + Ω f (x, u)uψdx = 2 θ (1 + θ) Ω f (x, u)uψdx - Ω (∆u) 2 ψdx + 2 + θ θ Ω (∆u) 2 ψdx - Ω f (x, u)uψdx . Fix R 0 ∈ (0, R 1 ) such that CR 0 < θ 4 . Combining (2.
3)-(2.5), applying again Cauchy-Schwarz's inequality, there holds clearly (2.2). The proof for y ∈ Ω 1,R is completely similar, so we omit it.

Remark 2.1. The crucial point in (2.2) is that the integral over supp(ψ) ∩ Ω is controlled only by the integrals over the annuli type domain A R,ψ (y).

Let R > 0, y ∈ Ω 1,R ∪ Γ(R), 0 < a < b. Denote A := A b a = {x ∈ R N : a < |x -y| < b}. ( * )
We will use also the following classical estimates.

Lemma 2.3. There exists a constant C > 0 depending only on N such that for any u ∈ H 2 (Ω) ∩ H 1 0 (Ω) and 0 < ρ < min(1, b-a 4 ), we have

∇u 2 L 2 (A ρ ∩Ω) ≤ C 1 ρ 2 u 2 L 2 (A∩Ω) + ∆u 2 L 2 (A∩Ω)
, where A ρ := A b-ρ a+ρ .

Estimation via Morse index

Let u be a solution to (E 2 ) with f ≥ 0 and finite Morse index i(u). For y ∈ Γ(R) ∪ Ω 1,R , denote

A j =: A bj aj with a j = 2(j + i(u)) 4(i(u) + 1) R, b j = 2(j + i(u)) + 1 4(i(u) + 1) R, 1 ≤ j ≤ i(u) + 1. (2.6) Fix a cut-off function Φ ∈ C ∞ (R) such that Φ = 1 in [0, 1] and supp(Φ) ⊂ (-1 2 , 3 2 ). Let φ j (x) := Φ 4(i(u) + 1)|x -y| R -2j -2i(u) .
Hence for any 1

≤ j ≤ i(u) + 1, φ j ∈ C ∞ c (B R (y)), φ j (x) = 1 in A j , ∇φ j ∞ ≤ C R (1 + i(u)) and ∆φ j ∞ ≤ C R 2 (1 + i(u)) 2 .
(2.7)

We claim the following result.

Lemma 2.4. Let f satisfy (H 1 ) and let u be a smooth solution to

(E 2 ) with Morse index i(u) < ∞. Then for any 0 < R ≤ R 0 , y ∈ Γ(R) ∪ Ω 1,R , there exists j 0 ∈ {1, 2, ..., 1 + i(u)} satisfying Aj 0 ∩Ω (∆u) 2 dx + Aj 0 ∩Ω f (x, u)udx ≤ C 1 + i(u) R 4µ+8 µ . (2.8) Proof. First, for ∈ (0, 1) and η ∈ C 2 (R N ), Ω [∆(uη)] 2 dx = Ω (u∆η + 2∇u∇η + η∆u) 2 dx ≤ 1 + 2 Ω (∆u) 2 η 2 dx + C 0 Ω u 2 (∆η) 2 dx + C 0 Ω |∇u| 2 |∇η| 2 dx. Using ∆(u 2 ) = 2|∇u| 2 + 2u∆u, Ω |∇u| 2 |∇η| 2 dx = 1 2 Ω u 2 ∆(|∇η| 2 )dx - Ω u∆u|∇η| 2 dx. (2.9) Take η = ζ m with m ≥ 2, ζ ∈ C 2 (R N ) and 0 ≤ ζ ≤ 1.
Apply Cauchy-Schwarz's inequality, we get

Ω |u||∆u||∇ζ m | 2 dx = m 2 Ω |u||∆u||∇ζ| 2 ζ 2m-2 dx ≤ 2 2C 0 Ω (∆u) 2 ζ 2m dx + C ,m Ω u 2 |∇ζ| 4 ζ 2m-4 dx.
(2.10)

There exists then C ,m > 0 depending only on and m such that

Ω [∆(uζ m )] 2 dx ≤ ( + 1) Ω (∆u) 2 ζ 2m dx + C ,m Ω u 2 |∇ζ| 4 + |∆(|∇ζ| 2 )| + |∇ 2 ζ| 2 ζ 2m-4 dx. (2.11)
Consider now the family of functions {uφ m j } 1≤j≤i(u)+1 . With the definition of φ j , it's easy to see that for different j, φ j are supported by disjoint sets, so they are linearly independent as u > 0 in Ω. Therefore, there is j 0 ∈ {1, 2, ..., 1 + i(u)} such that Λ u (uφ m j0 ) ≥ 0 where Λ u is the quadratic form given by (1.3). Combining with (2.7) and (2.11), we obtain

Ω f (x, u)u 2 φ 2m j0 dx -(1 + ) Ω (∆u) 2 φ 2m j0 dx ≤ C R 4 (1 + i(u)) 4 Ω u 2 φ 2m-4 j0 dx.
(2.12)

On the other hand, multiply the equation (E 2 ) by uη 2 , η ∈ C 2 (R N ) and integrate by parts, using again (2.9)

Ω (∆u) 2 η 2 -f (x, u)uη 2 dx = -4 Ω η∆u∇u • ∇ηdx -2 Ω ηu∆u∆ηdx -2 Ω u∆u|∇η| 2 dx ≤ Ω (∆u) 2 η 2 dx + C Ω u 2 (∆η) 2 dx + C Ω |∇u| 2 |∇η| 2 dx -2 Ω u∆u|∇η| 2 dx ≤ Ω (∆u) 2 η 2 dx + C Ω u 2 (∆η) 2 + |∆(|∇η| 2 ) dx + C Ω |u∆u||∇η| 2 dx.
Take now η = φ m j0 with m > 2, there holds as for (2.10),

Ω |u∆u||∇η| 2 dx ≤ Ω (∆u) 2 φ 2m j0 dx + C Ω u 2 φ 2(m-2) j0 |∇φ j0 | 4 dx.
By (2.7), we deduce then

(1 -2 ) Ω (∆u) 2 φ 2m j0 dx - Ω f (x, u)uφ 2m j0 dx ≤ C R 4 (1 + i(u)) 4 Ω u 2 φ 2m-4 j0
dx.

(2.13)

For any < 1 2 , multiplying (2.13) by 1+2 1-2 , using (2.12) and (H 1 ), we get

Ω (∆u) 2 φ 2m j0 dx + µ - 4 1 -2 Ω f (x, u)uφ 2m j0 dx ≤ C R 4 (1 + i(u)) 4 Ω u 2 φ 2m-4 j0 dx + C . Fix finally 0 < < min( 1 2 , µ 4+2µ 
), there holds

Ω (∆u) 2 φ 2m j0 dx + Ω f (x, u)uφ 2m j0 dx ≤ C R 4 (1 + i(u)) 4 Ω u 2 φ 2m-4 j0 dx + C. Let m = 2 + 4 µ so that 2m = (m -2)(µ + 2).
Using (1.6), R ≤ R 0 , we can claim that for any > 0,

Ω (∆u) 2 φ 2m j0 dx + Ω uf (x, u)φ 2m j0 dx ≤ C 1 + i(u) R 4µ+8 µ + Ω |u| µ+2 φ (m-2)(µ+2) j0 dx + C ≤ C 1 + i(u) R 4µ+8 µ + Ω f (x, u)uφ (m-2)(µ+2) j0 dx = C 1 + i(u) R 4µ+8 µ + C Ω f (x, u)uφ 2m j0 dx.
Take > 0 small enough, the estimate (2.8) is proved.

Proof of Theorem 1.1 completed

Now, we are in position to prove Theorem 1.

1 for k = 2. Let R = R 0 , ρ := R 10(i(u) + 1) , A ρ j0 := A bj 0 -ρ aj 0 +ρ ⊂ A j0 .
According to Lemmas 2.3-2.4 and (1.6), there exists a positive constant

C independent of y ∈ Γ(R)∪Ω 1,R such that ∆u 2 L 2 (A ρ j 0 ∩Ω) + ∇u 2 L 2 (A ρ j 0 ∩Ω) ≤ C(1 + i(u)) 4µ+8 µ . (2.14)
Here, a j0 and b j0 are defined in (2.6) with j 0 given by Lemma 2.4.

Consider a cut-off function

ξ j0 ∈ C 4 c (B bj 0 -ρ (y)) satisfying ξ j0 (x) ≡ 1 in B aj 0 +ρ (y), with ∇ξ j0 ∞ ≤ C R (1 + i(u)), ∆ξ j0 ∞ ≤ C R 2 (1 + i(u)) 2 .
(2.15)

Applying Proposition 2.1 with ψ = ξ j0 , we obtain, as A R,ψ (y

) ⊂ A ρ j0 ∩ Ω, Ω f (x, u)uξ j0 dx + Ω (∆u) 2 ξ j0 dx ≤ C(1 + i(u)) A ρ j 0 ∩Ω (∆u) 2 + f (x, u)u dx + C A ρ j 0 ∩Ω |∇ 2 (u∇ξ j0 )| 2 dx + C(1 + i(u)) 6 u 2 L 2 (A ρ j 0 ∩Ω) + C(1 + i(u)) 4 ∇u 2 L 2 (A ρ j 0 ∩Ω) + C(1 + i(u))R N .
(2.16)

Since u∇ξ j0 = 0 on ∂Ω, by standard elliptic theory, there exists C Ω > 0 depending only on Ω such that

Ω |∇ 2 (u∇ξ j0 )| 2 dx ≤ C Ω Ω |∆(u∇ξ j0 )| 2 dx = C Ω A ρ j 0 ∩Ω |∆(u∇ξ j0 )| 2 dx ≤ C A ρ j 0 ∩Ω u 2 |∇(∆ξ j0 )| 2 + |∇u| 2 |∇ 2 ξ j0 | 2 + (∆u) 2 |∇ξ j0 | 2 dx.
(2.17) From (2.16)-(2.17), we get the following estimates

Ω f (x, u)uξ j0 dx + Ω (∆u) 2 ξ j0 dx ≤ C(1 + i(u)) A ρ j 0 ∩Ω (∆u) 2 + f (x, u)u dx + C(1 + i(u)) 2 ∆u 2 L 2 (A ρ j 0 ∩Ω) + C(1 + i(u)) 6 u 2 L 2 (A ρ j 0 ∩Ω) + C(1 + i(u)) 4 ∇u 2 L 2 (A ρ j 0 ∩Ω) + C(1 + i(u))R N .
(2.18) Moreover, using (1.6) and Lemma 2.4, there holds

u 2 L 2 (Aj 0 ∩Ω) ≤ C Aj 0 ∩Ω f (x, u)udx 2 2+µ + C ≤ C(1 + i(u)) 8 µ .
( 

Ω f (x, u)uξ j0 dx + Ω (∆u) 2 ξ j0 dx ≤ C(1 + i(u)) 8µ+8 µ .
As R 2 < a j0 , we conclude then for any

y ∈ Γ(R) ∪ Ω 1,R , B R 2 (y)∩Ω |∆u| 2 + f (x, u)u dx ≤ C(1 + i(u)) 8µ+8 µ
.

Making use of a covering argument and (1.7), we get finally

Ω |∆u| 2 dx + Ω f (x, u) p2 dx ≤ Ω |∆u| 2 dx + C Ω f (u)udx + C ≤ C(1 + i(u)) α2 .
where

p 2 = 2N N (1-θ)+4(1+θ) and α 2 = 8(µ+1)
µ . So we are done.

Proof of Theorem 1.1 for k = 3

In this section, we consider the equation (E 3 ). We will proceed as for (E 2 ) and keep often the same notations, but we replace the Navier boundary conditions by the Dirichlet boundary conditions and we have no more the sign condition for f .

Preliminaries

We make some preparations here. For ψ ∈ C k (k ∈ N * ), to simplify the notation, we define 

∇ αi ψ ∞ , ∀ k ≥ 1.
Obviously, for any

ψ ∈ C k , we have [ψ] k ∞ ≤ C m |ψ| k,∞ .
Lemma 3.1. Given 0 < < 1, there exists C > 0 such that for any u ∈ H 3 0 (Ω) and ζ ∈ C 6 (Ω), we have

Ω |∇ 2 u| 2 |∇ζ| 2 + |∇u| 2 |∇ 2 ζ| 2 dx ≤ Ω |∇(∆u)| 2 ζ 2 dx + C Ω u 2 [ζ] 6 dx. (3.1)
Proof. Integrations by parts yield (recall that u ∈ H 3 0 (Ω))

Ω (∆u) 2 |∇ζ| 2 dx = - Ω ∇u∇(∆u)|∇ζ| 2 dx -2 Ω ∆u∇ 2 ζ(∇ζ, ∇u)dx = - Ω ∇u∇(∆u)|∇ζ| 2 dx + 2 Ω u∇ 2 ζ(∇ζ, ∇(∆u))dx + 2 Ω u∆u|∇ 2 ζ| 2 dx + 2 Ω u∆u∇ζ • ∇(∆ζ)dx = - Ω ∇u∇(∆u)|∇ζ| 2 dx + 2 Ω u∇ 2 ζ(∇ζ, ∇(∆u))dx + Ω ∆(u 2 ) -2|∇u| 2 |∇ 2 ζ| 2 dx + 2 Ω u∆u∇ζ • ∇(∆ζ)dx.
Hence for any > 0

Ω (∆u) 2 |∇ζ| 2 + 2|∇u| 2 |∇ 2 ζ| 2 dx = - Ω ∇u∇(∆u)|∇ζ| 2 dx + 2 Ω u∇ 2 ζ(∇ζ, ∇(∆u))dx + Ω u 2 ∆(|∇ 2 ζ| 2 )dx + 2 Ω u∆u∇ζ • ∇(∆ζ)dx ≤ Ω |∇(∆u)| 2 ζ 2 dx + Ω |∆u| 2 |∇ζ| 2 dx + C Ω |∇u| 2 |∇ζ| 4 dx + C Ω u 2 [ζ] 6 dx.
We have then

Ω (∆u) 2 |∇ζ| 2 dx + Ω |∇u| 2 |∇ 2 ζ| 2 dx ≤ Ω |∇(∆u)| 2 ζ 2 dx + C Ω |∇u| 2 |∇ζ| 4 dx + C Ω u 2 [ζ] 6 dx.
Using the equality ∆(u 2 ) = 2u∆u + 2|∇u| 2 , there holds, for any > 0,

Ω |∇u| 2 |∇ζ| 4 dx ≤ 1 2 Ω u 2 ∆ |∇ζ| 4 dx + Ω |u∆u||∇ζ| 4 dx ≤ Ω (∆u) 2 |∇ζ| 2 dx + C Ω u 2 [ζ] 6 dx. (3.2)
Take another small enough in (3.2), we arrive at

(1 -) Ω (∆u) 2 |∇ζ| 2 dx + Ω |∇u| 2 |∇ 2 ζ| 2 dx ≤ Ω |∇(∆u)| 2 ζ 2 dx + C Ω u 2 [ζ] 6 dx. (3.3) Furthermore, As ∆|∇u| 2 = 2|∇ 2 u| 2 + 2∇u • ∇(∆u), we get Ω |∇ 2 u| 2 |∇ζ| 2 dx ≤ 1 2 Ω |∇u| 2 ∆(|∇ζ| 2 )dx + Ω |∇u • ∇(∆u)||∇ζ| 2 dx = Ω |∇u| 2 ∇ζ∇(∆ζ) + |∇ 2 ζ| 2 dx + Ω |∇u • ∇(∆u)||∇ζ| 2 dx ≤ Ω |∇(∆u)| 2 ζ 2 dx + Ω |∇u| 2 |∇ 2 ζ| 2 dx + Ω |∇u| 2 C |∇ζ| 4 + ∇ζ∇(∆ζ) dx. (3.4) Rewrite C |∇ζ| 4 + ∇ζ∇(∆ζ) =: ∇ζ • Ψ, with a smooth function Ψ. Hence Ω |∇u| 2 ∇ζ • Ψdx = 1 2 Ω u 2 ∆(∇ζ • Ψ)dx + Ω u∆u(∇ζ • Ψ)dx ≤ C Ω u 2 |∆(∇ζ • Ψ)| + |Ψ| 2 dx + Ω (∆u) 2 |∇ζ| 2 dx ≤ C Ω u 2 [ζ] 6 dx + C Ω |∇ 2 u| 2 |∇ζ| 2 dx. (3.5) Combining (3.3)-(3.5), we deduce that Ω |∇ 2 u| 2 |∇ζ| 2 dx ≤ Ω |∇(∆u)| 2 ζ 2 dx + C Ω u 2 [ζ] 6 dx.
The proof is completed.

Let R > 0, y ∈ Ω 1,R ∪ Γ(R), 0 < a < b. Denote as above A := A b a and A ρ := A b-ρ a+ρ , we have the following estimate similar to Lemma 2.3. Lemma 3.2. There exists a constant C > 0 depending only on N such that for any u ∈ H 3 0 (Ω) and 0 < ρ < min(1, b-a 4 ), there holds

∇u 2 L 2 (A ρ ∩Ω) ≤ C 1 ρ 4 u 2 L 2 (A∩Ω) + ∇(∆u) 2 L 2 (A∩Ω) .

Explicit estimate via Morse index

Lemma 3.3. Let f satisfies (H 1 ) and u be a solution to (E 3 ) with finite Morse index i(u). Then for any

y ∈ Γ(R) ∪ Ω 1,R with R ∈ (0, 1], there exists j 0 ∈ {1, 2, ..., 1 + i(u)} such that Aj 0 ∩Ω |∇(∆u)| 2 dx + Aj 0 ∩Ω f (x, u)udx ≤ C 1 + i(u) R 6µ+12 µ .
Here A j0 is defined by (2.6).

Proof. Take η ∈ C 6 (Ω). Direct calculations yield, as u ∈ H 3 0 (Ω),

Ω [∇(∆(uη))] 2 dx = Ω ∇(∆u)η + ∆u∇η + 2∇ 2 u∇η + ∇u∆η + 2∇u∇ 2 η + u∇(∆η) 2 ≤ (1 + ) Ω |∇(∆u)| 2 η 2 dx + C Ω |∇ 2 u| 2 |∇η| 2 + |∇u| 2 |∇ 2 η| 2 + u 2 |∇(∆η)| 2 dx. Using Lemma 3.1 with η = ζ m , m = 3 + 6 µ > 3 and 0 ≤ ζ ≤ 1, we derive that Ω |∇(∆(uζ m ))| 2 dx ≤ (1 + ) Ω |∇(∆u)| 2 ζ 2m dx + C Ω u 2 [ζ] 6 ζ 2m-6 dx.
Let φ j be defined as in section 2, just under (2.6). Since {uφ m j } 1≤j≤i(u)+1 are either linearly independent or have a zero term, there exists j 0 ∈ {1, 2, ..., 1 + i(u)} such that Λ u (uφ m j0 ) ≥ 0. The above estimate with ζ = φ j0 implies then

Ω f (x, u)u 2 φ 2m j0 dx -(1 + ) Ω |∇(∆u)| 2 φ 2m j0 dx ≤ C R 6 (1 + i(u)) 6 Ω u 2 φ 2m-6 j0 dx. (3.6) 
Now, take uφ 2m j0 as the test function for (E 3 ), the integration by parts yields that

Ω |∇(∆u)| 2 φ 2m j0 dx - Ω f (x, u)uφ 2m j0 dx = Ω ∇(∆u) • ∇ ∆(uφ 2m j0 ) -∇(∆u)φ 2m j0 dx.
Developing the right hand side, applying again Lemma 3.1, we conclude then: For any > 0, there exists

C such that (1 -) Ω |∇(∆u)| 2 φ 2m j0 dx - Ω f (x, u)uφ 2m j0 dx ≤ C R 6 (1 + i(u)) 6 Ω u 2 φ 2m-6 j0 dx. (3.7) 
Multiplying (3.7) by 1+2 1-and adding it with (3.6), by (H 1 ), there holds

Ω |∇(∆u)| 2 φ 2m j0 dx + µ - 3 1 - Ω f (x, u)uφ 2m j0 dx ≤ C R 6 (1 + i(u)) 6 Ω u 2 φ 2m-6 j0 dx + C. Fix 0 < < µ 3+µ , we get Ω |∇(∆u)| 2 φ 2m j0 dx + Ω f (x, u)uφ 2m j0 dx ≤ C R 6 (1 + i(u)) 6 Ω u 2 φ 2m-6 j0 dx + C.
By Young's inequality, for any > 0, there holds,

Ω |∇(∆u)| 2 φ 2m j0 dx + Ω f (x, u)uφ 2m j0 dx ≤ C 1 + i(u) R 6µ+12 µ + Ω |u| µ+2 φ (m-3)(µ+2) j0 dx ≤ C 1 + i(u) R 6µ+12 µ + C Ω f (x, u)uφ 2m j0 dx.
We used (1.6) and (m -3)(2 + µ) = 2m for the last line. Take small enough, the claim follows.

3.3. Proof of Theorem 1.1 for k = 3 Firstly, we show a Pohozaev identity associated to (E 3 ), for which we will give a proof in Appendix for the convenience of the readers.

Lemma 3.4. Let u be solution to (E 3 ). Let ψ ∈ C 4 c (B R (y)). Then N Ω F (x, u)ψdx + Ω ∇ x F (x, u) • nψdx - N -6 2 Ω |∇(∆u)| 2 ψdx = 1 2 Ω |∇(∆u)| 2 (∇ψ • n)dx - Ω F (x, u)∇ψ • ndx - Ω (∇(∆ψ) • ∇(∆u)(n • ∇u)dx - Ω ∆ψ∇(∆u)∇(n • ∇u)dx -2 Ω ∇(∆u)∇ ∇ 2 u(n, ∇ψ) + ∇u∇ψ dx - Ω (∇ψ • ∇(∆u))(n • ∇(∆u))dx + Ω (∆u) 2 ∆ψdx + ∂Ω R (y) ∂∆u ∂ν (∇(∆u) • n) ψdσ - 1 2 ∂Ω R (y) |∇(∆u)| 2 (ν • n)ψdσ.
For the boundary terms, we have Lemma 3.5. There exists R 1 > 0 depending only on Ω such that for any u smooth function in H 3 0 (Ω), any 0 < R < R 1 , y ∈ Γ(R) ∪ Ω 1,R and any nonnegative function ψ, there holds

∂Ω R (y) ∂∆u ∂ν (∇(∆u) • n)ψdσ - 1 2 ∂Ω R (y) |∇(∆u)| 2 (ν • n)ψdσ ≤ 0.
Proof. Take R 1 > 0 such that ν • n ≤ 0 on ∂Ω R (y) for any 0 < R ≤ R 1 and y ∈ Γ(R). As u ∈ H 3 0 (Ω), we know that ∇(∆u) is parallel to ν on ∂Ω, in other words ∇(∆u)(x) = λ(x)ν(x) on ∂Ω. Therefore

∂∆u ∂ν (∇(∆u) • n) - 1 2 (ν • n)|∇(∆u)| 2 = λ 2 2 (ν • n) ≤ 0, ∀ x ∈ ∂Ω R (y).
So we are done.

Similar to Proposition 2.1, we can claim Proposition 3.1. There exist R 0 > 0 and C > 0 who satisfy the following property: Let u be a classical solution of (E 3 ) with f satisfying

(H 1 )-(H 3 ), let 0 < R ≤ R 0 , y ∈ Γ(R) ∪ Ω 1,R , and ψ ∈ C 6 c (B R (y)), 0 ≤ ψ ≤ 1, then Ω f (x, u)uψdx + Ω |∇(∆u)| 2 ψdx ≤ CR ∇ψ ∞ A R,ψ (y) f (x, u)udx + C 1 + R ∇ψ ∞ + R 2 |ψ| 2,∞ ∇(∆u) 2 L 2 (A R,ψ (y)) + C |ψ| 4,∞ + R 2 |ψ| 6,∞ ∇u 2 L 2 (A R,ψ (y)) + C|ψ| 6,∞ u 2 L 2 (A R,ψ (y)) + C(1 + ∇ψ ∞ )R N +1 . (3.8)
Here C is a positive constant depending on Ω, N, k, µ, θ; A R,ψ (y) = B R (y) ∩ Ω ∩ {∇ψ = 0}.

Proof. Using Lemmas 3.4-3.5, (H 1 )-(H 3 ) and (1.5), we obtain that for any > 0, there exists C > 0 such that for any R ∈ (0, R 1 ), y ∈ Γ(R) ∪ Ω 1,R , and ψ ∈ C 6 c (B R (y)), there holds

(1 + θ) Ω f (x, u)uψdx - Ω |∇(∆u)| 2 ψdx ≤ CR ∇ψ ∞ A R,ψ (y) |∇(∆u)| 2 dx + CR Ω f (x, u)uψdx + CR ∇ψ ∞ A R,ψ (y) 
f (x, u)udx

+ C A R,ψ (y) ∇(∆u)∇ ∇ 2 u(n, ∇ψ) + ∇u∇ψ dx + C Ω ∆ψ∇(∆u)∇(n • ∇u) dx + C Ω ∇(∆ψ) • ∇(∆u)(n • ∇u) dx + Ω (∆u) 2 ∆ψdx + C( ψ ∞ + ∇ψ ∞ )R N +1 .
(3.9)

We need also the following lemma, which proof is given later.

Lemma 3.6. For any > 0, there exists C > 0 such that for any ψ and R in Proposition 3.1 and y ∈ Ω, there holds

A R,ψ (y) ∇(∆u)∇ ∇ 2 u(n, ∇ψ) + ∇u∇ψ dx + A R,ψ (y) ∆ψ∇(∆u)∇(n • ∇u) dx + A R,ψ (y) ∇(∆ψ) • ∇(∆u)(n • ∇u) dx + Ω (∆u) 2 ∆ψdx ≤ C 1 + R 2 |ψ| 2,∞ ∇(∆u) 2 L 2 (A R,ψ (y)) + C |ψ| 4,∞ + R 2 |ψ| 6,∞ ∇u 2 L 2 (A R,ψ (y)) + C |ψ| 6,∞ u 2 L 2 (A R,ψ (y)) .
Using Lemma 3.6 and (3.9), there holds

(1 + θ) Ω f (x, u)uψdx - Ω |∇(∆u)| 2 ψdx ≤ CR Ω f (x, u)uψdx + CR ∇ψ ∞ A R,ψ (y) f (x, u)udx + C|ψ| 6,∞ u 2 L 2 (A R,ψ (y)) + C 1 + R ∇ψ ∞ + R 2 |ψ| 2,∞ ∇(∆u) 2 L 2 (A R,ψ (y)) + C(1 + ∇ψ ∞ )R N +1 + C |ψ| 4,∞ + R 2 |ψ| 6,∞ ∇u 2 L 2 (A R,ψ (y)) .
(3.10)

On the other hand, take uψ as a test function for (E 3 ), we see that 

Ω |∇(∆u)| 2 ψdx - Ω f (x, u)uψdx = Ω ∇(∆u) • ∇(∆u)ψ -∇(∆(uψ) dx ≤ C ∇(∆u) 2 L 2 (A R,ψ (y)) + C u 2 L 2 (A R,ψ (y)) |ψ| 6,∞ + C Ω |∇ 2 u| 2 |∇ψ| 2 + |∇u| 2 |∇ 2 ψ| 2 dx ≤ Ω |∇(∆u)| 2 ψdx + C ∇(∆u) 2 L 2 (A R,ψ (y)) + C u 2 L 2 (A R,ψ ( 
≤ ψ. Since Ω |∇(∆u)| 2 ψdx + Ω f (x, u)uψdx = 2 θ (1 + θ) Ω f (x, u)uψdx - Ω |∇(∆u)| 2 ψdx + 2 + θ θ Ω |∇(∆u)| 2 ψdx - Ω f (x, u)uψdx ,
choosing R 0 and small enough and combining (3.10)-(3.11), we obtain (3.8).

Proof of Lemma 3.6. Firstly,

Ω (∆u) 2 ∆ψdx = Ω ∆u div (∆ψ∇u -u∇∆ψ) + u∆ 2 ψ dx = - Ω ∇(∆u) • (∆ψ∇u -u∇∆ψ) dx + Ω 1 2 ∆(u 2 ) -|∇u| 2 ∆ 2 ψdx = - Ω ∇(∆u) • (∆ψ∇u -u∇∆ψ) dx + 1 2 Ω u 2 ∆ 3 ψdx - Ω |∇u| 2 ∆ 2 ψdx ≤ C ∇(∆u) 2 L 2 (A R,ψ (y)) + C|ψ| 4,∞ ∇u 2 L 2 (A R,ψ (y)) + C|ψ| 6,∞ u 2 L 2 (A R,ψ (y)) .
Moreover, since

∂ k ∇ 2 u(∇ψ, n) = ij ∂ k ∂ 2 ij u∂ j ψn i = i,j n i ∂ 2 ik (∂ j u∂ j ψ) + ∂ k (n i )∂ i (∂ j u∂ j ψ) -∂ k ∇ 2 ψ(∇u, n) ,
there holds

∇ ∇ 2 u(n, ∇ψ) ≤ CR|∇ 2 (∇u • ∇ψ)| + C|∇(∇u • ∇ψ)| + |∇[∇ 2 ψ(∇u, n)]| ≤ CR|∇ 2 (∇u • ∇ψ)| + C|∇u||∇ 2 ψ| + C|∇ 2 u||∇ψ| + CR|∇ 2 u||∇ 2 ψ| + CR|∇u||∇ 3 ψ|.
We have also

∆ψ∇(∆u)∇(n • ∇u) + ∇(∆ψ) • ∇(∆u)(n • ∇u) ≤ |∇(∆u)| R|∇ 2 u||∆ψ| + |∇u||∆ψ| + R|∇(∆ψ)||∇u| .
Therefore,

∇(∆u)∇ ∇ 2 u(n, ∇ψ) + ∇u∇ψ + ∆ψ∇(∆u)∇(n • ∇u) + ∇(∆ψ) • ∇(∆u)(n • ∇u) ≤ C|∇(∆u)| R|∇ 2 (∇u • ∇ψ)| + R|∇ 2 u||∇ 2 ψ| + R|∇u||∇ 3 ψ| + |∇ 2 u||∇ψ| + |∇u||∇ 2 ψ| ≤ C|∇(∆u)| 2 + C|∇u| 2 [ψ] 4 + R 2 [ψ] 6 + C|∇ 2 u| 2 |∇ψ| 2 + CR 2 |∇ 2 u| 2 |∇ 2 ψ| 2 + CR 2 |∇ 2 (∇u • ∇ψ)| 2 .
In view of our claim, we need only to estimate the integral of the last three terms. By the equality 2|∇ 2 u| 2 = ∆(|∇u| 2 ) -2∇u • ∇(∆u), we have Here a j0 and b j0 are defined in (2.6) with j 0 given by Lemma 3.3. Using (1.6) and Lemma 3.3, there holds .

The proof is completed by means of a covering argument.

Appendix

We prove here the Lemma 3. 

  with (1.1);φ ∈ H k (Ω), φ = ∆φ = ... = ∆ [ k-12 ] φ = 0 on ∂Ω if we work with (1.2).

|∂

  βi ψ(x)| and |ψ| k,∞ = |α1|+...+|αp|=k,αi≥1 p i=1

  y)) |ψ| 6,∞ . (3.11) For the last line, we used Lemma 3.1 with ζ = ψ and the fact ψ 2

A 2 A

 2 R,ψ (y)|∇ 2 u| 2 |∇ 2 ψ| 2 dx ≤ 1 2 A R,ψ (y) |∇u| 2 ∆(|∇ 2 ψ| 2 )dx + A R,ψ (y) |∇u • ∇(∆u)||∇ 2 ψ| 2 dx ≤ 1 R,ψ (y) |∇u| 2 |∆(|∇ 2 ψ| 2 )|dx + C A R,ψ (y) |∇(∆u)| 2 |∇ 2 ψ|dx + C A R,ψ (y) |∇u| 2 |∇ 2 ψ| 3 dx ≤ C A R,ψ (y) |∇u| 2 [ψ] 6 dx + C A R,ψ (y) |∇(∆u)| 2 [ψ] 2 dx.Similarly, we can claimA R,ψ (y) |∇ 2 u| 2 |∇ψ| 2 dx ≤ C A R,ψ (y) |∇u| 2 [ψ] 4 dx + C A R,ψ (y) |∇(∆u)| 2 dx.For the last term, as ∇u • ∇ψ = 0 on ∂Ω, by standard elliptic theory, there exists C Ω > 0 depending only on Ω such thatA R,ψ (y) |∇ 2 (∇u • ∇ψ)| 2 dx = Ω |∇ 2 (∇u • ∇ψ)| 2 dx ≤ C Ω Ω |∆(∇u • ∇ψ)| 2 dx ≤ C A R,ψ (y) |∇(∆u)| 2 [ψ] 2 + |∇ 2 u| 2 |∇ 2 ψ| 2 + |∇u| 2 [ψ] 6 dx ≤ C A R,ψ (y) |∇u| 2 [ψ] 6 dx + C A R,ψ (y) |∇(∆u)| 2 [ψ] 2 dx.Combining all the above estimates, we get the claimed inequality. Proof of Theorem 1.1 for k = 3 completed. Now, we are in position to prove Theorem 1.1 for k = 3. Fix R = R 0 , m = 3 + 6 µ > 3, ρ = R 10(i(u) + 1) , A ρ j0 = A bj 0 -ρ aj 0 +ρ ⊂ A j0 .

u 2 L 2 ( 2 (

 222 Aj 0 ∩Ω) ≤ C Aj 0 ∩Ω f (x, u)u 2 2+µ + C ≤ C(1 + i(u)) 12 µ .(3.12)We will apply Proposition 3.1 with ψ = ξ j0 , where ξ j0 is the cut-off function defined just before (2.15), but in C 6 (Ω) now. According to Proposition 3.1, as A R,ψ (y) ⊂ A ρ j0 ∩ Ω, we can check from Lemmas 3.2-3.3, (2.15) and (3.12) thatΩ f (x, u)uξ j0 dx + Ω |∇(∆u)| 2 ξ j0 dx ≤ C(1 + i(u)) 12µ+12 µ . As R 2 < a j0 , for any y ∈ Γ(R) ∪ Ω 1,R , B R y)∩Ω |∇(∆u)| 2 + f (x, u)u dx ≤ C(1 + i(u)) 12µ+12 µ

4 .Ω∆ 2 uΩ∆ 2 u 2 Ω

 4222 Using (∇u • nψ) as a test function to (E 3 ), direct calculation yields∆(∇u • nψ) = ψ(∇∆u • n) + 2ψ∆u + (∇u • n)∆ψ + 2 ∇ 2 u(n, ∇ψ) + ∇u • ∇ψ .From the Dirichlet boundary conditions, there holdsΩ (-∆) 3 (∇u • n)ψ = -(∇∆u • n)ψ + 2ψ∆u dx + Ω ∇(∆u)∇ (∇u • n)∆ψ + 2∇ 2 u(n, ∇ψ) + 2∇u • ∇ψ dx = -(∇∆u • n)ψ + 2ψ∆u dx + ∇(∆u)∇ ∇ 2 u(n, ∇ψ) + ∇u∇ψ dx + Ω ∇(∆ψ)∇(∆u) (∇u • n)dx + Ω ∆ψ ∇(∆u)∇(∇u • n) dx.

( 4 . 1 )
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Using the equality ∇w • ∇ (∇w

For the last line, we used also

Moreover, as F (x, u) = 0 on ∂Ω, there holds

Readily, Lemma 3.4 follows from (4.1)-(4.3).